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The transition radiation from a rough interface z =Ax y )  of two media is considered theoretically in the 
perturbation-theory appmxhation. The calculation is applicable to the interface of two media with only 
slightly differing &active indices. The interface, however, can be arbitrary and some general regularities of 
the transition radiation from arbitmy rough interfaces can be studied. Expressions are obtained for the 
spectnl energy densities of energy of the transition radiation in the case of two-dimensional statistically rough 
interfaces. It is shown that along with the longitudinal effect, in which the particle "feels" the roughness, a 
transverse effect arises if the longitudinal coherent length is of the order of or smaller than the height f, of the 
inhomogmeities. The transvase effect is due to phenomena which take place in a direction perpendicular to 
the motion. If a characteristic length I (correlation length) in the interface plane is introduced, the alteration of 
the fomutaP will be dctumined by the parameter I/p,  where p stands for the transverse dimensions of the 
field. The spectral energy density of the transition radiation from a plane interface, and in particular its 
polarizatioa, vary considerably, and the roughness of the interface can therefore be investigated. For either 
I / p 4  or l/p+ao, the particle is insensitive to the inhomogeneity of the surface in a plane perpendicular to 
thedirecti~~~ofmotion. 

PACS numkrP: 68.48. + f, 61.80.Mk 

The well-known paper by Ginzburg and Frank,' de- inhomogeneities in the longitudinal direction on the 
voted to the calculation of transition radiation, deals transition radiation can be neglected. This situation is 
only with an ideally interface of two media. Actually, well known and was repeatedly discussed for various 
any interface differs to one degree o r  another from an processes a t  higher energies." 
ideally geometrical plane. The inhomogeneities on a We shall be interested in effects produced in direc- 
plane interface can vary and can take the form tions perpendicular to the motion. If a flat interface 
of individual inhomogeneities insulated from one anoth- has in a direction transverse to the motion a charac- 
e r  , periodically disposed inhomogeneities, and statis- teristic inhomogeneity length I and a corresponding mo- 
tical inhomogeneities. Theoretical investigations of mentum uncertainty, the medium can receive in the 
these questions, in view of their complexity, a r e  only transverse direction a momentum of the order of 1/1. 
in  the initial stage, although even in the first  experi- This in turn leads to a change in the Ginzburg-Frank 
ments on transition radiation it was emphasized that the equations. How substantial this change will be depends 
perfection of the finish of the interface greatly influen- 

on the contribution made to the transition radiation by ces the polarization of the transition radiation. De- 
momentum transfers of the order of 1/1 in the direction tailed experimental reports devoted to this question 
transverse to the motion. 

have been recently published (see, e. g. , Ref. 6). . - 

The transverse distances that a r e  effective in the ra-  
We disregard at  present investigations of transition 

diation processes, a re  determined by the following ex- radiation from surfaces with different geometric 
pression (see, e.g., Ref. 11): shapes7*' or from boundaries having a transition lay - 

p-xge" (I-j3'e)-'", (1) er. ','O 

The present study is an  attempt to take into account 
the influence of the statistical inhomogeneities of the in- 
terface on the transition radiation. To clarify the phy- 
sical cause of this effect, we point out that in the case 
of a ideally flat interface the momentum transferred to 
the medium in the course of the radiation is always per- 
pendicular to the interface. This follows from the 
homogeneity of the medium in directions parallel to the 
interface. If the interface is the xy plane, the momen- 
tum q,, (in reciprocal centimeters) of a particle moving 
along the z axis with velocity v is transferred to the 
surface only along the motion. In the presence of in- 
homogeneities. the situation changes and the radiation 

where A = x /2n  is the wavelength of the radiated photon, 
& is the dielectric constant of the medium, and 8 = v / c ,  
where c is the speed of light in vacuum. The physical 
meaning of p is the following: if we expand the electric 
field of the uniformly moving particle in a Fourier in- 
tegral with respect to time, it turns out that the spec- 
t ra l  density of the particle field contains frequencies 
o only for the collision parameters (the distance from 
the point at which the particle field is sought to the 
trajectory in a direction perpendicular to the particle 
motion) that a re  smaller than p.  At larger collision 
parameters, the spectrum of the particle field contains 
practically no photons with frequencies exceeding w .  - 

can transfer to the interface both longitudinal and trans- Since the momentum effectively transferred in a 
verse momentum. As for the longitudinal momentum transverse direction in the medium is of the order of 
transfer, if it exceeds the "longitudinal momentum" of l / ~ ,  we can expect the corrections necessitated by 
the surface inhomogeneities, then the influence of the transverse effects to be determined by the parameter 
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I / p ,  and these corrections should vanish a s  I - 0 and 
I - a, meaning in the absence of inhomogeneities. 

