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An equation for the Winger function is derived from the nonlinear two-dimensional Schrodinger equation. In
the geometric optics approximation, it resembles a kinetic equation for which an exact solution is obtained. In
particular, the solution describes self-focusing of radiation in a nonlinear medium. It is shown that wave
beams with a certain type of initial angular divergence may propagate in the medium without self-focusing.
The power of such beams may greatly exceed the critical power in the case of waveguide propagation.

PACS numbers: 03.40.Kf

1. INTRODUCTION

Self-focusing of radiation in a nonlinear medium® is
in many cases an undesirable phenomenon that restricts
the capabilities of instruments and devices. In particu-
lar, estimation of the conditions under which we can
significantly increase the power of radiation propagat-
ing in a nonlinear medium without self-focusing is
therefore of interest. It is known that a waveguide
regime of propagation is possible,2™* in which the
self-focusing is compensated by diffraction divergence
of the beam. However, in this case the beam power P
should have a definite value P that depends on the dur-
ation of the radiation and the properties of the medium.
It is not possible to guarantee a stable (i.e., without
focusing and divergence) regime of propagation of
beams with power P> P, due to diffraction divergence.

In this work, we show theoretically that the regime of
propagation without self-focusing is possible for beams
withP > P, if thebeams have certainangular character-
istics at the input to the nonlinear medium. For ex-
ample, the phase front of the beam should be so modu-
lated that the initial angular divergence of the beam as
a whole significantly exceeds the diffraction divergence
over the entire aperture of the beam and, in addition,
there should be a certain dependence of the angular
spectrum of the wave vectors over the transverse cross
section of the beam. Then the self-focusing and the
initial divergence can cancel each other exactly. The
stable regime of propagation that we have discovered is
unstable in the sense that the beams with less than the
required initial divergence will be self-focused, and
those with a greater one will diverge. However, by
creating an initial divergence that is sufficiently close
to the necessary value, we can significantly increase
the distance over which the beam can be propagated
without appreciable change in its parameters.

The initial point of our calculations is the well-known
parabolic equation. We have written out this equation
in Sec. 2 and carried out its simplification, which cor-
responds to the quasi-classical approximation in quan-
tum mechanics (or to the geometric optics approxima-
tion). The most frequently used form of the quasi-
classical approximation has involved purely quantum
concepts such as y functions, eigenvalues, and so on
(in optics, wave concepts—the amplitude and the phase
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of the wave and so forth). For our purposes, however,
another form of this same approximation is more con-
venient, based on the Wigner function and using such
purely classical concepts as coordinates, momenta,
and particle distribution functions over these variables.
Using the approximation mentioned, we obtain a non-
linear integro-differential equation for the Wigner func-
tion, which has the form of a kinetic equation.

In Sec. 3, we find the exact solution of this equation
and investigate its stability. Section 4 contains the dis-
cussion: there, for completeness of the exposition, we
formulate several of our results in wave language. In
the Appendix, we obtain for the Wigner function in quan-
tum mechanics an equation which is of possible metho-
dological interest.

2. METHOD OF THE KINETIC EQUATION IN THE
THEORY OF SELF-FOCUSING

2.1. The electric field E satisfies the equation

0’E 9? 9* 9*
€ c’(

— | —=—t—=——+—=)E= 1
at* oz*  dy* * 0zZ)E 5 M
where €=¢,+3€,E2. We seek a solution of (1) in the
form of a bounded wave propagating along the Z axis:

E=/,(Ae=et+istce),

where the vector A lies in a plane perpendicular to the
Z axis, and the frequency w =ck/€}®. We obtain

e 0 F.] i 0 9 ie.k
(A mlamtgp) A g A @
which is a parabolic equation in the form of a two-di-
mensional nonlinear Schrddinger equation; in the sta-
tionary case, when 8A/at =0, the role of the time is
played by the z coordinate.

