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The effect of a magnetic or electric field on a loosely bound particle in a potential well with nonzero orbital 
angular momentum is investigated. A consistent analysis of the Schriidinger equation inside the well is 
replaced by a boundary condition for the wave function on the surface of a sphere. The radius of the sphere 
and the binding energy of the particle in the absence of a field are regarded as phenomenological parameters. 
Outside the bounding sphere, the wave function is constructed by differentiating the Green's function for a 
particle in an electric or magnetic field. The energy shift in weak and strong magnetic fields is calculated for 
the case of thep-state. The conditions for the appearance of a bound state under the influence of the magnetic 
field is ascertained in the case when there is no such state in the absence of a field, and the binding energy of 
this state is calculated. The energy shift and the level width in an electric field are calculated. The dependence 
of the polarizability on the binding energy at various values of the orbital momentum are also considered. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION electric field. Certain calculations a r e  relegated to the 
Appendix. 

In our preceding papers1*' we considered the effect of - -  - 
an  electric and magnetic fields on a particle with low 
binding energy in a potential well in the s-state. The 

2. BOUNDARY CONDITION 

~chrgdinger  equation within the well was replaced by a We consider a particle with rectangular potential well 
boundary condition for the wave function in the center, of radius r,, having an energy c and orbital angular 
in analogy with the approach in which a zero-radius momentum 1. We use a system of units with Pi= M = 1 
potential is  used. However, this approach cannot be (for a charged particle we put also e = 1)  and represent 
literally applied to the case of a nonzero orbital angular the energy in the form e = -a-'/2. We assume that cyr, 
momentum. If the radius of a potential well capable of << 1. 
retaining the particle in a bound state with a given or-  We write the wave function in the form 
bital angular momentum i s  allowed to tend to zero, and 
the depth is  allowed to tend to infinity (with the position $=Ylm(fJ, cp)R~(r). (2.1) 
of theenergy level unchanged), thenthe wave function 
everywhere out side the well vanishes. Therefore the 
boundary condition that replaces the Sc hrodinger equa- 
tion inside the well must be imposed on a sphere of fi- 
nite radius r,. 

Thus, in place of a single phenomenological param- 
eter (the binding energy) used in the zero-radius po- 
tential model, in the case  of a nonzero orbital angular 
momentum it i s  necessary to have to parameters: the 
binding energy and the radius r, of the bounding sphere. 
We set r, equal to the effective radius employed in the 
theory of slow-particle ~ c a t t e r i n g . ~  The radius of the 
bounding sphere can be expressed in terms of the nor- 
malization coefficient in the asymptotic wave function. 
By virtue of the known connection between these coef- 
ficients and the residue of the scattering amplitude at 
i ts  pole, both definitions turn out to be equivalent (see 
Appendix I). 

The radial wave function R,( r )  outside the sphere of r a -  
dius r, i s  proportional to the spherical Hankel function 
hp'(icur). We put 

The factor it'' i s  introduced to make the normalization 
factor a ,  real .  The factor a t+ '  i s  introduced to obtain 
in the limit a s  cu - 0 a finite wave function of zero ener- 
gy (belonging to the discrete spectrum). The normal- 
ization factor a ,  depends little on energy a t  small a. 
Since we a r e  interested in a state with low binding en- 
ergy, we can use the limiting value of a ,  corresponding 
to a = O .  This value i s  determined from the normal- 
ization condition and i s  equal to (see Appendix I) 

At or>> 1 we obtain from (2.2) 

We shall assume Y, to be sufficiently small and take R,-B,r-' exp (-ar), 

into account, wherever possible, only thevalues of the where 
lowest order in r,. 

