
Kinetics of decay of metastable gas phase of polarized 
atomic hydrogen at low temperatures 

Yu. Kagan, I. A. Vartanyants, and G. V. Shlyapnikov 
I. Y. Kurchatov Institute of Atomic Energy 
(Submitted 16 April 1981) 
Zh. Eksp. Teor. Fiz. 81,1113-1140 (September 1981) 

The stability of the polarized gas phase of atomic hydrogen in a strong magnetic field and at low temperature 
is investigated. The cross section for nonresonant threshold depolarization due to exchange and dipole-dipole 
interaction in pair collisions is found. It is shown that dipole-dipole interaction is predominant in strong 
magnetic fields. Below-barrier resonance recombination into highly excited hydrogen molecule states located 
at a distance of less than 2p,H from the boundary of the continuous spectrum is considered. It is noted that 
this decay channel can be suppressed at the expense of the centrifugal bamer. Nonthreshold decay channels 
involving three-particle recombination with a change of the spin state are studied in detail. The probabilities 
of these processes are found for exchange and dipole-dipole interaction, remain finite as T + 0, and impose 
thereby a restriction on the attainable density of the polarized gaseous phase. The role of surface effects is 
considered. It is shown that surface recombination can be overcome and infralow temperatures corresponding 
to Bose condensation can be attained, in principle, only if the atoms accumulate in a state with parallel 
electron and nuclear spins. 

PACS numbers: 3 1.70.Hq, 5 1.60. + a 

1. INTRODUCTION 

The problem of metastable s t a t e s  of m a t t e r  that  r e -  
su l t  f r o m  polarization of the electron sp ins  of a toms 
i n  a sys tem has  been at t ract ing grea t  in te res t  of l a te .  
The sys tem mos t  intensively discussed is polarized 
atomic hydrogen, in  which spin alignment prevents  the 
recombination of the a toms  into a molecule and leads 
to  the appearance of a quasistable atomic phase.  In 
the c a s e  of hydrogen one can speak even a t  the very 
lowest t empera tures  of a gas  and of a condensed s y s -  
t e m .  

A di rec t  solution of the problem of the p a i r  collision 
of two hydrogen a toms  in the t r iplet  s t a t e  leads to  a 
scat ter ing length a, = 0 .72  > 0 (see Sec . 2). This  
resul t  corresponds to  a n  increase  of the energy E of 
the  raref ied polarized g a s  with increase  of i t s  den- 
s i ty  n ,  and by the s a m e  token to a stabilization of the 
g a s  phase.  Whether this phase i s  s table  o r  metastable 
depends on the behavior of the function E(n) a t  high 
densi t ies .  As shown by numerical  calculations 
the  energy tu rns  out to  be a monotonic function of n ,  
and consequently polarized atomic hydrogen by  itself 
does not f o r m  a condensed phase and r e m a i n s  a g a s  
a t  T = O .  On the o ther  hand, a polarized condensed 
phase should be  a solution of atomic hydrogen in a 
foreign mat r ix .  We note f o r  comparison that  in  the 
c a s e  of t r i t ium we have obtaineda, < 0, and consequently 
the condensed phase should be  s table  a t  T = O  in this  
c a s e .  

Of part icular  in te res t  is the g a s  phase of a tomic 
hydrogen, a phase readily s e e n  to be a weakly inter-  
acting Bose g a s  with relatively high Bose-condensa- 
tion tempera ture  To even a t  limited densi t ies .  

volume, and a l so  in collisions with a sur face  and with 
a t o m s  adsorbed on it .  The presen t  paper  is devoted 
to an investigation of the  kinet ics  of the decay of the 
metastable-gas phase of polar ized atomic hydrogen 
on account of volume depolarization and recombination 
with change of the spin s t a t e .  The ro le  of sur face  
effects is discussed separately.  

We a r e  interested in  t empera tures  of the o r d e r  of 
s e v e r a l  degrees  o r  lower ,  and a l s o  in  s t rong  polarizing 
magnetic f ie lds  satisfying to the inequality 

E=ysH/T>l.  (1.1)  

When considering p a i r  col l is ions,  we immediately 
encounter two significant pecul iar i t ies .  F i r s t  , by 
vir tue of the  condition (1.1) the depolarization i s  
essent ial ly  inelast ic .  Second, even a t  these  tempera-  
t u r e s  the  de  Brogl ie  wavelength of the  hydrogen atom 
becomes comparable with the charac te r i s t i c  radius 
of the interatomic interact ion,  and th i s  makes  it  
necessary  to  t r e a t  the motion of the nuclei in  the c o u r s e  
of the collision quantum-mechanically . This  distin- 
guishes in principle o u r  problem f r o m  the ordinary 
problems of the theory of a tomic collisions. 