We note that the divergence of the beam because of
the Huygens-Fresnel principle is completely deter-
mined by the diffraction, which depends on the distribu-
tion of the phase and amplitude of the field over the
aperture of the beam. This distribution can be rather
complicated and include various spatial frequencies
(various characteristic scales). In what follows we
shall analyze the case in which there are two character-
istic groups of spatial frequencies in this distribution:
low and high frequencies. For simplification of the
further discussion, we shall assume that there is only
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one low spatial frequency. If a plane wavefront cor-
responds to it, then we have the divergence due to dif-
fraction at the aperture of the beam. If the wavefront
has a curvature, then along with diffraction at the aperture,
there is divergence due to the curvature of the wavefront,
which we shall call regular. The group of high spatial
frequencies will cause what we shall arbitrarily call
diffusion divergence (divergence of this type arises, for
example, in the transmission of a beam through a
frosted plate).

Equation (2) is very general. It describes divergences
of all type as well as self-focusing. We shall consider
below the case in which

PP, ®)

where the power of the beam P is equal to
c (.,
—— Alz,
P 3 jd plA|

the vector p =(x,y), d*p =dxdy; the critical power, as is
well known, is equal to

ceo'/x
ke,

P=0.917

It will be shown below (Sec. 4.1) that in the case P> P,
the necessary diffusion divergence turns out to be
much greater than the diffraction at the aperture and
the latter can be neglected. At the same time, there

is no term in Eq. (2) whose discard would mean neglect
of the diffraction divergence at the aperture. There-
fore, the use of (2) carries with it an unjustified com-
plication of the calculations. We develop a method that
allows us to avoid the calculation of the diffraction
diverg)ence brought about by the low spatial frequen-
cies.!

2.2 On the basis of the analogy with quantum statis-
tics (see Ref. 7, Sec. 5 or Ref. 8, Sec. 7), we intro-
duce the Wigner function

Wt z,p,8)= jdﬁ exp[—iksEl4 (t, z,p+ —%)A (t, Z'p——zg—),’

where the scalar amplitude A is determined from the
condition A =e A, e being the unit polarization vector.
All the vectors p, s, e, and £ lie in the pattern plane
perpendicular to the Z axis and crossing it at the point
z. The radiation intensity I(¢, z, p) at the given point p
of the pattern plane is obviously expressed in terms of
the Wigner function

ck* ¢ d’s

——W(t, z,p,s).

c
= A= —
I Snl ! 8n (2m)?

By definition, dE =Id*pdt is the energy which passes in
a time dt across the cross section d?p of the pattern
plane z in all directions (toward increasing z).

Using (2), it is not difficult to obtain the equation for
W(p, s) (we omit the arguments ¢ and z for brevity):

( & j—+——0-—) W(p, s)= —$a

W (p,s)
c ot dz /]

o

e,k d*sd’s, E
2: ks, =
+i ™ jdgj ) ™. W (p, s+s,) [W (p+ 5 ,s‘)

(o )] @
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Here and below, we carry out summation over repeated
indices.

Expanding W in a series in ¢ and 8,, we get

& 0. 90 oW (p,s)
— YW (p,5) =g 2
( ¢ ot dz) (p,8)==s Jon
—azkz i’ (-1~ d’"“W(p,s)
8o &md 4" (20 1) k"~ 95T
g+t d?s,
X oz [ e Wios9) ). (5)
The symbol
orw ) aF
gs dp”
denotes
W arF
= 055053 .. 0padps ...
where the sum runs over the n different indices o, 8, ... .

Equation (4) (or (5)) is equivalent to Eq. (3). But in
(5) it is easy to neglect the diffraction effects at the
aperture of the entire beam, while continuing to take
the diffusion divergence into account. For this pur-
pose, it is necessary to keep only the first term » =0
in the sum over n.

We emphasize that such an operation does not mean
the limiting transition £— « and total neglect of the
diffraction. Actually, the Wigner function depends on &
as a parameter, and continuing to take this dependence
into account, we treat the diffraction that is due to the
high spatial frequencies (i.e., the diffusion divergence)
in the same fashion. In the limit as k- « we would be
obliged to assume that

ck?
The presence of the 6 function in the right side of this
equation means that in the limit as £~ = we only take
the regular divergence into account.

W (p,8)= 2% 1(p)8(s—50(p)).

In the following, we shall assume that W(p, s) as a
function of 8 differs from zero in a finite interval of s,
which means allowance for the diffusion divergence. Of
course, such an approximation is valid if the character-
istic values of the low and high spatial frequencies are
widely different from one another.