In Sec. 2 we formulate the boundary condition for an (2.4) 
arbitrary angular momentum I. In Sec . 3, the boundary 
condition i s  used to consider the influence of the mag- We use relation (2.4) also in the case of a short-range 
netic field on a weakly bound particle in the p-state, potential well of arbitrary shape. Then (2.4) serves a s  
while in Sec. 4 it is used to consider the effect of the a definition of r,, according to which r, i s  expressed 
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in te rms of the coefficient B,  in the asymptotic form of 
the wave function. We consider now the value of R ,  at  
r =yo. Recognizing that ar,>> 1, we expand h~'(icur,) 
in a s e r i e s  and retain only the t e rms  that matter most 
for the calculation, and neglect the small  corrections to 
them. 

To clarify the structure of this expansion, we use the 
relation 

The first  two t e rms  of the expansion of n,(z) take the 
form -(21 - l ) !  ! [Z - ' - '+Z-~+~  /2(21 -I)] .  The third t e rm 
is  of order z-If3. The expansion of the function j, be- 
gins with z l .  If we retain only two t e rms  in the expan- 
sion of n,, then we must discard j, a t  al l  I '- 2, inas- 
much a s  in these cases  z' i s  of higher order of small- 
ness than z-' +3. 

We therefore put a t  1 2  2 

At 1 = 1 ,  allowance for the f i r s t  t e rm in the expansion 
of j, i s  legitimate, for in this case  z-"~ i s  of higher o r -  
order of smallness than z'. Allowance for j ,  leads in 
fact only to a small  insignificant correction in many 
cases.  However, for example in the calculation of the 
diamagnetic energy shift, we shall  s ee  that this t e rm 
turns out to be significant. We therefore write out fully 
the limiting value of R,, including the te rm -yo: 

We shall find it convenient to  change over to a differ- 
ent normalization, in which the coefficient of r;'-' is  
equal to unity. Substituting (2.5) o r  (2.6) in (2. l) ,  leav- 
ing out the factor a,(21 - I ) !  ! and denoting the result by 
9, we obtain 

Relations (2.7) and (2.8) will be regarded a s  the bound- 
ary condition that replaces the consistent analysis of 
the Schrodinger equation in the field of a short-range 
well of arbitrary shape. We shall use these conditions 
also in the case  when a magnetic o r  electric field is  
present in addition to the short-range well. The func- 
tion 9 is  then a suitable exact solution of the Schro- 
dinger equation for a particle in a homogeneous electric 
o r  magnetic field. Of course,  the angle and radial 
variables do not separate in this solution. 

3. EFFECT OF A MAGNETIC FIELD ON A LOOSELY 
BOUND PARTICLE IN  THE pSTATE 

The problem i s  to find a solution 9*, singular at r 
= 0 ,  of the Schrodinger equation for a charged particle 
in a homogeneous magnetic field directed along the z 
axis. The solution must satisfy on the surface of a 
sphere of small  radius r, the boundary condition 

We denote by aE/2 the binding energy in the absence of 
the magnetic field. The sought solution i s  expressed in 
t e rms  of the derivatives, with respect to the cylindrical 
coordinates, of the Green's function G( r , r l )  for a homo- 
geneous magnetic field a t  r '= 0: 

Here o i s  the Larmor frequency, equal in ordinary units 
to eY/2Mc. 

The function aG/az satisfied in obvious fashion the 
~chrod inge r  equation in a homogeneous field. The fact 
that a,, (3.2) also satisfies the Schrodinger equation in 
a homogeneous field is somewhat l e s s  obvious, but can 
also be proved (see Appendix 11). The function G can 
be represented in the form of the integral 

The kernel K for a particle in a homogeneous electric o r  
magnetic field was constructed by Feynman and Hibbs.* 

In the case  of a magnetic field, it i s  convenient to r e -  
place t by the integration variable x = i w t .  Then G(r,O) 
takes the form 

Here a2/2 i s  the binding energy reckoned from the boun- 
dary of the continuous spectrum. The position of this 
boundary a t  m = O  i s  equal to w (Ref. 5). The position of 
the boundary of the continuous spectrum at  m = -1 is  al-  
s o  equal to w ,  and a t  m = l  it is  3w.' 

