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The amplitude is found for a transition of a general form A-C-B in a system of three molecular terms for the 
case in which there is no direct interaction between the initial and final states A and B and the motion may be 
treated as quasiclassical (i.e., in the WKB approximation). The three-term model accounts for transitions in 
atomic-molecular collisions and radiative processes in molecular systems that are allowed in the second order 
in the interaction. A quasiclassical theory of Raman scattering is developed, which makes it possible to 
determine the form of an excited electronic term in a diatomic molecule from the resonance-scattering 
spectrum. It is shown that a new laser process-a light-scattering-induced conformation transition-is 
possible for a certain class of molecules. 

PACS numbers: 33.20.Fb, 36.20.E~ 

The Landau-Zener problem' concerning transitions cules: a conformation transition induced by light scat ter-  
between two intersecting molecular t e rms  is well known. ing. 
If there i s  no direct  interaction between the t e rms  A 

The amplitude for  the transition A- B in a system of and B, e.g., if the transition is  symmetry-forbidden, 
the transition can go only through a third te rm C. The weakly coupled t e rms  A-C-B when there is no direct  

interaction between the initial and final t e rms  (V,, =0) corresponding problem for  three o r  more  t e rms  has 
is determined by the matrix element not been solved, except in special We shall 

consider transitions of the general  form A-B-C in  a Ircs=(lbr l VrcG~~Vcnl lbn> (1) 
system of three molecular t e rms  in which there is 
no direct  interaction between the initial and final 
s tates A and B under the assumption that the motion on 
each of the t e rms  may be treated a s  quasiclassical (i.e., 
in the WKB approximation). 

The three-term model explains transitions between 
te rms of different multiplicity (1C-3C) when these 
t e rms  a r e  crossed in an atomic collision by a te rm 
having a large spin-orbit interaction (311), transitions 
between molecular s ta tes  of the s ame  parity (g-g) a s  a 
result  of mixing of these s ta tes  with a s ta te  of opposite 
parity (u) incident to the application of a uniform elec- 
t r ic  field, and other processes that a r e  forbidden to 
the f i r s t  order in the intramolecular interaction o r  in 
the strength of the external field. This model is of 
special interest for  the theory of radiative transitions 
in molecular systems. The concept of quasienergy 
states in an external field that varies periodically in 
time4 makes it possible to t rea t  radiative processes 
by analogy with transitions in a conservative system. 
A generalization of the Landau-Zener theory fo r  radia- 
tive collisions with transitions between two crossing 
quasienergy t e rms  is given in Refs. 5-7. We shall  con- 
s ider  a system of three quasienergy te rms;  this model 
makes it possible t o  establish an  analogy between the 
more complicated radiative processes in molecules and 
nonadiabatic transitions in collisions between atoms and 
molecules. The radiative processes that a r e  sa t i s -  
factorily described in the three-term approximation in- 
clude resonance Raman scattering, intercombination 
transitions in molecular vibronic spec t ra ,  quenching of 
a metastable s ta te  in radiative collisions, and some 
other phenomena. In this paper we give a quasiclassi- 
cal interpretation of Raman scattering. It is also shown 
that a new l a se r  process is possible for  certain mole- 

. . . . 

in the second o rde r  of perturbation theory. Here 4, 
and I), a r e  the wave functions for  the motion of the nu- 
clei  on the t e rms  A and B, respectively, Gg is  the 
Green's function for  the t e rm,  C,  V,, and VcB a r e  the 
interaction matrix elements averaged over the electron 
coordinates, and E i s  the energy of motion on the te rm 
C (i.e., E =E, =E, =E, in a closed molecular system, 
and E =E,*tiw, E,*Rw for  radiative processes). We 
shall  consider the dependence of I,,, on the energy E 
and on the forms and relative positions of the t e rms  A, 
B, and C under such conditions that the motion on each 
of the t e rms  is quasiclassical (the transition itself, 
generally speaking, may be quantum process). 