The expression for the energy of the transition radia- 
tion from a rough interface will contain parameters that 
describe the surface. This enables us  to study the 
properties of the surface by using a beam of charged 
particles. 

INITIAL EXPRESSION FOR THE ENERGY OF 
TRANSITION RADIATION FROM AN INTERFACE 
OF ARBITRARY SHAPE 

We derive the initial equation for the calculation of 
radiation produced when a charged particle crosses the 
interface z=f(x,y) of two media (see Fig. 1). The 
function f(x, y) describes small deviations of the inter- 
face, due to roughnesses, from the plane z = 0; this 
plane would be the interface in the case of an ideal sur-  
face. The particle velocity v i s  directed along the z 
axis from the first  medium with dielectric constant E ,  

to the second medium with dielectric constant c,. 

To clarify the physical aspect of the question and to 
obtain general results without describing specifically 
the properties of the surface, we use perturbation the- 
ory. We construct this theory in analogy with light- 
scattering theory (see, e .g . ,  Ref. 121, replacing in the 
latter the scattered wave by the moving-particle field 
which we expand in accordance with the universal pro- 
cedure in a Fourier integral with respect to time. The 
radiation problem reduces then to the problem of scat- 
tering of an assembly of monochromatic waves that 
make up the field of the moving particle (for more de- 
tails, see Ref. l l ,  8 30). For the scattering effect to be 
small, it must be assumed that the dielectric constants 
of the two media differ insignificantly. A more rigor- 
ous test of the validity of the calculations will be given 
below. 

Thus, the perturbation-theory calculation developed 
below for the transition radiation, while not specifying 
the surface, i s  applicable to a rather limited group of 
interfaces between two media whose refractive indices 
differ little. Such a re ,  for example, the interfaces 
between solid particles and the corresponding immer- 
sion liquids, etc. Although the transition-radiation 
yield i s  proportional to the square of the difference be- 
tween the refractive indices of the two media, and is 
consequently strongly suppressed in media with close 
refractive indices, the calculation method employed 

FIG. 1. 

makes it possible to cope with the physical picture of 
the phenomenon and to obtain general formulas that a re  
valid for all interfaces. It i s  obvious that many qual- 
itative conclusions become valid also for interfaces be- 
tween two media with greatly differ ing optical proper - 
ties. Moreover, for an approximate quantitative esti- 
mate of the radiation in the case of greatly differing 
properties of the media one can use an interpolation 
formula based on replacing in the final expressions the 
perturbation-theory factor corresponding to radiation 
from a plane boundary by the exact expression for tran- 
sition radiation from a plane interface. 

The radiation energy a t  large distances R, in the fre- 
quency interval do and in the solid-angle interval dS2 
for an interface of arbitrary shape i s  determined by 
the usual expressions of classical electrodynamics with 
account taken of the dielectric constant of the medium: 

where E = (E + E ,)/2 i s  the arithmetric mean the di- 
electric constants of the two media. By E, we denote 
the intensity of the radiation field of frequency w at  
large distances from the interface; this intensity i s  de- 
termined from Maxwell's macroscopic equations (see, 
e.g., Ref. 11, Eq. 30.12): 

where E1(R) i s  the Fourier component of the field of the 
uniformly moving particle a t  the point R(x, y, I )  in a 
medium with average dielectric constant c , (see e. g. , 
Ref. 11, Eq. 30.14): 

ie ov/c2-k'/e.  
E' %) kla-azeo/cz exp (Ik.'x+ikVty+ik.'z)dk.'dk,', 

(4) 
E '(R) is the deviation of the dielectric constant from 
co, i. e., in our case 

e f ( R ) = e t - e n ,  -m<z<f (x ,  y )  

e' (R) =el-en, f (2, y )  <z<- ' 
(5) 

and e i s  the charge of the electron. In (3) the wave vec- 
tor of the emitted photon i s  designated k = onG/c (n 
i s  a unit vector in the direction of k), and the wave vec- 
tor of the incident pseudophoton i s  designated kl(k:,k;, 
k:= w / v ) .  