Differentiating (3.3) with respect  to p and z and sub- 
stituting in (3.2), we obtain 

(3.5) 
We consider now 9, and a,, on a bounding sphere of 

radius r,. The t e rm (1/2)wp2(cothlc - l / x )  in the argu- 
ment of the experimental does not exceed (1/2)w./2,. 
The quantity wr; i s  the square of the rat io of the well 
radius to the magnetic length u - ' / ~  and is assumed to 
be smal l  (otherwise the fixed boundary condition cannot 
be used). We therefore neglect this te rm.  Next, to 
separate the singular part  in the wave function, we add 
and subtract the quantity l / x  under the integral sign in 
(3.4) and 1/x2 in (3.5). The singular part  is  expressed 
in te rms of the spherical Hankel function h:'(iar,), in 
which we take into account three te rms of the ser ies  
expansion. In the remaining regular part  we retain the 
t e rms  that do not depend on r, and the te rms proportion- 
a l  to r,, and discard a l l  others. Substituting the ap- 
proximate expressions obtained in this manner for 9, 
and gill in (3. I ) ,  we obtain equations1' for the deter - 
mination of a: 
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We consider two limiting cases. 

1. Weak fields, w<< a 7 2 .  In this case a i s  close to 
a,. In the integrals A, and A, the main contribution is  
made by the region of small  x, and the values of the in- 
tegrals can be estimated by replacing the pre-exponen- 
tial factor by the f i rs t  term of the expansion in powers 
of x .  We obtain 

The equations (3.6) a r e  solved by successive approxi- 
mations. In the first-order approximation we neglect 
al l  the quantities proportional to r,, and retain only the 
terms independent of r,. In the second approximation 
we find the correction proportional to r,, in which we 
retain the terms not higher than w2.  We obtain 

Changing from the quantity -02/2 to the energy E 

(with allowance for the position of the boundary of the 
continuous spectrum), we obtain 

The term *w is the paramagnetic energy shift. The 
terms proportional to w2 a r e  the diamagnetic energy 
shift and agree (in first  order in Y,) with the result of 
the perturbation-theory calculation. 

2. Strong fields, w>> a 7 2 .  In this case the terms 
(1/3)a3rO and war, a r e  small corrections and can be 
neglected. Equations (3.6) take the form 

a2/2=w+Aoro ,  m=O, (3.11) 

a2/2=2w+Alro ,  m = k l .  

To estimate the integral A, we can take the limit a s  
a2/w - 0 in the argument of the exponential. We obtain 

As for the integral A,, the limit a s  a2/w - 0 cannot be 
taken, since the integral then diverges. Replacing by 
way of estimate the pre-exponential factor by i ts  limit- 
ing value a s  x - - and calculating the integral, we have 

Finally, we consider the possibility of appearance of a 
level in the case when there i s  no level in the absence of 
a field, that is, a;/2 < 0. We designate - a v 2  by E,. 
If a level can appear under the influence of the field, 
then one must expect this level to be close to the bound- 
ary of the continuous spectrum, i. e. , (r2/2<< w .  To de- 
termine a under these conditions, we have the rela- 

tions 

az//2=o-E,+ n-'c (V2) o5r0, m=O, 

az/2=20-E,+8oVda, m=*l. 

As seen from (3.14), the appearance of a level at a 
given E ,  and m =O is  possible only starting with a cer-  
tain threshold value of the field, determined by the r e -  
lation 

On the contrary, at m =*l,  a s  seen from (3.151, a level 
can appear at any arbitrarily small but finite value of 

Neglecting in (3.15) w and w2/2 compared with E,, we 
obtain an estimate for  a: 

a=80Zr,/Eo. (3.17) 

Accordingly, the binding energy W of the level, which 
appears under the influence of the field, i s  equal to 