Figures 1 and 2 show transition schemes for  three 
intersecting t e rms  fo r  the above-barrier and below- 
ba r r i e r  cases. In calculating I,,, we may properly 
use the quasiclassical expressions for  4, and I), and 
G: provided the turning points x,, x,, and a, a r e  f a r  
from the points x,, and x,, where the t e rms  cross ,  
s o  that the corresponding phases S(x, ,  x,,), S(x,, x,,), 
S(a,, x,,), and S(a,, x,,) a r e  large; here  

=Ac 

S h ,  ZAC) = J PA& 
' A  

FIG. 1. Above-barrier transition in a three-term system. 
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FIG. 2. Subbarrier transition in a three-term system. 

and A = B = O  when 

provided a t  leas t  one of the arguments x, and x, l ies  in 
a classically inaccessible region. In the general  ca se ,  
the coefficients A, B, and C must  be s o  chosen a s  to 
ensure the correc t  behavior of the solutions X*(z) in 
passing around the turning points in the space of the 
complex variables z, and z, in accordance with well- 
known rules8 and formula (2). 

is the cut-off action and LANDAU-ZENER AND FRANCK-CONDON 
TRANSITIONS 

P * = [ ~ ( E - U A  ( x ) )  I"' 
The function 

is the momentum for the motion on the t e rm A (here 
and below ti = p = 1). We also assume that the points xAc $A ( x i )  VAc  ( x i )  GE' ( I , ,  2%) VcB(xz )  $B ( 5 2 )  

and xBc where the t e rms  c ros s  a r e  f a r  enough apart ;  
this makes i t  possible to distinguish two transition 
mechanisms : the Landau-Z ener mechanism, and the 
Frank-Condon mechanism. When the width y ,  of the 
te rm C is large and the momentum PC of the motion on 
that te rm is small ,  the complicated stepwise Landau- 
Zener process A-C-B naturally reduces to two inde- 
pendent transitions A-C and C-B, we shall  be interes- 
ted in the case  in which y, is smal l  and the phase of 
the motion on the te rm C is conserved. 

THE QUASICLASSICAL GREEN'S FUNCTION 

The form of the Green's function G, in t he  quasi- 
classical region is of interest in itself. We shall  use 
the well-known expression for  G, in t e rms  of linearly 
independent solutions X* and X-  of the homogeneous 
equation: 

d  d  
G X ( z , ,  z ~ ) = ~ x + ( x ~ ) x - ( x > ) / A ~  A=x- ( x )  Z X + ( X ) - X + ( ~ )  - X - ( X ) ?  dx 

(2) 
where A i s  the Wronskian, and x, (x,) i s  the smal ler  
(larger) of x, and 3. Here and below we shall  be con- 
sidering a Green's function G, =G, with asymptotic 
waves coming in from infinity. Then the solution X +  
corresponds to a particle moving in the positive direc- 
tion from x=-m, and X-, to a particle moving in the 
negative direction from x=+m. In the quasiclassical 
region, the Green's function G,(x,, %) is a l inear com- 
bination of four independent solutions: 
G x ( z , ,  2 , )  =gx(xrr  zr)  +A cos S ( z , ,  z r )  +B exp [+ iS ( z , )  + i S ( z 2 )  ] 

+C exp [ - i ~ ( z , ) - i ~ ( z , ) ] ,  (3) 

where 

is the Green's function for  the case  in which there a r e  
no turning points, and the additional t e rms  representing 
standing and traveling waves take account of reflections 
from the boundaries of the classically allowed region. 
A, B, and C a r e  constants a s  long a s  the values of the 
variables xl and x, a r e  f a r  from turning points, and 
they change discontinuously when either of the variables 
passes through a turning point. There must be exponen- 
tially large t e rms  in the physical solution; hence A = 