Integrating (3) with respect to z and using (5), we ob- 
tain 

Xaxp (i(k.'-k,)x+i(k,'-k,) y}dk,' dk,' dx dy ,  (6) 
q,,=wlv-k,. (7) 

Substituting (6) in (2) we obtain an expression for the 
spectral energy density of the transition radiation: I 
=dZ(w, k)/dS2dw. 

In the case of a plane interface z = f i x ,  y ) = 0 we ob- 
tain from (6) the conservation law k:= k ,  and ki=k,. 
This means that when a photon is emitted in the 0 di- 
rection (6 i s  measured from the z axis, with 0 ct9 cn) 
momentum is transferred to the interface only in the 
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longitudinal direction, while the transverse momentum 
carried away by the radiated photon is compensated for 
by the momentum of the pseudophoton. In this case it 
is possible to carry out the integration and obtain the 
transition-radiation equations for one interface 

e'lel-e,I1 i - p t e o - ~ 6  cos 0 
1 ,  -- - $' sint 0 

Qtce: 1 (1-pae. cosa 0 )  ( I - ~ Y Z C O S  0 )  
1' (8) 

and for two interfaces.' From a comparison of Eq. (8) 
with the exact transition-radiation equations it follows 
that in addition to the condition 

it is necessary to satisfy one more condition 
8,-8, X - a-me. (10) I et+e. I Ice 

The coherent length 

is defined here a s  the reciprocal of the momentum (7) 
longitudinally transferred tv the interface when a photon 
is emitted in the 0 direction. In the classical analysis 
this corresponds to the length of the trajectory of the 
radiating particle that plays a role in the formation of 
the transition radiation (see, e. g. , Refs. 11 and 13). 
For nonrelativistic particles l,,-UGand condition 
(10) at cose > 8% is practically always weaker than 
the condition (9); for relativistic particles the condition 
(10) can be much stronger than the condition (9). 

TRANSITION RADIATION FROM STATISTICALLY 
ROUGH INTERFACES 

We shall investigate the transition radiation from 
rough surfaces for statistically uneven interfaces 
z=&, y), which a r e  described by the distribution func- 
tions (12) of the deviations of the surface points from 
the plane z = 0. 14"' 

In many cases the distribution of the deviations is ap- 
proximated by a normal distribution (the Gauss law). 
For the height-distribution density flx,y) one uses the 
two-dimensional normal distribution 

W(f(r),f(rl)) is the probability that at two points defined 
by radius vectors r(x,y) and r(x', y') the heights of the 
surface turn out to be equal to f and f '. In (12) the in- 
terface is defined by two parameters,the mean 
squared deviation of the heights fa, = f a (the bar denotes 
averaging over the surface) of the roughness from the 
plane z = 0, and the correlation coefficient F. The 
correlation coefficient is defined as  the mean value of 
the product of the heights in two spatially separated 
points r(x, y) and r '(x', y '1: 

12-2'1 ly-y'l 
i(r)f'(r')==felF (T,-). 1, 

Since f 2, is the mean squared height, the correlation 
coefficient E at r =r '  is equal to unity. If the distance 
between the points r and r' exceeds the characteristic 

lengths 2 (called the correlation radii) for which the 
height correlation vanishes, the function F tends to 
zero. In most papers on light scattering by statistical 
inhomogeneities of a surface, the following expression 
is used for the correlation coefficient: 

(14) 

for which the correlation radius 1 is the distance over 
which the correlation decreases by a factor e. The 
fact that the correlation function depends on the coor- 
dinate difference expresses the statistical homogeneity 
of the interface. On the other hand, in the case of stat- 
istically isotropic surfaces we have f, - l ,= 2. We shall 
consider just such interfaces. 

In analogy with the theory of light scattering by rough 
surfaces (see, e. g. , Ref. 14), we substitute (2) in (6) 
and average the latter over an assembly of rough sur- 
faces with the aid of the distribution function (12). In- 
troducing the notation 

k,'-k,'+k"', k,"-k."+k#", 

qL*-(k/-k,)z+(k"'-k")', q=jr- t ' j t l ,  
(15) 

we obtain the following expressions for the spectral en- 
ergy densities of the transition radiation with parallel 
polarization (the electric vector lies in the radiation 
plane that contains the wave vector k of the radiated 
quantum and the normal to the plane z =0)  and perpen- 
dicular polarization (the electric vector is perpendicular 
to the plane of radiation): 

where F(v) i s  defined by (14). 