4. EFFECT OF ELECTRIC FIELD ON A LOOSELY 
BOUND PARTICLE I N  THE p-STATE 

In the presence of an electric field of intensity ZR,  the 
energy becomes complex. The imaginary part ,  a s  is  
well known, characterizes the probability of penetrating 
through the potential barrier.  Of greatest physical in- 
terest  i s  the case when the ratio of the imaginary and 
rea l  parts of the energy i s  small. This case is real-  
ized when the dimension of the potential barrier along 
the field, which i s  of the order of @:/I, greatly ex- 
ceeds the characteristic dimension a,' (the "radius" of 
the wave function, i. e .  , when $/a:<< 1. In this case 
$y,/a: will be all the smaller. Under these conditions, 
the term (1/3)a3ro in the boundary condition (2.8) i s  a 
small correction which we shall disregard. 

The problem consists of finding a suitable singular 
solution of the Schrodinger equation am in an electric 
field I directed along the z axis and satisfying the 
boundary condition at r = r0 

Just i s  in the case of magnetic field, 9,,, is expressed in 
t e rms  of derivatives of the Green's function G ,  which 
is equal to" 

The derivative (aG/ap)e*" satisfies in obvious fashion 
the ~chrodinger  equation. We therefore put ( m  = 1,n- 
state) 

We consider now 9 on a bounding sphere of radius r,. 
Assuming that Or,<< a', we neglect the term Ox in the 
argument of the integrand. Then 

The method of calculating the integral in the rlght-hand 
side of (4.3) i s  indicated in Appendix 111. We write out 
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here the final result: 

We have left out of (4.4) a corrections of higher order 
of r,. Substituting (4.4) in the boundary condition, we 
obtain 

The real  part  of the energy shift A i s  equal to 

A"=-BZr,/24aoJ (4.6) 

and coincides with the value obtained by perturbation 
theory (neglecting the corrections of higher order in r,). 
The imaginary part of the shift is  half the level width 
I?,. As follows from (4. 5), 

We turn now to the case m = 0 (o-state). It i s  easy to 
verify that the expression aG/ az + 21aG/ aa2 satisfies 
the Schrodinger equation for a particle in a homogeneous 
electric field. Starting from this, we put 

Substituting here (4.1 ), we obtain 

(3i) " aZ I r ,  cos 0 I ' t s  d t  
O o = - ~ [ r . c o r O ~ e x p i ( ~ - ~ t + - - i - -  2 

24 ) - tslr 
0 

I"  r,L a' EPr, cos 8 8 ' t 3  dt 
- e x p ( - t -  - . (4.9) 

2 24 )t",  1 
0 

In the argument of the exponential in the first integral 
of the right-hand side of (4.9) we neglect, just a s  in 
(4.3), the quantity f?rocose. A s  for the second integral, 
we retain two terms of the ser ies  expansion of 
exp(if?rot cosfl/2) in powers of t ,  i. e . ,  we replace this 
exponential by 1 + (l /2)i1r0t cosfl. We obtain 

- 
r,' a' I a t a  dt 

- ? I Y , , ~  j ~ ~ p i ( i i - - T t - y ) ? i ; ] .  (4.10) 
0 

The term containing Yo, makes no contribution what- 
ever to the boundary condition, by virtue of the ortho- 
gonality of the spherical functions. 

The integrals in (4.10) a r e  calculated by the method 
indicated in Appendix 111. The expression for ff2/2,  
which follows from the boundary condition, is of the 
form 

The real  part of the energy shift is 

which also agrees with the perturbation-theory result 
(accurate to higher powers of r,) for the polarizability. 
For the width we obtain 

r.= (2?/2+8'/4a.3) T O  BXP ( - 2 a . 3 / W ) .  (4.13) 

The term g2/4a; in the parentheses is a small correc- 

tion to the principal term. 