C=O when 

in the matrix element (1) has  a saddle point on the 
{x,, 3) plane a t  the point (x,,, xcB) where the potential 
curve U,(x) c rosses  the curve U,(x) and U,(x) c rosses  
U,(x), and a s  the argument point recedes from the 
saddle point the function ei ther  falls o r  oscillates rap- 
idly except in the region x, = x,, in which the normal 
derivatives of the Green's function g,(x,, x,) a r e  dis- 
continuous. Thus, the matrix element breaks up into a 
sum of integrals 

where z ~ ~ ,  is  the contribution from the region contain- 
ing the saddle point (xAC,xcB) and I::, is the contribu- 
tion from the source region x, =&. The integral I::, 
can be calculated by the method of steepest  descents 
for  a multidimensional spaceg and, in view of the gen- 
e r a l  expression (2) fo r  the Green's function, is given 
by 

provided the saddle point (x,,, xcB) is isolated. The 
subscript  AC (or CB) indicates that the corresponding 
bracketed quantity is to be taken a t  the crossing point 
of the corresponding t e rms ,  i.e., where U,(x) c rosses  
uc(x) [or u,(x) c rosses  u,(x)]; 

d  
(AU')*c= ( U A - U C ) . ~ ~  

is the difference between the slopes of the t e rms  a t  
their crossing point; and a,,, is a phase factor to be 
determined. In  calculating the integral 152, we shall 
assume that the momentum pc is s o  la rge  that the non- 
analytic part  of the Green's function g,(x,, %) will vary  
more  rapidly on receding from the axis  x, = x, than a l l  
the other factors. Then 

gB(x,,  x z )  =-i exp [ - i p ( z )  Ix,-x2J I l p ( s )  (7) 

and a s  a result  we have 

If there a r e  turning points on the te rm C, the Green's 
functionGg will contain additionalterms that a r e  not pre-  
sent  in g,, but these te rms a r e  analytic on x, =x, and 
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their contribution will therefore be fully included in 

I;:,. 

It is easy to s e e  that the two t e rms  I:$, and lfl:, in 
the total amplitude (5) represent  different transition 
mechanisms. The matrix element I<$, represents  suc- 
cessive transitions A -C and C- B localized a t  the 
points x,, and x,,, respectively, in each of which mo- 
mentum is  conserved, and which take place with a 
phase advance corresponding to the motion from xAc to 
x,, on the intermediate te rm C. Thus, the rea l  part  of 
I::, represents  the contribution from two successive 
Landau-Zener transitions. The imaginary part  of the 
elast ic  scattering amplitude ( A  = B) determines the prob- 
ability for decay to the t e rm C in accordance with the 
optical theorem. The imaginary part  of the amplitude 
for the inelastic process (A* B) takes account of the 
interference of the currents  from A and B to the te rm 
C, 

The second te rm,  I::,, in the complete amplitude 
takes account of the contribution from the Franck- 
Condon transitions A-C and C-B a s  calculated fo r  
stationary nuclei and subsequently integrated over the 
entire path of the atoms, which a r e  regarded a s  moving 
slowly enough for  the adiabatic approximation to be 
valid. 

I t  is important that the conditions fo r  the quasiclas- 
s ica l  (WKB) approximation have been used only in cal- 
culating the integrals (by the method of steepest  des-  
cents), while the quantum formulation of the physical 
problem a s  a whole has been retained. That is why i t  was 
possible to distinguish and compare two transition 
mechanisms a t  the s ame  time: the quasiclassical Lan- 
dau-Zener mechanism, and the Franck-Condon quan- 
tum mechanism. We note that i t  is  possible to distin- 
guish the two different transition mechanisms when the 
quasiclassical phase of the motion on t e rm C is large: 
I S(x,,, x,,) 1 >> 1. When the saddle points x,, and x,, 
approach each other the Landau-Zener and Franck- 
Condon transitions can no longer be distinguished. As 
the parameter E falls below the points where the t e rms  
cross,  

the amplitude IL,;, for  the Landau-Zener transition falls 
off exponentially while the amplitude for  the Franck- 
Condon transition, generally speaking, decreases ac-  
cording to a power law: 

In the classically accessible region 

the Landau-Zener transition, a s  a rule,  will dominate 
the Franck-Condon transition. 