The depolarization in collisions of polarized hydro- 
gen a toms  i s  due in principle to  th ree  types of inter-  
action: exchange, spin dipole-dipole, and interaction 
of the spin with the orbi tal  motion of the nuclei. It  
i s  known that  even in extremely s t rong  magnetic f ie lds  
the p resence  of a hyperfine interact ion causes  hydro- 
gen atoms with z e r o  total-spin projection to be  in a 
s t a t e  that contains a n  admixture of a s t a t e  with a l l  
opposite projection of the electron sp in  (see,  e . g . ,  
Ref. 4). The sca le  of th i s  admixture is determined 
by the  ra t io  

The possibility of obtaining and using polarized ato- 
x=A/4jrBH<l, 

m i c  s y s t e m s  depends to  a decis ive d e g r e e  on the i r  
(1.2) 

lifetime, which is determined pr imar i ly  by the spin where  A is the hyperfine interact ion constant .  The  
depolarization p r o c e s s .  In the gas  phase,  the depo- collisions of the part ic les  in such  a "mixedJ' s t a te  with 
lar izat ion takes place in collisions of a toms  in a a r b i t r a r y  o ther  polarized a toms  can  lead to depolari- 
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zation on account of exchange interaction, as  governed flipped spin on account of the interaction with the 
by the small parameter (1.2). In this paper we de- background (see Ref. 8).  This decrease of the energy 
velop a quantum-mechanical theory of this depolariza- A& increases with decreasing density, and if l AE l 
tion process (see Sec. 2). becomes larger than 2p,H, then the process of de- 

The presence of an exchange depolarization mecha- 
nism in pair collisions was actually first  pointed out 
by Brown. To determine the probability of the depol- 
arization, he modified the classical variant of the 
theory of resonant spin exchange (see, e . g . , Ref. 6) 
to include the case when a magnetic field i s  present. 
Stwalley7 used later Brown's results5 to estimate the 
rate of depolarization of atomic hydrogen at low tem- 
perature in a strong magnetic field. This approach, 
however, i s  not appropriate for the considered pro- 
blem at low temperatures, by virtue of the quantum 
character of the motion of the nuclei and of the strong 
inelasticity of the process, although the important 
statement that the rate of depolarization depends 
exponentially on the parameter (1.1) i s  undoubtedly 
correct. 

At low temperatures, a s  it turns out, an essential 
role in the process of pair depolarization is played by 
dipole-dipole interaction. In this case depolarization 
results even if the weak hyperfine interaction is neglec- 
ted. As will be demonstrated in this paper (see Sec. 
31, in mangetic fields H > lo4 Oe and a t  low tempera- 
ture this depolarization mechanism is at any rate the 
dominant one among the pair processes. 

The depolarization due to the spin-orbit interaction, 
as  shown by our analysis (see Sec. 41, i s  practically 
always weak compared with the dipole-dipole depolari- 
zation. 

In the case of pair collision, the depolarization pro- 
cess is  always accompanied by an increase of the Zee- 
man energy by ~ P , H .  This predetermines its threshold 
character and accordingly a decrease of i t s  rate 
with increasing parameter (1.1). 

Besides depolarization, exchange interaction makes 
possible in pair collisions of polarized atoms the 
resonant process of recombination with transition of 
the quasimolecule into bound singlet states whose 
energy is located a t  a distance smaller than 2p,H 
from the end point of the continuous spectrum. As 
shown by an analysis of the spectrum of the vibra- 
tional-rotational states of the H, molecule (see Sec . 
51, this situation can be realized only for levels with 
a rotational quantum number j 3 10, and the charac- 
teristic time of the resonant recombination turns 
out to be very long because of the high centrifugal 
barrier.  The opposite seems to take place in deu- 
terium o r  in a mixture of hydrogen and deuterium. 
Here resonant recombination into bound states with 
j = 0 is possible, making this decay channel really 
dangerous (see Ref. 7) .  

Under conditions of strong increase in density, when 
multiparticle interactions become significant, we en- 
counter the possible appearance of decay channels 
without thresholds (see Sec. 6). When considering the 
depolarization it is necessary to take into account the 
decrease of the energy of the produced particles with 

polarization will have no threshold. Close to the usual 
density of the condensed state,  the parameter I AE I 
is replaced by the width of the energy band of the spin 
waves. In this case the thresholdless decay of the 
polarized phase would take place without production 
of spin waves, with and without simultaneous emission 
of phonons . 