In conclusion we examine the dependence of the real  
part  of the energy shift A =  -fi,g2/2 on a, and ro at dif- 
ferent 1. We confine ourselves to the case of a maxi- 
mum value of the projection of the angular momentum 
m = l ,  for which the calculation reduces to the deter- 
mination of the 1-th derivative of the Green's function 

(in the same approximation a s  before). 

With the aid of the boundary condition (2.8) we find 
that the polarizability 8, i s  proportional to the quantity 
r;-'(ak,/alZ) B;,. Leaving out al l  the numerical coef- 
ficients, we have 

Since are<< 1, we can replace H:'i/, by the first  term of 
the ser ies  expansion. 

At 1 = 1 and 2, the f i rs t  term i s  proportional to 
( a ~ , ) ' - ~ / ~ ,  SO that 

At 1 =. 1 we obtain the already-known result. At 1 = 2  

At 2 3, however, the first  term of the expansion of 
HE: 12(iaro) i s  proportional to (ar,) 5 /2 -8 .  In this case 

and i s  independent of (2. 

5. COMPARISON WITH THE RESULTS OF OTHER 
CALCULATIONS 

Dalidchik and Slonim6 have considered an electron in 
the field of several zero-radius potentials in the pre- 
sence of an external homogeneous electric field. They 
simulated the p-state by an odd wave function in the 
field of two centers separated by a distance R under the 
condition aR<< 1. However, the question of how the 
distance R i s  connected with the radius ro in the poten- 
tial well for which the two-center model i s  constructed, 
remained open in their paper. Comparing the formulas 
(4.6) and (4.12) for the energy shift with the results  of 
the calculation of the shift in Ref. 6, we arr ive  a t  the 
conclusion that R = 2r0. In Ref. 6 i s  calculated also the 
level width. The final expressions (30) and (31) of that 
reference contain e r r o r s  in the numerical coefficients. 
If r i s  recalculated using the general Eq. (29) of Ref. 
6, but with R =2r,,, full agreement is  obtained with our 
expressions (4.7) and (4.13). 

We note also Refs. 7 and 8, in which the approxima- 
tion of several zero-radius wells in an external field 
and perturbation theory were also considered. 

An expression for the width was derived also by 
Smirnov and Chibisovg for a more general case, by 
another method that made it possible to obtain only the 
first term of the pre-exponential series.  A comparison 
with our results  has revealed e r r o r s  in Ref. 9. One 
e r ro r  i s  that the expression for sine in terms of the 
parabolic coordinates 5 = r + z and q = r - z at small 
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angles i s  taken in the form (2q/5)'12, whereas the cor- 
rect  expression i s  2(q/5)1'2. The second error  is  that 
in place of (2 - m)! (2 + m)! the final expression contains 
( I  + m)!/(l - m)! (which changes the result very greatly 
a t  m* 0). 

Retaining the notation of Ref. 9, we present the cor- 
rect  expression for the electron-detachment probabil- 
ity per unit time: 

In the notation of the present paper, y = a,, F = I, 
W = J?, and m means Im I .  In addition, we must put 
Z= 0, inasmuch a s  in our case there is  no Coulomb 
field. If we use the expression (2.4) for  B, a t  1 = 1, then 
the results of calculation by means of (5.1) agree with 
(4.7) and (4.13) (without the second term in the paren- 
theses). 

The indicated corrections allow u s  to resolve the con- 
tradiction in Ref. 10, where, when the coefficients B 
were determined by comparing the theory with experi- 
ment for the u and r states of He-, a difference by a 
factor of 1.5 was obtained. After making the correc- 
tions and including in B the additional factor 2'12, the 
two coefficients agree within the limits of experimental 
error .  