THE QUASICLASSICAL PHASES 

Off the line xl =x, the Green's function G,(xl, %) 
factors in accordance with Eq. (2), and therefore the 

when x,, < x,,. When the energy is  high enough, i.e. 
when 

the functions $,, q,, and X *  oscillate rapidly near the 
crossing points x,, and x,, of the t e rms  and all the 
necessary integrals can be calculated by the method of 
steepest  descents. As a result ,  we obtain the following 
expression for  the phase factor  provided there a r e  no 
turning points on the te rm C: 

where 
=A 

S ( X S ,  a ,  XCA, X A )  = I p ~ d X + ' j b ~ d x +  y i B d x  
=.a 

(11) 
=.c XB 

is the cut-off classical  action calculated from the turn- 
ing point x, on the t e rm A to the turning point x, on the 
te rm B via the intermediate t e rm C, It is not difficult 
to s e e  a n  analogy between the resulting solution (10) and 
the well-known'.8 problem of potential scattering if we 
regard S(x,, x,,, x,,; x,) a s  the phase of the motion in 
the effective potential produced by the segments of the 
t e rms  A -C -B. The difference is that this "effective 
potential" is, generally speaking, not single values (see 
Fig. 1) and the phase advance in the integration over the 
path x,-xA,-x,,-x, is  not monotonic. 

The model involving motion on the t e rms  A-C-B 
differs  substantially from the potential scattering prob- 
lem when there  a r e  turning points on the te rm C. In this 
case  the solutions contain reflected waves, in accor- 
dance with Eq. (3). The resulting phase factor  @,,, 
takes account of the interference of these waves, and for  
values of E exceeding the potential energy a t  the points 
where the t e rms  cross ,  i t  is given by 

OA,s=2cos [ S ( x , ,  x,,, a c ) + n / 4 ]  exp [ i s ( + , ,  XBC, ac)-in141 (12) 

if there is one turning point a, (Fig. 1,  E("), and by 
2 

QAcB= c o s [ S ( x , ,  X A C .  ac) + n / 4 ] c o s [ S ( x s ,  XBC,  bc)-n/41 
cos S ( a c ,  bc) 

if there  a r e  two turning points a,< b,  on the te rm C 
(13) 

(Fig. 1, E(')). Here 
=AC ' C  

~ ( x , ,  ~ A C ,  a c )  = j p A d x + j  p,dx (14) 
=A I*C 

is the cut-off action running from x, to x, on the term 
A and from x, to a, on the t e rm C.  The number of 
different phases S in each of the solutions (lo), (12), 
and (13) is equal to the number of independent contours 
joining the turning points x, and x, in the se t  of inter- 
secting te rms.  The presence of imaginary par t s  in 
expressions (10) and (12) is due to the possibility that 
the system may decay on t e rm C. When the motion 
on te rm C is  finite [the case  of Eq. (13)] the function 
@,,, is r ea l  (for rea l  values of E) and contains the 
resonance factor  [cos S(a,, be) ] - ' ,  which shows that 
long-lived bound s ta tes  a r e  formed on te rm C in the 
process. 