Keeping only the first term » =0 in the right side of
(5), we obtain an equation of the type of the kinetic equa-
tion of Boltzmann. Introducing the new notation
ok e

W, L=

= 32n° T ne,

and setting 8J/0¢=0, we write down the obtained equa-
tion in the form

/]
L B A ©)
9z 0pa I, 0sa dpa
I= j' dis],  ds=ds,ds, .
Equation (6) is similar in form to the kinetic equation

which describes the motion of several particles in the
pattern plane. Here the function J(z, p, 8) is similar to
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FIG. 1. The dashed lines show the axes of the primed system
of coordinates, which has its origin at the point 0. The vector
1 is the projection of the vector L on the (x’,y’) of the figure.

the single-particle distribution function in kinetic theory;
the coordinate z plays the role of time, the dimension-
less vector 8 plays the role of the velocity of the par-
ticle; the right side of (6) describes the interaction of
the particles in the self-consistent-field approximation.
Let a ray emerge from some point 0 of the plane in the
direction L, and let the polar and azimuthal angles of
this direction be 6 and ¥ (see Fig. 1). Then the com-

ponents of the vector s are s =tan6 cos §, sy=tanésiny.

We introduce the function f(z, p, 6, ) such that

f(z, p, 8, $)d*Q=J(z, p, s)d’s, d*Q=sin 0 dOdy;

whence

1(2,0,6,%)= I(z,p,8(8,9)).

cos’@
The function f has a clear physical meaning. dE
=fdtd®pd*Q is the energy which passes in a time d¢
through the area d?p in the direction of the solid angle
d@*Q. Obviously,

I= j'.mf.

It can be shown that f(z, p, 6, ¢) is proportional to the
number of rays which emanate from the point p of the
plane z in the d®Q direction.

2.3. We carry out transformations that are conven-
ient for what follows. We introduce the polar coordin-
ates p and ¢, in the plane taking as our origin the point
of intersection of the plane of the pattern with the Z’
axis (see Fig. 2). Let

S;=U c0s p—V sin @, s, =usin ¢+v cos Q.

Obviously, # and v are the radial and azimuthal com-
ponents of the vectors (see Fig. 2).

FIG. 2. The polar coordinates of the point O in the plane of the
the figure. One should note the difference in the definition of
the angles ¥ and ¢. The letters U and V denote the axes which
the corresponding quantities » and v are plotted.
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In place of (6), we obtain

a!+ ] v al 1(6! ar
—;?—;ap

19 6[)
9z uf?p parp— 1, ’

v g
’ ™
In what follows, we limit ourselves to the case in
which the entire picture is symmetric relative to the
Z axis. Then the function J, and with it also I, does
not depend on the angle ¢, as a result of which v and the
derivative with respect to v drop out of Eq. (7). We are
seeking the conditions under which a stable propagation
regime is possible when 8J/8z =0. In this case

" aJ(p, u,v) 1 dJ(p,u,v)
dp 1. ou
a, " "
X?p( j. du, jdv,](p, uy, v,)) =0. (8)

3. EXACT SOLUTION OF THE NONLINEAR
INTEGRO-DIFFERENTIAL EQUATION (8)

3.1. Equations similar in type to (6)—(8) were inves-
tigated in plasma theory (see, for example, Refs. 9-11).
Acting in the spirit of this thoery, we shall temporarily
assume that

1(p)= I du,} dv,J (p, uy, vy) 9)

- ~x

is a known function. Then (8) transforms into a first
order linear partial differential equation which can be
solved. Writing out the equivalent equation

dl
— dp=L,udu,
dp

we find its first integral

o) v _
I, 2
Then
_ I(p) w*
J(p,u,v)—lzw(T =)

The function & could be arbitrary were it not for the
self-consistency condition (9). We introduce

Fz)= j dv® (z,v). (10)
Then the condition (9) takes the form of an integral
equation for the function F(x):

f dzF (z) _p
Sp-n)r V2
where p =I(p)/I,. Since F(x)>0, it follows from (11)

that F(x<0)=0atp=0atp=0. Then(11)takesthe form of
an Abel equation and is easily solved:

(11)

F(z) =\é-71"'x (),

where x(x<0) =0, y(x>0)=1 is the Heaviside function.
It remains for us to solve the integral equation (10) for
the function &(x, v), which takes the form

] dv® (z, v)=—}/—fx"'x(z). (12)

Even in the class of functions ¢ =0 this equation has an
infinite number of solutions.
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3.2. We consider two solutions of (12).