6. REGION OF APPLICABILITY OF THE 
APPROXIMATION 

We discuss now the region of applicability of the ap- 
proximation considered here. Actually in both con- 
sidered problems (magnetic and electric fields) there 
a r e  three independent parameters with the dimension of 
length: 1) the effective radius r,; 2) the "wave-function 
radius" a"; 3) the characteristic scale R of the exter- 
nal field. For the magnetic field this i s  the magnetic 
length R = w"12, for the electric field this is  the width 
of the potential barrier R = a2/21. The theory i s  valid 
if a?,,<< 1 and r d R  << 1, and we take into account below 
only the lowest terms in the expansion in these param- 
eters. At the same time, aR can be either larger than 
unity (weak fields) or  less than unity (strong fields), a s  
well a s  of the order of unity, although in real  cases we 
a re  dealing usually with weak fields (even at a negative- 
ion binding energy 0.01 eV we have a-'= 2 - cm, 
aR=1at$=5~104V/cmor&P=2~10-6G=200T). In 
addition, at aR - 1 the level width in an electric field 
becomes large, and it is practically impossible to ob- 
serve the corresponding state. We therefore assume 
(OR)-'<< 1 in Eqs. (3.10) and (4.13) and expand the 
sought quantities in powers of this parameter, taking 
into account the necessary number of terms, this being 
an additional and generally speaking not obligatory ap- 
proximation. 

The second assumption with which the relation between 
the effective radius and the asymptotic normalization 
factor i s  connected is that the potential well and the ex- 
ternal region a r e  separated by a centrifugal potential 
barrier. If in addition there i s  a comparable potential 
barrier of a different type (non-centrifugal) a t  the edge 
of the well, then this relation is violated. A similar 

violation results, for example, from a Feshbach-like 
state of a strongly bound system (detachment of electron 
a s  a result of a two-electron transition in the presence 
of a weak dynamic coupling between the electrons in a 
negative ion). In all these cases,  introduction of an ef- 
fective radius i s  also possible but calls for a more de- 
tailed examination of the problem. 

Finally, we have used throughout implicitly the as -  
sumption that an interaction takes place only with states 
with a given angular momentum, i .e. ,  there i s  no "ac- 
cidental" degeneracy at low energies of states with dif- 
ferent 2 ,  while for the considered potential other bound 
and quasistationary states lie substantially farther from 
the origin on the complex energy plane, on both the 
physical and unphysical sheets, with the same relation 
preserved also in the presence of external fields. 
This assumption is perfectly natural for negative ions 
and, to a lesser degree, for scattering of slow neu- 
trons by nuclei (as a result of the complicated struc- 
ture of the low-energy scattering for many nuclei). It 
should be noted that the specific symmetry of the atom- 
ic potential11 can lead to an almost simultaneous ap- 
pearance of weakly bound states with different 1 when 
the nuclear charge Z i s  increased, but a more accurate 
allowance for the polarization and other interactions 
makes the splitting of these states sufficiently large, 
so  that apparently this interaction can be disregarded 
for most real  negative ions in really attainable fields. 

It must be emphasized that although the results de- 
pend little on thk shape of the potential well (except for 
the restrictions noted above), in contrast to the s-state 
they depend substantially on the spherical-symmetry 
assumption and, correspondingly, on the (2L + 1)-fold 
degeneracy of the levels in the absence of an external 
field. Nonspherical small-radius potential wells and 
the parametrization with the aid of boundary conditions 
call for a more detailed analysis. This i s  precisely 
why simulation of spherically potential well with the aid 
of a system of zero-radius potential6 must be carried 
out with caution. 

7. CONCLUSION 

The results of the present paper, jointly with Ref. 3, 
demonstrate clearly that it is natural to use a two-pa- 
rameter approximation, similar to the two-parameter 
approximation for s-states (Ref. 5,s 1331, for the de- 
scription of weakly bound states with an arbitrary angu- 
lar momentum in a short-range force field. One of 
these parameters (a t )  i s  connected with the energy of 
the bound state (a: > 0) of with the position of the quasi- 
stationary state-resonance in the scattering (a t  < 0). 
The force parameter, on the other hand, characterizes 
the effective radius of the forces and i s  correspondingly 
connected with the relative contribution made to the 
normalization integral by the regions of space inside 
and outside the potential well. By the same token, it 
can be expressed in terms of the normalization coeffi- 
cient of the wave function of the bound state outside the 
well. The effective radius i s  convenient a= a second 
parameter in view of its clarity, of the connection with 
the analogous parameter for the s-states, and of its 
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suitability for use for both bound and quasistationary 
states. 