We consider now the case of weak roughness: 

fialcbh . (I7) 

The integral G(k:,k,'), after expanding the exponential in 
the integrand and recognizing that1" 

can be represented in the form 
(19) 

,(k:,k;),  ( i - ~ ) W + ~ ~ e x p [ - ( ~ ) ' } .  
coh 

The transition to an ideally flat interface corresponds 
to the limit f, - 0. In this case expression (19) leads 
to the conservation law q, = 0. This means that the 
momentum transfer is perpendicular to the interface. 
In the case of strong roughness, when an inequality in- 
verse to (17) is satisfied: 

L,lf* (20) 

a contribution to the interval (16) is made only by those 
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regions of 77 for which F(v)  differs little from unity. 
This corresponds to complete correlation of the height 
a t  the two points of a rough surface. Near q<< 1,  ex- 
panding F(q)  in a series and retaining the first  nonvan- 
ishing term, we obtain for the integral with respect to 
v: 

LZ 
~ ( k / , k : ) - - e x p { -  2 ($)'), (21) 

the Bessel functions can be replaced by the asymptotic 
expressionz0 

and after substituting (31) in (25) we find that the result 
is  not exponentially small if the inequality 

Z"q'-q)2/4p2< I (32) 
I where 

I L = N,h If0 
is satisfied, where the q '  should be contained in the re -  
gion of the inequality (30). 

i s  a certain effective dimension which is smaller than 
the correlation radius I by a factor I,,,/fo. Expres- 
sions (21) and (191, if the term with the factor (1 - f :/ 
l tnh) is  discarded in the latter, have the same exponen- 
tial dependence on q,, and this enables us to deduce 
hereafter all the results for the case of strong rough- 
ness (21) from the results for weak roughness (191, by 
making the formal substitution I - L and by setting the 
factor f: /I,,, equal to unity. 

It follows from the inequalitities (27), (29), and (30), 
(32) that under the condition 

the essential region of integration i s  the first region, 
since the contribution from the second region is expon- 
entially small. The condition (33) i s  always satisfied 
if the radiated wavelength exceeds the correlation rad- 
ius. On the other hand, if d << 1 this condition will be 
satisfied for all  O << d / l .  We obtain 

After substituting (19) in (16), we change over to the 
new variables: 

cnh 

k /=k;  cos cp', k,'=kP1 sin cpr. (23) 

Integrating with respect to cp' with the aid of the equa- 
tionlg 

1. 

Jep e o e a ~ o s  ( - m z ) & = 2 n 1 , ( ~ ) ,  (24) 
0 

where I,(P) i s  a modified Bessel function, we obtain for 
the spectral energy densities of the transition radiation 

Here Q = 2p2/1 'q, and E(q '1 is  defined in (26). Integra- 
tion of Eqs. (25') leads to expressions that contain inte- 
gral exponential functionsz0 of two arguments: (I 2/Ap2) 
and (1 '/4p2 + )('/I sinZO). Since the condition (33) is  
satisfied, the second argument i s  always large. This 
simplifies the integral exponentials, and to obtain lucid 
expressions we consider the limiting cases of the inte- 
gral exponential function of the first argument. When 
the following inequality i s  satisfied 

I = ( I - ) I , ~  
coh 

We have introduced in (25) the dimensionless quanti- 
tities 

i. e . ,  when the transverse dimension of the field of the 
particle a re  large compared with the correlation ra -  
dius, we obtain for the spectral densities of the transi- 
tion-radiation energy 

Starting from expressions (25), we estimate the in- 
fluence of the roughnesses of the interface on the tran- 
sition radiation. To this end, we break up the inte- 
gration region into two parts. In the first  region 

q'<2pz/1zq (27) 

the Bessel functions can be approximated by the expres- 
sionZ0 

In the case of a strong roughness (20) we obtain 

I"=IL cosa 0, 

After substituting (28) in (25), we note that the inte- 
grand is not exponentially small only under the condi- 
tion 

P (q1z+q')/4pz<i, (29) under the conditions 

while the q '  determined from (29) should be contained 
in the q' interval of the inequality (27). In the second 
integration region 
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where L i s  defined by (22). 