integral I::, reduces to a one-dimensional one, s o  that At low energies, when 
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E<Uc(zAc), Uc(zcs)  and p (z )  =-i(ZIE-U(z) I )", 
the action S is imaginary and the functions X f  contain 
large and small  components in the subbarrier  region. 
When x,< x,, a product of the form $,x- has no ex- 
trema on the r ea l  axis x. We continue the solution #, 
analytically into the classically inaccessible region 
in such a manner that the product 4,~- will break up 
into t e rms  having extrema a t  x,,, just a s  in Sec. 51 of 
Ref. 1. Then a l l  the integrals in Eq. (9) may be calcula- 
ted by the method of steepest descents. As a result ,  
we have 

if there a r e  no turning points (Fig. 2 ,  E(')) and 

0 ~ c ~ = e x p  [iS(z., r.,, ZCA,  z A )  1 {l-'I2 exp [i2S(ac, zCn, z B )  I} (16) 

if there is one turning point a, on te rm C (Fig. 2 ,  E(')); 
if there a r e  two turning points a, and b,  on t e rm C we 
have 
@~m=exp  [ i s ( %  ZBC, ZCA, Z A )  I {1+'12 t p S ( a ,  bc)exp[i2S(bc, Z C B ,  X B )  1) 

if both turning points a r e  outside the ba r r i e r  region, 
(17) 

i.e., if a,, b, > x,, x, (Fig. 2 ,  E(')), o r  

4 
0*cs= 

2 cos S (a,, bc) -exp[iS(ac, ZCA,  z,) +iS(x., Z B C ,  bc) I ,  (18) 

if x,< a, and b,< x, s o  that the t e rm C separates the 
classically inaccessible region into separate regions 
(Fig. 3). 

The characteristic factor 

exp [ iS(xn,  xsc, X C A ,  Z A )  I 

in Eqs. (15)-(17) is the amplitude for  penetrating the 
bar r ie r  formed by segments of the t e rms  A, B, and C. 
The complex factor  

{i-I/, exp [i2S(aC, ZCB, 2,) 1) 

in  (16) takes account of the possibility that the system 
may decay on te rm C when the particle penetrates into 
the classically allowed region and goes off to infinity 
after  passing through the additional ba r r i e r  B-C (Fig. 
2) with the penetration factor 

When 
IS(ac, ZC.. xB)  1 ~i 

this correction i s  not important in (16), but the situa- 
tion is different in the case of resonances, a s  in (17). 
The additional te rm in (17) is due to the effect of the 
long-lived bound states that a r i s e  when the motion on 
the te rm C turns out to be finite (Fig. 2,  E")). Then 
the phase relations depend substantially on the positions 
of the turning points on the t e r m s  A ,  B, and C. When 
the term C separates the entire forbidden region be- 
tween the t e rms  A and B into two distinct regions A-C 
and C-B (Fig. 3)  the phase factor (18) represents  suc- 
cessive transitions through the independent ba r r i e r s  
A-C and C-B, which a r e  enhanced by resonance when 
E approaches the energy of a quasistationary s ta te  
localized in the intermediate C well. 

The results (9)-(18) show how the transition ampli- 

FIG. 3 .  Transition through two barriers. 

tude depends on the kinetic energy and on the positions 
and shapes of the potential curves. The three-term 
model is of special interest  in connection with radiative 
processes since the position of the quasienergy te rm 
is related to the frequency of the electromagnetic radia- 
tion and may be  different under different experimental 
conditions. 

RAMAN SCATTERING (RS) 

The RS c ros s  section is given by the well-known 
Kramers-Heisenberg formula 

a OOls ' = I {IACB (EA + + IACB (Es - o ) )  \ do', (19) 
C 

in which A and B a r e  the initial and final electronic- 
vibrational s tates of the molecule, the sum is taken over 
al l  electronic states C,  I,,,(E) is a component of the 
scat tering tensor in the notation of Eq. ( I ) ,  and V,, and 
V ,  a r e  the dipole-moment matrix elements for the 
electronic transition; the remaining notation is stan- 
dard.'O'" I t  follows from Eq. (19) that af ter  the conser- 
vation of energy in the elementary interaction event has 
been taken into account the scattering of light by the 
molecule can be treated a s  a nonadiabatic transition with 
the nuclei moving on the quasienergy t e rms  A=U,(x) 
+ w, B = U,(x) + w' , and C = U,(x). 