The behavior of a weakly bound p-state in a magnetic 
field can be explained qualitatively by starting from 
simple physical considerations. Indeed, when the mag- 
netic field is turned on, the problem becomes quasi- 
one-dimensional2 since the magnetic field prevents the 
particle from moving away in directions perpendicular 
to the field. For the p o  states there is, in addition, a 
nodal surface at z =0, and we obtain a quasi-one-di- 
mensional problem on a semi-infinite interval, The 
bound state is formed in this case only after the poten- 
tial well reaches a certain depth, a s  i s  in fact ob- 
served. For the pn states, the plane z = O  i s  not a 
node, the wave function is symmetrical with respect to 
the replacement of z by -2, and then there is  a bound 
state in the one-dimensional problem in any potential 
well. In this case, however, the wave function vanish- 
e s  on the z axis, the influence of the potential well is  
weaker than for the so state considered in Ref. 2, and 
the binding energy i s  proportional not to the second 
power of the field (as for the s o  case) but to the fourth 
power. Such states can be apparently observed in semi- 
conductors with low effective electron o r  hole masses 
in superstrong magnetic fields a t  low temperatures, but 
this is  a much more complicated task than the observa- 
tion of analogous su states. 

For the p state in an electric field, the most interest- 
ing is the lifetime and the width of the level I', inas- 
much a s  in really attainable fields we can destroy the 
weakly bound negative ions at a binding energy l ess  
than 0.1 eV (Ref. 10) and when an accelerators mag- 
netic field (a Lorentz force equivalent to  the electric 
field) is used this can be done at energies up to -1 eV, 
Since I' depends very strongly on the binding energy E,, 
these measurements make it possible to determine E ,  
quite reliably and the effective radius somewhat less  
reliably (field spectroscopy of weakly bound states''). 
In (4.7) and (4.13) the argument of the exponential is  
trivial and is equal to the phase integral for a trivial 
and is equal to the phase integral for a triangular po- 
tential barrier. However, the pre-exponential factor 
is not trivial, is  proportional in our approximation to 
the effective radius, and contains an additional power of 
the small parameter g/a! for the n state, so  that to 
reach the same accuracy in the calculation of r, it i s  
necessary to retain two terms in the pre-exponential 
factor. 

The quantity = (1/3)r, + (2/3)r, averaged over the 
o and n states is  meaningful when the time of stay of the 
ion in the field i s  short compared with the half-lives, 
so that the decay exponential can be expanded in a series 
and only the terms linear in I? retained. Under real  
conditions allowance for I?, and for the second term in 
I?, can change i= by up to 15-20%. 

Quantities such a s  the polarizability, diamagnetism, 
and others, which a r e  not connected with tunnel transi- 
tions, do not depend on the binding energy at all at suf- 
ficiently large I in this simplest approximation. The 
centrifugal potential clamps the particle in this case 
to the edge of the potential well, so that we obtain the 

rigid-rotator model, and the below-barrier part of the 
wave function both inside and outside the well becomes 
negligible. This transition can take place a t  different 
I for different values; for the polarizability, a s  we have 
already found, it takes place a t  1 = 3. 

Inasmuch a s  for all  the negative ions the electron-af- 
finity energy i s  much less than the polarization poten- 
tial (the energy of the detachment of the next electron), 
the single-electron approximation used here and earl- 
ier112 is quite satisfactory; the collective effects a re  
important only inside the atom, where the behavior of 
the wave function has little influence on the phenomena 
considered here. 