The energy values of the collective excit?.tions with 
spin flip in a Bose gas of polarized hydrogen atoms, 
given in Sec. 6, impose not too strong a restriction 
on the density at which the depolarization process 
still retains a threshold [the corresponding criterion 
differs radically from that obtained by Berlinsky, a 

(see also Ref. 9) ,  since Berlinsky assumed implicitly 
that particles with parallel and antiparallel spins 
have the same pair-correlation function]. It follows 
from the obtained criterion that the depolarization 
process retains i ts  threshold in a wide range of den- 
si t ies,  which certainly includes n- 10'' ~ m ' ~ .  

At high densities an important role can be assumed 
by the process of simultaneous depolarization and re- 
combination in ternary collision of polarized atoms. 
A pair of particles then forms a molecule in a bound 
excited state, and the excess energy i s  carried away 
by the third particle. An examination of such a pecu- 
l iar recombination process, with allowance for  the 
exchange and dipole-dipole interactions (see Secs. 
7 and 8) shows that its rate remains finite a s  T- 0. 
This imposes stringent restrictions on the gas density. 
For  the exchange mechanism at  H = lo5 Oe, a decay 
time of the order of an hour corresponds to n -10'' 
cm-3 (this value increases with increasing H). For  the 
dipole interaction the limitation is less stringent: 
n - 1018 ~ m - ~ .  

Even if we confine ourselves to such densities, 
however, we encounter the problem of the recombina-, 
tion that takes place on the surface, particularly with 
participation of the substrate atoms a s  the third body 
(see Sec. 9). In the region of the considered low 
temperatures, even relatively low adsorption energy 
is sufficient for  a high surface density of the adsorbed 
atoms. This immediately turns on thresholdless de- 
polarization processes, making even an ideally clean 
surface an effective "catalyst. " Thus, the question of 
the surface with the minimum adsorption energy be- 
comes fundamental. In this case coating with a helium 
film (adsorption energy less than 1 K) has no com- 
petition, accounting in fact for the success of the 
brilliant experiments of Silvera et a l .  11*12 as  well as 
Clyne et al.13 

As shown by our analysis, even in the case of a 
helium coating, exchange three-particle recombina- 
tion on a surface with participation of a helium atom 
does not make it possible to obtain the indicated den- 
sities simultaneously with the infralow temperatures. 
However, if a spin-polarized atomic phase is prepared 
in a "clean" state with a nuclear spin polarized along 
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the electron spin,  such a possibility remains in prin- 
ciple. The decisive factor  here  i s  the appearance of 
a surface-recombination channel with participation of 
the helium atom. 

2. DEPOLARIZATION ON ACCOUNT OF EXCHANGE 
INTERACTION IN PAIR COLLISIONS 

It is known that the system of spin wave functions of 
an isolated hydrogen atom in an external magnetic field 
can be  written in the following form (see, e . g .  , Ref. 
4): 
cpi=a(1/2)B(11z), cp2=a('lz) B(-'12) f %a(-'11) B(' /z) ,  qs=a(-'/z) B ( - ' I=) ,  

cpl-a(-112) B ( ' / Z ) - X ~ ( ~ / Z )  B (-'12). (2.1) 

Here a(o) and $ ( m )  a r e  the spin wave functions of the 
electron and nucleus, respectively, while o and rn a r e  
the projections of the electron and nuclear spins on 
the magnetic-field direction. The states cp, and cp, 
have, even in a strong magnetic field, an admixture 
of a s tate with opposite projection of the electron spin. 
However, by virtue of the condition (1.2), the degree 
of their polarization i s  close to unity, and we shall 
re fer  to as polarized the two states cp, and cp, o r  cp, 
and cp,. 

The Hamiltonain of the quasimolecule made up of 
two colliding atoms has in the c .  m .  s. the form 

B = - A ~ M - ~ A ~ + u ,  ( R )  +U.,(R) +R,+Rhf.  (2.2) 

Here M i s  the mass  of the atom, R is the vector of 
the internuclear distance, U,@) is the potential of the 
long-range interaction of the atoms,  

is the Hamiltonain of the exchange interaction (A(R) 
> O), 

is the Hamiltonian of the Zeeman interaction, 3, and 
S, a r e  the operators of the electron spins of the a toms,  
and B h f  i s  the Hamiltonian of the hyperfine interaction. 