In RS spectroscopy one usually investigates vibration- 
a l  transitions in which the electronic s ta te  does not 
change. In this case the quasienergy t e rms  A = U,(r)  
+ w and B = U,(x) +w' a r e  congruent and a r e  shifted with 
respect  to each other by the quantity w - w', which is 
equal to the energy of the vibrational-rotational t ransi-  
tion (see Fig. 4). The positions of the points where the 
quasienergy te rms A and B cross  the t e rm C depend on 
the difference between the exciting frequency w and the 
frequency w,, of the vert ical  transitionA-C. For  low 
o r  high frequencies (w<< w,, o r  w >> w,,) the t e rms  A, 

FIG. 4. Raman scattering as a transition in a system of three 
quasienergy terms. 
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B ,  and C either do not c ros s  o r  c ros s  in the classically 
inaccessible region. In the region of the electronic 
absorption band w,, - 6w S w 2 wFc + 6w and a quasiclas- 
s ica l  A-C-B transition is possible. The condition 
I S(x,,, x,,) I>> 1 is satisfied, a t  leas t  fo r  the overtones, 
and when the frequency difference I w - w,, ( is  la rge  
enough i t  is also satisfied fo r  the fundamental tone. 
Then, a s  we saw above, one can distinguish two tran- 
sition mechanisms: the Franck-Condon and Landau- 
Zener mechanisms. 

According to Eq. (a), we have 

for  the sum over all electronic s ta tes  of the Franck- 
Condon contributions; here  a(w) is the polaruability 
of the molecule with the nuclei held stationary. This 
result leads to the widely known" Placzek theory. Thus, 
the Franck-Condon mechanism accounts for  RSfar from 
the electronic-vibrational absorption band. 

Stepwise nonadiabatic Landau-Zener transitions be- 
come important in the vicinity of the electronic-vibra- 
tional absorption band. Equations (9)-(18) establish 
the dependence of the intensity of the scat tered light on 
the exciting frequency w and the position and form of 
the excited electronic term. As w var ies ,  I~:,(w) 
ei ther  oscillates weakly, a s  in (12) and (16), o r  has 
resonances 

a s  in (13), (17), and ( la ) ,  depending on how pronounced 
the vibrational s tructure E, is  in  the absorption band. 
ligB falls exponentially a s  w recedes from the absorp- 
tion band. 

The Landau-Zener mechanism accounts for  well- 
known features of resonance RS spectra. '' -I3 

OVERTON INTENSITIES IN RESONANT RAMAN 
SCATTERING (RRS) SPECTRA 

According to Eqs. (9)-(la), the rat io of the intensity 
of the n-th order  line to that of the fundamental tone fo r  
a fixed excitation frequency w is 

under ordinary conditions in which w >> w,, where wo 
is the frequency of the normal vibration. The quantity 
( P A U ' / V ) ~ ~ "  is calculated a t  the point where the excited 
electronic te rm C crosses  the quasienergy te rm B, 
= U,(x) +wn [on= w -no,  is the frequency of the (n - 1)-th 
overtone] and, a s  a rule, varies slowly with the over- 
tone-number n. In the region of the electronic-vibra- 
tional absorption band, the phase factor cp, = ( @A,Bn/ 

e i ther  oscillates in accordance with (13) o r ,  in 
the case of a s tructureless band (12), assumes  the con- 
stant value cp, = 1. Turning away from oscillations, 
therefore, we may a s s e r t  that the production of a slow- 
ly falling sequence of overtones is  characteristic of the 
Landau-Zener mechanism. The most  thorough experi- 
mental studies of RRS spectra have been car r ied  through 

FIG. 5.  Electronic terms of the I2 molecule. 