1) Solution of the “fan” type. In this case,

00 =2 s @0),

f(Py(Pye.\b)=lz_ 3
n cos’ @ I, 2

(T -—57).

V2 6 (sin (p—¢)) [l(p) _1g'0 ]"'

(13)

All the rays emitting from the arbitrary point O in the
plane of the pattern lie in a plane passing through the
point O and the Z axis. These rays form an angle with
the Z axis that is no longer than

21(p) ] "'z[ 20(@) 1"
12 IZ

(14)

Om(p)= [ arctg

(it is understood that 2I(p)/I,< 1). The value of the
angular divergence of 8,(p) depends on the total inten-
sity I(p) at the given point O.

2) Solution of the “bouquet” type. In this case,

1 v?
o - _r
(@) 2nx(’” 2)’
I, ( I(p)  tg*8
005" B~ I, 2 )

All the rays passing through an arbitrary point O in
plane of the pattern are located symmetrically relative
to the axis Z’ which passes through this point parallel
to the Z axis.

In both cases, the value of the angular divergence
0 (p) is the same, but the distribution of the rays in the
range 0 <0 <0,(p) is different [compare (13) and (15)].

The solutions obtained pertain to the case in which the
low spatial frequency corresponds to a plane wavefront.
At the same time, the angular divergence of the beam is
purely diffusive, We note a beam having only a regular
divergence (i.e., a smooth wavefront with curvature)
does not satisfy Eq. (8). This can easily be shown by
substituting the expression Jx<I(p)5(8 —8(p)) in (8).

3.3. We now investigate the stability of the results.
At the entry to the nonlinear medium let the beam be
described by the formulas (13) or (15), in which the
substitution

L—~1,(1+2¢)

has been made. This means that the angular divergence
is less than (€< 0) or greater than (£>0) the correct
value (14). The quantity | €| is the relative error of the
initial angular divergence. Adding the term 8J/8z to the
left side of (8) and substituting Eqs. (13) and (15) in (8),
we obtain

o] o] dr1 1

9z 9a "Ef( B m) ’

. I u?
R ATEE S

In order of magnitude,

( 1 )"‘ ol J I, dl 1
poc { — , —ox—a
I,

da a T ar r

where 7 is the characteristic radius of the beam.
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Hence
1 8J /7 | e (I \"
T ap (11,)"»“_7(7,) (16)

In accord with (16), the function J increases, i.e.,
the beam is focused if the angular divergence is small
(¢<0) and conversely. At a given angular divergence
8 .{p) as a function of p we can introduce the character-
istic power of the beam

I
- _[dzdy Om(p). (17

In our case this power is the analog of the critical
beam power: if P> P*, then the beam diverges in the
medium and conversely. This result is entirely under-
standable from general considerations. A significant
change in the parameters of the beam takes place over
a distance

reihl%) -

T el (18)

where R =7(I,/I,)'? is the self-focusing distance.

4. DISCUSSION

4.1. We have shown that the character of the self-
focusing of beams in a nonlinear medium depends es-
sentially on the original divergence.

Let a beam with arbitrary dependence I(p) be incident
on the medium. This dependence uniquely determines
the law of initial angular divergence:

B (p) =[21(p) /11",

at which the critical power P* in (17) is equal to the
beam power. Such a beam will propagate without
change in its parameters. We again note that the dis-
cussed divergence is purely diffusive.

The diffraction divergence at the aperture, which is
equal in order of magnitude to A/7, turns out in our
case to be much smaller than the initial diffusion div-

ergence, 9, inas much as we have, by virtue of (3)
and (14),
A » I, K Pcr e
—_— x| — = e < 1.
70m r (I ) ( P ) (19)