As R- the spin states of the quyimolecule a r e  
determined by the Hamiltonian k, + H h f  corresponding 
to the eigenfunctions pik = cpI(1)cpk(2). Let  the polarized 
phase of the atomic hydrogen b e  a mixture of atoms 
in states cp, and cp, (the magnetic moment of the elec- 
t rons  in these states i s  directed along the magnetic 
field). The exchange interaction (2.3) conserves the 
projection of the total (electron and nuclear) spin of 
t he  quasimolecule, and therefore does not lead to de- 
polarization when two particles in the states cp, col- 
lide. However, if atoms in s ta tes  cp, and cp, collide, 
then the interaction (2.3) can lead to the transition 
cpZ4-- (q,, - cp,,)/n. Such a transition corresponds 
to polarization of the electron spin of one of the atoms 
as they diverge to infinity. The magnetic element of 
the transition, taken with the spin variables, i s  equal 
to x A @ ) / d T .  The initial spin s ta te  corresponds to the 
triplet potential of the interaction of colliding atoms 

U ,  ( R )  =Ut ( R )  +A ( R ) / 2 ,  (2.4) 

and the final s ta te  to the singlet potential 

In the final spin s ta te ,  the total nuclear spin of the 
system i s  equal to unity [if we disregard the sma l l  
addition to the wave function, proportional to the param- 
e ter  x(1.2)], i . e . ,  we a r e  dealing with an orthohydro- 
gen quasimolecule, for  which, a s  i s  well known, the 
rotational quantum number j in the singlet s ta te  can 
take on only odd values. Since the exchange interac- 
tion (2.3) does not depend on the angle variables,  the 
angular momentum j does not change a s  a result  of 
depolarization and consequently in the initial s ta te  j 
can likewise be  only odd. Thus,  in the  case  of the 
collisions (3, 4) the depolarization takes place only a t  
odd angular momenta j. Scattering with even j, on 
the contrary,  i s  purely elast ic .  

When two atoms collide in the state cp,, the exchange- 
interaction operator  (2.3) leads to transitions of the 
system from the initial spin state cp,, into a state with 
a wave function (cp,, + cp,, - cp,, - cp4,)/2, corresponding 
to interaction of the atoms in accord with the singlet 
potential Us@) (2.5). The matrix element of the tran- 
sition, taken over the spin variables,  i s  then 4 ( R ) .  
Since the colliding atoms a r e  identical, o r  since we 
a r e  dealing in the final s tate with a parahydrogen quasi- 
molecule (as i s  readily established from the form of 
the spin wave function), the angular momentum j can 
take on in this case  only even values. 

As seen from our  analysis, the spin depolarization 
process i s  a nonresonant triplet-singlet transition. 
In the considered case ,  when the electron magnetic 
moments a r e  polarized along the magnetic field, the 
kinetic energy of the atoms is decreased as a result 
of the depolarization by 2pBH. The fact that the 
transition from the state i4 ,  31 takes place only into 
the s ta te  i 3 ,  21, and from 14, 4) only into i 4 ,  2) and 
13, 11, i s  actually the consequence of the conservation 
of the projection of the total spin of the quasimolecule 
in the collision. 

Bearing the condition (1.1) in mind, we determine 
now the depolarization c ros s  section in f irst-order 
perturbation theory. Using the known expansion of the 
wave functions of nuclear motion in spherical  har- 
monics (see. e .  g .  , Ref. 141, we obtain 

L, = --& &:' ( R )  A ( R )  xgl ( R )  dR. 
kiktR" 

The summation in (2.6) is only over odd j; 

k,=li-' (ME,)", k,=h-I (ME!)'", (2.8) 

a r e  the wave vectors of the relative motion of the 
atoms in the initial and final s ta tes  of the quasimole- 
cule, si  > ~ c L ~ H  is the kinetic energy of the atoms col- 
liding a t  infinity, and &, = &, - 2pgH. The wave functions 
of the radial motion x:,SI) (R) and (R) a r e  the solutions 
of the ~ch rSd inge r  equations fo r  the signlet (2.5) and 
triplet (2.4) potentials, respectively, and a r e  normal- 
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ized by the condition 

The distance Ro = 7a0 (a, i s  the Bohr radius) corresponds 
to the condition U,(Ro) = O  (see Fig. 1) and was intro- 
duced into Eqs . (2.6) and (2.7) for  convenience. At 
low energies i t  corresponds to the characterist ic  
interaction region that leads to depolarization. 