frozen in an  argon matrix14 has been determined fo r  
seven different emission modes of an  argon laser. The 
electronic t e rms  of I, a r e  diagramed in Fig. 5, and the 
wavelengths of the laser  light a r e  also given there. 
The longest and most intense sequence of overtones 
(n = 1-25) was observed for  X = 5309 A ,  i.e., for  a f re -  
quency w z: wFc very close to that of the vertical t ransi-  
tion from the 'Cf ground s ta te  to the excited 311& triplet 
term. As the difference between the frequencies w and 
wFc increases,  the relative intensity of the lines falls 
and the RRS spectrum degenerates into an  ordinary RS 
spectrum in the wings of the absorption band (at X = 6471 
A and X = 4579 A). 

The relative intensities of overtones a s  determined 
experimentally14 and calculated with formula (20) a r e  
compared in Fig. 6. The spread of local fields in the 
matrix covers over the vibrational s t ruc ture  of the 
electronic absorption spectrum, and this makes it 
possible to average out the oscillating factors in 
formulas (12) and (13). The singlet t e rm was not taken 
into account since i ts  contribution to the scattering is 
smal l  (-200/,, Ref. 14). The segment of the 31T& te rm in 

FIG. 6.  Experimental pointsi4 and theoretical curves for the 
relative intensities of the overtones in the Raman scattering 
spectrum of the I~ molecule for several values of the wave- 
length of the exciting light: 5309 A-r, dotted curve; 51$5 
A- 0, dash-dot curve; 5682 A-a , dashed curve; 4880 A- o, 

for  the I, molecule. The spectrum of molecular 1, full curve. 
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the neighborhood of the equilibrium interatomic distance 
was approximated in the calculations by a parabola 
[with the slope U',(x) =0.64(x - 7) in units in which R = p 
=wo = 11. The results correctly reproduce the intensity 
distribution of the overtones a s  well as the dependence 
of the overtone intensities on the frequency of the ex- 
citing light. Thus, the theory makes i t  possible to de- 4s 
termine the forms of excited electronic terms of dia- 
tomic molecules from data on intensities in RRS spec- '\". i b c  E 

tra. A \A,' B 

The difference between theory and experiment for I, 
is most marked for X =5309 A; this should be expected, 
since the conditions for the applicability of the quasi- 
classical (WKB) approximation for the fundamental tone 
and the lower overtones a r e  violated near the Franck- 
Condon frequency. Quantum models of RRS a r e  dis- 
cussed in Ref. 15, 

LIGHTSCATTERING-INDUCED CONFORMATION 
TRANSITIONS 

Among the phenomena characteristic of polyatomic 
molecules, conformation transformations, i.e., transi- 
tions between different equilibrium positions within a 
single (ground-state) adiabatic term, a r e  of consider- 
able interest. The classical example is the cyclohex- 
ane molecule C,H,, which has two stable configurations 
("chair" and "boat"); there a r e  also the numerous class 
of cis-trans isomers, a few nitrogen-containing mole- 
cules, and others. In many chemical compounds, con- 
formation transitions a r e  accompanied by changes in the 
physical properties o r  biological activity of the mole- 
cules. For example, if isomer A has center of inver- 
sion while isomer B has no center of symmetry, the 
dipole moment of the molecule increase from D = O  to 
D - 1 Db in the transition from A to B. We shall treat  
a change in the conformation of a molecule within the 
limitations of a one-dimensional model as a transition 
between diabatic terms A and B incident to motion on 
the reaction coordinate x (Fig. 7). In the symmetric 
case, the probability for a spontaneous transition is 

w,-- (oO/2n) exp [ ~ ~ S ( X B ,  XBA, Z A )  1, (21) 

where wo is the frequency of the vibrations about an 
isolated equilibrium position. The molecule will re-  
tain its initial conformation for a long time provided 
the barr ier  U,, between the equilibrium positions is 
broad and high. Exciting the molecule increases the 
rate of isomeric transformations, but this is accom- 
panied by heating of the material and possibly by chemi- 
cal reactions in it. We shall show that electromagnetic 
radiation can induce conformation transformations of 
molecules a s  a result of scattering processes. 