In addition to (19), the most stringent condition I{(p)/
1,<« 1 should be satisfied; this means that the diffusion
divergence of the beam is much less than 7/2, 1t is not
possible to obtain a beam of the needed type by passing
a thin parallel beam through a defocusing lens, since
this leads to the appearance of regular divergence only.
The appearance of diffusion divergence is easiest to
represent as the result of the transmission of the paral-
lel beam through a plate that produces modulation of
the wave front. If g is the characteristic amplitude of
the modulation, and [ is its characteristic scale, then
the diffusion divergence that develops is equal to 2a/1
in order of magnitude., This relation should vary over
the cross section of the plate as [I(p)]'/2. At the exit
from the plate the rays will divergence in each elemen-~
tary cross section of the beam, in accord with the law
that we need. A beam of such a type can approach very
close to ideal beams considered by us in Sec. 3. The
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effective value of € in Eq. (18) for such a beam will be
small and the beam travels a large distance without
‘self-focusing and divergence. The divergence that we
need can, for example, be given by a frosted (phase)
plate and also by an amplitude plate.

4.2. Upon passage of a beam through a plate which
creates diffusion divergence, fluctuations of the inten-
sity can develop over the cross section of the beam.
However, in regions with increased intensity, the self-
focusing will not develop. Actually, the characteristic
size of such a region is connected with the divergence
6 , by the relation df, <A. But in our case, by virtue of
the condition (14), we obtain

1= LN =P,

Thus, each region contains a power not exceeding the
critical value,

In addition, if the regions with increased intensity
arose as the result of interference, then the location of
these regions over the cross section of the beam will
change rapidly with increase in z. Therefore, fine-
scale self-focusing will not occur.

4.3. Suppression of self-focusing after transmission
of a parallel beam through an etched phase plate was ob-
served experimentally in Ref. 12, The authors of Ref.
12 connected the suppression with the splitting of the
beam into several regions for each of which the condition
P< P, holds. We note that this circumstance can be
not the only and not even the principal reason for the
observed phenomenon. Upon transmission of the
beam through the etched phase plate, diffusion diver-
gence arises inevitably, and, as we have shown in this
paper, can cause the observed suppression of the self-
focusing.

4.4. We obtained Egs. (6)—(8) neglecting the diffrac-
tion of the entire beam by the aperture in the initial
equations (2), (4) and (5). In this connection, we note
that Egs. (6)-(8) can be written down simply from
heuristic considerations taking into account, in the
approximation of geometric optics, not the trajectory of
a single ray, as is usually done, but the motion of
a ray ensemble characterized by a certain ray distribu-
tion function. It is therefore possible that the region
of applicability of Eqs. (6)—(8) turns out to be broader
than the region of applicability of Eq. (2). Thus the
method that we have developed allows us to consider
the diffusion divergence of the beam in the approxima-
tion of geometric optics.

The authors thank G. A. Aaskar’yan, F. V. Bunkin,
V. E. Zakhakrov, S. P. Novikov and V. N. Tsytovich
for discussions.

APPENDIX
We consider the one-dimensional Schrddinger equation

wd__ P

(A.1)

Elementary calculation shows that, by virtue of this
equation, the Wigner function, which is equal to
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W(t,p,2)= [dee (e, z+E/2) ¥ (t,2-8/2),

-

satisfies the equation

ow p ow dp, ipit/n
at m 0z m j J'Zn ¢

XW(t,p+an)[V(z+—§_) ‘V(”—zi)]’

or

(A.2)

oW p oW
—+

at m dz

AV oW 3 (—1)"h* gtHW anY
dr op = (2nt0) 14" apt datr

Equations (A.1) and (A.2) are equivalent, but it is
clearly seen from Eq. (A.2) how quantum mechanics
transforms into classical kinetics in the limiting case
7i- 0. Actually, in this case, the right side of (A.2) can
be neglected and W(¢, p, x) can be identified with the one-
dimensional distribution function f(t, p, x) of kinetic
theory.

The Wigner function contains all the information on
the quantum system and is a very convenient tool, for
example, in the investigation of the statistics of an en-
semble of oscillators located in a thermostat and excited
by external action,®”*® or in the determination of the
first quantum corrections to the classical equations
of motion.!®

Equation (A.2) for the Wigner function is, in our
view, of definite methodological interest, since (A.2)
is an exact quantum equation, and at the same time,
in contrast with (A.1), there is a smooth transition to
the classical theory.

DIn the one-dimensional case, when 62A/8y? = 0 there is prob-
ably no need of such a method, since Eq. (2) can be solved
exactly by the method of the inverse problem.5:8
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