The deopolarization c ros s  sections u(,,, a r e  deter-  
mined by the s ame  relation (2.6), but with twice a s  
large a numerical factor  and with summation over only 
even j. Taking this into consideration, recognizing 
that there i s  no depolarization i n  the i 3 ,  31 collision, 
and assuming the s ame  density of the atoms in the 
states cp, and cp,, we get  fo r  the average depolarization 
cross  section 

(the summation here  is over al l  j ) .  

At R 2 Ro >- a, the exchange interaction A(R) decreases  
exponentially with increasing R .  Because of this c i r -  
cumstance, the main contribution to the depolarization 
cross  section oeX:ci) (2.10) i s  connected with the vici- 
nity of the point R,. 

Bearing in mind the problem a t  hand, we confine 
ourselves to an analysis of the depolarization c ros s  
section in the case of extremely low temperatures,  
on the order  of 1 K and lower. By virtue of the thres-  
hold and of the conditions (1.1), in the case  of spin 
flip the initial energy of the particles will be  c i  z2fiBH 
and the final energy c , S  T. So low a final energy pre-  
determines the leading role of s-scattering inthe 
depolarization (at c =1 K the #-scattering becomes 
significant). 

In the considered energy interval i t  is convenient to 
represent the wave functions xJL:(&) and x&! ((fl) of the 
motion in the following form: 

In the limit a s  k ,  , kt - 0 the functions cP,, , cease  to 
depend on the wave vector. Recognizing that cp,(r, 0) 

FIG. 1 .  Potential curves of the quasimolecule Hz; R is the 
internuclear distance, U(R) is  the potential energy of the in- 
teraction. 

and cp,(tl, 0) a r e  solutions of the corresponding Schr6- 
dinger equations with k = 0 ,  we multiply the equation 
f o r  the potential U,(R) by cp , (H ,  0) and subtract from 
i t  the equation fo r  the potential U,(R) multiplied by 
cp, (R , 0). As a result ,  we get  fo r  Lo (2.7) 

where a, and a, a r e  the scat tering lengths in the triplet 
and singlet s ta tes  and n i s  the number of discrete s 
levels in a singlet well. 

In a strong magnetic field we must take into account 
primari ly the dependence of the function cp, on kt. 
Thus, if the magnetic field i s  H - lo5 Oe, then &, - 13 K 
and kiR,  > 1. 

Substituting (2.11) in (2.7) and taking (2.12) into 
consideration, we obtain fo r  the exchange-depolariza- 
tion c ros s  section in the case  of s scattering 

(2.15) 
To determine a,, a,, and go(& i ,  A, we obtained the 

solutions of the ~ ~ h r i j d i n g e r  equation for  the tr iplet  
(2.4) and singlet (2.5) potentials (see Fig. 1) corres- 
ponding to the data of the variational calculation by 
Kolos and Wolniewicz. l5 The results  were a, =0.72 
A ,  a,=0.33 and consequently 0; cm2. 

The obtained dependence of & on c i  for  two values 
of the final energy, cf = O  and cf = 1 K ,  is shown in 
Fig.  2a. In a magnetic field H z105 Oe,  the factor  
~ ~ ~ 2 6 - 1 0 - ~ ,  E ,  z13  Kand  if gf S 1 K  we obtain for  the 
exchange-depolarization c ros s  section the estimate 
u;\ 2 5 . cm2. 

Let us dwell briefly on the depolarization in scat-  
ter ing wi th j  = O .  At Ef .; 1 K the c ros s  section for  de- 
polarization with j s ,  2 i s  much l e s s  than the c ros s  
section 0,"'. The reason is that even fo r  j =  2 the 
centrifugal potential a t  R =R, amounts to 21 K,  and 
the effective potential in the singlet s tate acquires 
a ba r r i e r  of height -7 K a t  R zlOa,. As fo r  the c ros s  
section o;", a t  cf = O  i t  i s  naturally equal to zero.  

FIG. 2. Dependence of the factors g; and ,qi on the initial 
energy E*: curve 1) g;(~i) at  E= 0 ,  curve 2-g~(ci) at  9- 1 K ,  
curve ~-&+'@R&?~(E~)/E~ at Ef= 1 K. b) Dependence of the fac- 
tor f 2  on the initial energy E*: curve I) fZ(ei) E ~ =  0, curve 
2) f2(ci) at  ef = 1 K. 
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With increasing E,, this c r o s s  sect ion increases .  
At a n  energy a s  low as E, =1 K it becomes relatively 
l a r g e  in  the region of those c ,  where  the fac tor  & is 
s m a l l .  The expression f o r  ofx can be represented in 
the  f o r m  

etMRol 
xza.e'- a;%=- fiZ g,' (ei, el) .  

kr 
(2.16) 

In the region of values cf < 1 K of in te res t  t o  u s ,  the 
dependence of the fac tor  g, on cf is very  weak. 