A periodic external force whose frequency w is close 
to the electronic absorption frequency w,, will con- 
siderably increase the probability for the A -B transi- 
tion provided the A-C-B process with an electronic 
term C that has no barr ier  can be involved. Or course, 
if the A -B transition is to take place an energy E,-E, 
equal to the difference between the energies of the initial 
and final states of the molecule must be transferred to 
the surroundings o r  a photon of frequency w' =w +E,-E, 

FIG. 7 .  A stimulated conformation transition. 

must be re-emitted. The radiative transitiond-B is a 
special case of Raman scattering. 

The probability per unit time WAC, for  a stimulated 
conformation transition is 

where o is given by Eq. (19) and & is the electric field 
strength of the light wave. W A C ,  will obviously be 
maximal for w = w,, when the term U, crosses the 
quasienergy terms U, +w and U, +wl in the region of the 
barr ier  formed by the adiabatic potential U,, (Fig. 7) 
and effectively reduces the barrier.  On comparing WAC, 
with the probability W,, for a spontaneous conformation 
transition in a symmetric well for reasonable values of 
the parameters (v,, - VcB - 1 Db, w - lo5 cm-', w, - lo3 
cm-', c - lo4 ~ / c m ,  and w = wAc) we find WAC, - 109WA, 
for the case in which the term C slopes gently. The 
value R - 5( t l /p~ , ) "~  was used for the distance between 
the equilibrium positions in calculating W,,; in the 
absence of an effective barr ier ,  the stimulated transi- 
tion probability WAC, does not d ~ p e n d  on R. 

The molecular conversion process A -B can be detec- 
ted spectroscopically by the appearance of new frequen- 
cies w' =w +EA - E,+nw, characteristic of the isomer B 
in the spectrum of the scattered light. The cross sec-  
tion for a stimulated conformation transition in the re- 
gion of the absorption band agrees in order  of magnitude 
with the cross sections o- cm2 ordinarily ob- 
tained for resonance Raman scattering.= 

High incident-light intensities I a r e  required to pro- 
duce a concentration of converted molecules high enough 
to be detected by physicochemical means. For I - lo6 
w/cm2 (& - 10, V/cm) the induced transition probability 
is W,,- 10'4-10-7 sec-', and this makes i t  possible to 
produce fairly high concentrations (-1%) of converted 
molecules in times of the order of 10'- lo5 see. 

The probability W,,(w) for a conformation transi- 
tion induced by the field &,coswt and the probability 
w,,,(w') for the reverse transition induced by the field 
cwr cos w't with w' = w + E,-E, a r e  related by the for- 
mula 

in accordance with the principle of detailed balancing. 
In a field of fixed frequency w the cross  sections for 
the direct and inverse processes A -B and B -A a re  the 
same only when E, = E,, a s  in the case of a symmetric 
well. In the asymmetric case E,#E, we have w,,(w) 
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# W,, , (w) ,  and the difference between the c r o s s  sec-  
tions fo r  the d i r e c t  and inverse  p rocesses  A-B and 
B-A can be s e e n  mos t  c lear ly in the frequency region 
in which the phase fac tor  @,,, v a r i e s  substantially. 
When w = wAC (W = w B C )  the t ransi t ion A -B (B -A) is 
dominant. Thus,  by varying the frequency of the inci- 
dent  radiation one can in principle effect a directed 
change in the geometry of the molecule, and it  is a l s o  
important that  this p rocess  is reversible .  

This  optical method f o r  effecting directed changes 
(and the r e v e r s e  changes) in the  d ie lec t r ic  o r  other  
physicochemical propert ies  of m a t t e r  that  depend on 
the distribution of the molecules over  the i r  possible  
conformations will doubtless find interesting applica- 
tions. 
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