In some cases the effective radius may not enter in 
the final formulas. This i s  precisely the situation in 
the calculation of the spectrum of electrons emitted in 
slow collisions between negative ions and atoms, when 
this process i s  regarded a s  "pushing out" of a bound 
state with a specified I into the continuous spectrum 
from a small-radius nonstationary potential well. 

We note finally that most monatomic negative ions 
have a weakly bound electron precisely in the p-state, 
so that the case I = 1 considered here i s  particularly 
important from the point of view of possible applica- 
t ions. 

APPENDIX I 

We determine the coefficient a, in (2.3) at a=O for a 
rectangular well. Inside the well, the radial wave func- 
tion is of the form 

Rl ( r )=b j l (x r ) ,  x=(2Vo)",  (1. 1) 

where Vo i s  the depth of the potential well. Outside the 
wall, a t  (Y = 0 we have from (2.3) 

Rl=a(21-I) !!r-I-'. (1. 2) 

From the normalization condition - 
it follows that 

Using the relation 

taking into account the condition for the appearance of a 
level with angular momentum L 

jl-I (%TO) =O (I. 5)  

and the continuity of R ,  a t  r=ro, we obtain 

(I. 6 )  

We derive also Eq. (2.4) for B,, by considering the 
residue of the scattering amplitude a t  the pole. Accord- 
ing to Ref. 3, the scattering amplitude in the effective- 
radius approximation is of the form 
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2 & 4  C Y 1  and contain two dimensionless parameters: cur, and 
f=-L. - [(z-i)!f]2=-y.  

kz+a' (21+i ) k2+a $/a3. We apply to this integral the artifice employed 
in Ref. 6. We deform the integration contour so  that it Its residue a t  the pole k2= -a2 i s  (-1)1+1a21C. On the 
follows the lower imaginary semi-axis of the complex 

other hand, from general scattering theory it follows 
that this residue should be equal, apart from the factor 

T plane to the stationary -phase point r,, and then a 

(-I)'+', to the square of the coefficient B, in the asymp- 
straight line parallel to the real  axis to .o. If a3/$ 
>> 1, then the stationary-phase point i s  located far from 

totic expression for the radial wave function . the origin and its position i s  given, accurate to small 
B,r4 exp(-or). From this we get expression (2.4). 

corrections, by the relation T,= -ia3/8. 

APPENDIX II 

The Green's function for an electron in a magnetic 
field can be represented in the form of the ser ies  

where R, i s  the normalized radial wave function of the 
electron in a magnetic field at zero projection of the 
angular momentum on the field direction. It i s  equal 
to5 

R.=(2o)" exp (-opZl2)F (-n, 1, opz). 01.2) 

Here F i s  a confluent hypergeometric function. 

To prove that (aG/ap - wpG)e*" satisfies the Schro- 
dinger equation in a magnetic field at an angular-mo- 
menturn projection 4, it suffices to show that dRn/dp 
- opRn i s  the radial wave function for the case of an 
angular-momentum projection *I. Differentiating R,, 
with respect to p, we obtain 

Using the known relations 

we obtain 

According to Ref. 5, this expression i s  apart from the 
normalization, exactly the required radial wave func- 
tion. 

APPENDIX Ill 

To investigate the integrals in (4.3) and (4.10) it i s  
advisable to introduce first  of all a new integration 
variable T =  02t/2. The integrals obtained a r e  of the 
form 
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In the integral over the segment (0, T,), we expand 
exp[-(1/3)i(g/1~~)~?] in powers of (g/a3)' and confine 
ourselves to the first  two terms. We obtain integrals 
of the type 

Since cur,<< 1, we can replace the upper limit 7, by .o, 

after which the integral i s  expressed in terms of a Han- 
kel function of the argument iar,. 

The integral over the section (?,,a) i s  calculated by 
the stationary-phase method. 

')We thank D. I. Abramov for obtaining expressions for the 
integrals (3.8) and (3.12) in terms of the generalized and 
simple Riemann 1 function. 
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