We analyze now the expressions (35). For nonrela- 
tivistic particles @Go<< 1, p - @ G o ,  I,,, - APG), the 
transition-radiation formulas change in order of mag- 
nitude for the emission angles 

sin 0G 
fol l n Z h ( 2 ~ p 6 / l )  

2XzVeo ' 

When the foregoing inequality i s  satisfied, a s  well a s  
(17) and (341, which limit P from below, not only i s  
complete depolarization of a radiation observed, but the 
intensity of the transition radiation can also greatly ex- 
ceed the radiation on a flat boundary. When the inverse 
inequality i s  satisfied, the radiation intensity is I =  J' 
+11*(1 - fVICth )Ipl. 

In the case of strong roughnesses and when (20) and 
(34') a r e  satisfied for nonrelativistic particles at emis- 
sion angles 

sin 0 G - ln" 

the transition radiation i s  likewise completely depolar- 
ized and exceeds the radiation from a flat boundary. 
When the opposite inequality is satisfied, the intensity 
of the radiation i s  suppressed compared with the inten- 
sity on the plane interface. The same condition with a 
coefficient on the order of unity holds also for relativis- 
tic particles in the last case. As for the emission of 
relativistic particles from interfaces with weak inhomo- 
geneities, the emission angles a t  which the enhancement 
effect is  observed a r e  decreased in comparison with the 
presented expression for rough surfaces by a factor 
(1  - ,9Gocose)2. 

Thus, an investigation of the angular dependence of 
the intensity of transition radiation of nonrelativistic 
particles, for both strong and weak roughnesses, can 
yield valuable information on the values of fo and 1 
that characterize the surface. 

At large values of the argument of the integral expon- 
ential function. i. e .  , when the inequality inverse to 
(34) i s  satisfied (the transverse dimensions of the field 
i s  small compared with the correlation radius), 

we have 
11'=1,, +I-L c0sa 0, 

l l = I  Pl .2E (l-pVi0 cos 0)' 

P sinz 8 ( i - t3 'eo-~6cos  0)' 
These expressions a r e  valid for weak a s  well a s  for 
strong roughness, but in the case of strong roughness 
the validity conditions a r e  changed: (33) is  replaced by 
(33'), and (36) takes the form 

For the emission angles [subject to satisfaction of con- 
ditions (20) and (36), (36') which limit the values of 1 
and fol 

the radiation i s  completely depolarized and exceeds the 
transition radiation from a plane interface; a t  large 
angles, the radiation tends to that from a flat interface 
for both strong and weak roughness. 

Thus, when the conditions (33) and (33') a r e  satisfied 
for weak and strong roughness, respectively, the equa- 
tions presented give a clear idea of the influence of the 
roughness on the transition radiation. 

We proceed now to an investigation of the opposite 
case. When the inequality inverse to (33) is  satisfied, 

l'q* l2 sin' 6 
-=- 
4 ~ '  4X1 

>i,  

which can take place only if I>> 6, the contribution from 
the first integration region i s  exponentially small, and 
consequently the essential integration region is the 
second one. We obtain 

cnh 

When the transverse dimensions of the field a r e  large 
compared with the correlation radius [the condition 
(34)], the exponential in the integrand can be replaced 
by unity because of condition (321, and we can put in 
the denominator q t2  + 1 =qr2 .  The integrals a r e  easy 
to calculate, and we obtain for the spectral energy den- 
sities of the transition radiation 

For the case of a strong roughness we have 

I"=P cos2 8. 

zz 
IL=Z,, -. - (l+pVGcos 8)Z 

2fo' I'2n s i n Z 8 ( 1 - $ Z ~ o - p I ' ~  cos o ) ~  

under conditions (34 ') and 

Equations (39) and (39') differ by insignificant factors 
from expressions (35) and (35') which were investigated 
in detail. This indicates that if the inverse conditions 
(33), (33 ') and (38), (38') a r e  satisfied, the physical r e -  
sults nevertheless differ little, thereby greatly simpli- 
flying the entire analysis. In the inverse limiting case 
[i.e., under the condition (36)], it follows from the ex- 
ponential in the integrand in (25") that in the essential 
region of the integration of (32) the predominant contri- 
bution to the integral is  determined by the vicinity of the 
point q. Calculation by the Laplace method2' leads to 
the following result: 
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fo"(l-PYe,cos 8)' z-L=Ipl .2- 
1' sina 8 ( 1 - $ ~ e , - ~ 6  cos 8)2 

These equations describe also the case of a strong 
roughness, but in place of (36) and (381, the conditions 
satisfied a re  (36') and (38'). Expressions (40) differ 
from the previously investigated Eqs. (37) only in the 
sign in front of I'cosZ8 in the f i r s t  equation. 