F igure  2a shows a plot of the  quantity c$Ra&/fi2 
against E, a t  cf = 1 K. We note that H =lo5 Oe the 
c r o s s  section oy exceeds o; by a fac tor  of 2 (the 
c r o s s  section 0;" i s  much s m a l l e r  than o r  +oy in  the 
en t i re  considered interval  of c i ) .  

The charac te r i s t i c  t i m e  T,, of the bulk depolarization 
is determined by the r a t e  constant of the p r o c e s s  a ,, 
=(oe 'v )  (v is the relat ive par t i c le  velocity, the angle 
b racke ts  denote averaging over  the  Maxwellian d i s -  
tribution of the  par t i c les  i n  the gas )  f r o m  t h e  relation 

where  n is the density of the g a s .  Using the relat ions 
(2.13) and (2.16) f o r  t empera tures  T < 1 K we have 
under the condition (1.1) 

(2.18) 

In this  expression 

The threshold charac te r  of the  reaction leads  to  the 
appearance of the obvious s m a l l  fac tor  exp(-2p,H/T). 
Therefore  by a transition to  infralow tempera tures  i t  
is always possible, in principle, to  attain a n  a r b i t r a r y  
d e c r e a s e  of the  depolarization r a t e  constant (cf. 
Ref. 7). 

The dependence of the pre-exponential fac tor  in  
(2.18) on the  magnetic field a t  T = 0 and T = 1 K i s  
shown in Fig.  3 .  

In concluding th i s  section we shall t r a c e  the  t rans -  
formation of the obtained relations f o r  the  exchange- 
depolarization c r o s s  section on going to higher t em-  
pera tures .  If in  place of the inequality (1.1) we  have 
the inverse  relation 5 << 1 ,  then the depolarization pro-  
c e s s  becomes quasi-elast ic .  In this c a s e ,  when de-  
termining the overlap integral  L (2.71, we can put 
approximately ki =kf = k .  Then,  following the  s a m e  
procedure as in t h e  derivation of (2.121, we obtain 

Here  b S j  and 6 ,  a r e  the phases of the j -scat ter ing in 
t h e  singlet and t r ip le t  s t a t e s .  Substituting th i s  ex- 
pression in (2. l o ) ,  we obtain f o r  the  depolarization 

a erp (Zp, HITI  

/u -Iv 

/u -I5 

/u -'6 

/u -I7 

/n -I8 1 /P ,k I(I /U5 H, Oe 

FIG. 3. Dependence of the pre-exponential factor in the for- 
mulas for the rate constants of the exchange (2 .18)  and the di- 
pole-dipole (3.11) depolarization onthe magnetic field. Curves 
1 and 2 correspond to the exchange depolarization at T= 0 and 
T= 1 K. Curve 3 corresponds to dipole depolarization. 

c r o s s  sect ion 

In the high-energy region (c 2 300 K), when the de-  
cis ive contribution in (2.19) c o m e s  f r o m  collisions with 
l a r g e  angular  momenta j ,  we can determine the phase  
difference by using the quasiclassical  approximation. 
In this  c a s e  

.--hx2 fpap sin' ( j d t  =2x2a,.., 
0 -m ) 

where  p is the impact  p a r a m e t e r  of t h e  collision, o-,:, 
is the c r o s s  sect ion f o r  resonant  spin exchange. The 
formula  f o r  or,, i s  well known (see,  e . g .  , Ref. 6 ) .  
A resul t  s i m i l a r  to  (2.20) was  obtained e a r l i e r  by 
Brown. 

3. DIPOLE-DIPOLE POLARIZATION IN PAIR 
COLLISIONS 

Spin depolarization in collision of two polarized hy- 
drogen a t o m s  can be  due not only to  exchange interac-  
tion but a l s o  to  diple-dipole interact ion of the electron 
spins : 

The opera tor  (3.1) does  not change the total e lectron 
sp in  of the quasimolecule, but can  change i t s  pro-  
jection M,, on a p re fe r red  direct ion with AM, =*I ,  
+2. This  makes  possible depolarization in collision 
of polarized a t o m s  a l s o  when the hyperfine interaction 
is neglected. The depolarization corresponds then t o  
a nonresonant t r iplet- t r iplet  t ransi t ion.  

We obtain the depolarization c r o s s  sect ion in f i r s t -  
o r d e r  perturbat ion theory. Recognizing that  in  the 
t r iplet  s t a t e ,  a t  a total  quasimolecule nuclear  spin 
I = 1 ,  the  angular  momentum a s s u m e s  only even values,  
and a t  I =0 only odd values,  we have f o r  the c r o s s  
sect ion f o r  depolarization with AMs = 1 

594 Sov. Phys. JETP 54(3), Sept. 1981 Kagan eta/. 594 



(the symbols ' and " correspond to summation over 
even and odd j). The overlap integral J(ii, jf) is de- 
fined by the relation 

where the radial-motion wave functions X ( , : ) ( ~ )  cor- 
responding to the triplet potential a re  normalized by 
the condition (2.9); ki and kf a r e  defined in accord- 
ance with (2.8). 

From (3.2) there follows directly the selection rule 
ji -jf =0 ,  12  for the angular momentum of the quasi- 
molecule. In addition, j, and j, cannot be simulta- 
neously equal to zero. 

We note that the cross section for the simultaneous 
spin flip of both atoms ( U s  =2)  i s  determined by the 
same formula (3.2) but with twice as large a numeri- 
cal factor and with 

We determine first  the cross section for dipole 
depolarization at the lower limit of the initial energy 
E i ,  corresponding to the condition k,R, << 1 (weak 
magnetic field). In this case the overlap integral (3.3) 
i s  built up over the distances R -l /k,  >> R,. We can 
then use for x , ( K )  the wave functions of the f ree  mo- 
tion: 

where &(x) is  a spherical Bessel function. In the case 
j * 0 this i s  obvious, but this can be done also a t  j = 0,  
recognizing that ,yo& -sin k(R - a,) and ka, << 1. 

Substituting (3.5) in (3.3) we obtain (kf < k,): 

Here r i s  the gamma function and F i s  a hypergeo- 
metric function. 

If kf << k,, then the leading transitions a re  d- S .  

In this case we have J(2,  0) = 4/3. Substituting this 
result in (3.21, we get for the depolarization cross  
section 

In a strong magnetic field, a realistic situation is 
one in which 

The d- s transitions a re  again decisive here. How- 
ever, to calculate the overlap integral (3.3) we must 
now use the true wave functions, which a re  solutions 
of the Schrijdinger equation fo r  the real potential U , ( R ) ,  
since a substantial contribution to this integral under 
condition (3.8) is built up over distances comparable 
with R,. The overlap integral will decrease with 
increasing E , .  Representing J(2,  0) in the form J(2,O) 
= (4/3)f (a,, c,) we have correspondingly for the depolar- 
ization cross section at AM, 

For  the depolarization channel with &Us = 2 we obtain 
a similar expression with an additional factor 2 and 
under the condition that E, and cf a re  determined in 
accordance with (3.4). The dependence of f on 6 ,  

obtained a s  a result of direct calculations is  shown 
in Fig. 2b, again for  two values of the final energy, 
cf = O  and cf = 1 K. The time 7, of the decay of the 
polarized states of the atomic gas on account of the 
paired dipole polarization is determined by the rela- 
tion (2.17), in which the rate constant i s  a, =(flu). 
Using expression (3.9), we obtain for temperatures 
T < 1 K, with account taken of both depolarization 
channels , 

+ 2 f 2 ( 4 p s H ,  0 )  exp ( - 4 p a H I T ) ) .  (3.10) 

Here a: =ad* 2ti/MRo=3 10-l5 cm3/sec. Under the 
condition (1. I ) ,  the second term in (3.10) is small and 
a ,  is  determined in practice by the process with one 
spin flip. The contribution from transitions with all 
other combinations of j, and jf is also small compared 
with the obtained value of a,. 

The dependence of the pre-exponential factor in (3.10) 
on the magnetic field is shown in Fig. 3. As seen 
from the curves in this figure, at H > lo4 Oe the di- 
pole depolarization is decisive. If H =lo5 Oe, 
then a,,/cr, =2 - lV3.  The reason for this result, which 
is unusual for magnetic relation processes, is the 
smallness which is characteristic of exchange polari- 
zation in the considered case. 

We note that despite the small dipole-dipole inter- 
action (&/ft; -1V2 K) and of the factor x2,  both rate 
constants a,, (2.18) and a, (3.10) turn out to be rela- 
tively large. This makes essential the use of the 
threshold factor exp(-2pBH/T) to ensure a sufficiently 
long lifetime ? of the polarized state of the atomic 
gas. Thus, to obtain r on the order of hours a t  a 
density n= loz0 ~ m - ~ ,  the threshold factor must amount 
to -lV8-10-9. In a field H =lo5 Oe this calls for tem- 
peratures T 5 0.6 K. 