The equations obtained yield simple solutions of the 
problem of the influence of roughnesses on transition 
radiation if condition (38) i s  satisfied for weak rough- 
ness and condition (38') is satisfied for strong rough- 
ness. 

For an exact calculation of expressions (25), which i s  
valid also for the intermediate cases [i.e., without the 
limitations (33), (33') and (381, (38')], we substitute the 
Bessel function in the form of the serieszo 

By interchanging the integration and summation, using 
the equationIg 

where Wk, , , ( y t )  is  a Whittaker function, we obtain for 
the case of a weak roughness the following expressions: 

" 1 P 1 sin 8 " 
I - .  xa (9.) ( )  - + l l z l ( )  , (43) 

1-a 

p----- " ' e x p { $ ( t - q a ) } .  

2 ltOh 2' 

In the case of strong roughness, there i s  no term 
with a factor (1 - f v l  tOh) in the parallel component of 
the spectral energy density of the transition radiation, 
the factor f :/I:,, in p i s  replaced by unity, and I i s  
replaced by L . 

Let us consider the limiting cases of the exact expres- 
sions. At large values of the argument of the Whittak- 
e r  functions, i. e . ,  when the inequality (36) or  (36') is  
satisfied for weak and strong roughness, respectively, 
we have the asymptotic expansion'g 

After substituting (44) in (43), the requirement that 
the sums must converge leads to a limitation on the 
radiation angle 8, similar to the condition (33) or  (33'), 
and we obtain for the spectral energy densities of the 
transition radiation expressions that coincide with Eqs. 
(37) for both strong roughness. 

In the second limiting case of small values of the a r -  

gument of the Whittaker function, i. e. , when the in- 
equality (34) or  (34') i s  satisfied, the restriction to the 
first terms of the ser ies  in (43) also leads to a con- 
dition that coincides with (33) or (33'), and for the spec- 
t ra l  densities we obtain expressions (35) and (35') for 
weak and strong interface roughness, respectively. 

Summarizing the foregoing, we can state that the phy- 
sical picture of the radiation from a rough interface is 
determined by both longitudinal and transverse effects. 

From the analysis of the expressions derived for the 
spectral energy densities of the transition radiation it 
follows that two cases can be singled out. In the first ,  
the transverse dimensions of the particle field a r e  large 
compared with the correlation radius [expressions (35), 
(39) for weak roughness and (35'),(3g1) for strong rough- 
ness]. In expressions (35) and (39) for the parallel com- 
ponent of the spectral energy density of the transition 
radiation, the first  term leads to Eq. (8) for I,,, with an 
additional factor (1 - f :/I:,,) that influences the radiation 
because of effects connected with the longitudinal di- 
mensions of the inhomogeneities. The second term 
leads to an additional contribution to radiation, com- 
pared with a plane interface, on account of transverse 
effects. In the expressions for strong roughnesses 
there should be no limiting transition in the expression 
for a plane interface. The difference from the case of 
weak roughness lies in the fact that the spectral density 
of the transition-radiation energy in the case of per- 
pendicular polarization exceeds the spectral energy 
density in the case of parallel polarization by a factor 
l/cos28. 

In the second case the transverse dimensions of the 
particles a r e  small compared with the correlation ra-  
dius [expressions (37) and (40)]. In this case the equa- 
tions for the weak and strong roughnesses do not differ 
from each other and go over in the limit into the equa- 
tions for a plane interface. The expressions for I' a r e  
larger the larger f i l l  L,. The additional contribution 
I" to the radiation i s  due mainly to transverse effects. 
These increments to (37) and (40) a r e  equal, but in (37) 
they increase the spectral energy density of the transi- 
tion radiation from the plane interface, and in (40) they 
decrease it. As I - - they vanish and lead to the for- 
mula for the plane interface, namely I" =$, , I' = 0. 
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