4. ESTIMATE OF THE ROLE OF SPIN-ORBIT 
INTERACTION 

Besides the exchange and the dipole-dipole interac- 
tions spin depolarization in collisions of polarizedatoms 
can in principle be caused by the interaction of the 
electron spins with the orbital motion of the nuclei o r ,  
in other words, with the rotation of the quasimole- 
cule axis. This interaction i s ,  in particular, respon- 
sible for the rotation of the spin of the atom in a 
collision with an atom that does not have its own spin 
and orbital momenta. l 6 ~ "  

It i s  easy to establish from general considerations 
that in collisions of hydrogen atoms the Hamiltonian 
of the spin-orbit interaction, averaged over the elec- 
tron wave function, i s  of the form 

where f is the operator of the total angular momentum 
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of th_e quasimolecule without allowance for  the spin, 
and S is the operator  of the total electron spin. The 
expression fo r  (R) has the following structure:  

where m i s  the electron mass .  By virtue of the re-  
pulsive character  of the triplet potential U,(R), the 
spin-orbit depolarization takes place over distances 
R ZR,. Therefore the dimensionless quantity f (R) 
turns out to be  smal l  compared with unity f o r  al l  
variants of the interaction, both those that do not 
take into account the distortion of the atomic wave 
functions, and those that do take this distortion into 
account; this distortion, in principle, can be sub- 
stantial (see Refs. 16  and 17). It is c lear ,  therefore, 
that the spin-orbit depolarization i s  weaker by many 
orders  of magnitude than the dipole polarization con- 
sidered in the preceding section. 

5. RESONANT RECOMBINATION OF POLARIZED 
ATOMS IN  STATES WlTH LARGE j 

As noted in the Introduction, bound states of a hydro- 
gen molecule with la rge  rotational quantum numbers 
can have energy values E v j  close to end point of the 
continuous spectrum. If a t  the s ame  t ime 

formation of a bound singlet s ta te  of the molecule be- 
comes possible in pa i r  collision of polarized atoms. 
This resonant process can be due only to exchange 
interaction, s ince dipole-dipole interaction does not 
lead to transitions from the triplet to the singlet 
s tate.  

An analysis of the data on the spectrum of the vi- 
brational-rotational s tates of the hydrogen molecule18 
shows that the greatest  trouble can be caused by the 
level El,,,, = I 0  K.  Other possible levels corresponding 
to the condition (5.1) could have only l a rge r  values of 
j and smal ler  values of v. 

In transitions connected with exchange interaction, the 
rotational quantum number i s  conserved. By virtue 
of this, the states of the continuous spectrum a r e  
separated by a large centrifugal b a r r i e r  from the 
bound states satisfying the inequality (5.1). 

It i s  known that bound s ta tes  with odd j a r e  possessed 
only by molecules of orthohydrogen, and with even j 
only by parahydrogen molecules. Taking this into con- 
sideration, i t  is easy to verify that only ortho-hydro- 
gen can be produced in collisions of atoms in states 
'Ps and cp, [see (2.1)] , and only para-hydrogen in 
collisions of two atoms in the s ta te  cp, . 

We consider f i r s t  the inverse process ,  namely the 
decay of a bound singlet s tate of a molecule. The 
matrix element of the transition from the exchange- 
interaction operator (2.31, taken over the spin varia- 
bles,  i s  equal to 2-(1/2) XA (H) for  the orthomolecule 
(3, 4) transition. F o r  the pa ra  molecule -i4, 4) 
transition it is equal to XAR.  Bearing it in mind that in the 
fo rmer  case it i s  necessary to sum over two equivalent 
final s tates ({3,4)and{4,3)), we obtaina single formula 

f o r  the probability of the decay of the bound s ta te  and an 
arb i t ra ry  value of j : 

Here xVj(R) is the radial wave function of the bound 
state,  normalized to unity; X:;(R) i s  the radial wave 
function of the continuous spectrum f o r  the triplet 
s tate,  normalized by the condition (2.9); 

Recognizing that the functions xv,(R) and X:;~(R) a r e  
solutions of the ~ch rSd inge r  equation for  the singlet 
(2.5) and triplet (2.4) potentials, respectively, i t  i s  
easy to show that 

Substituting this result  in (5.2) and using (1.21, we 
obtain 

Using now the detailed-balance principle, we can ob- 
tain the following expression for  the r a t e  constant of 
resonant recombination of polarized atoms: 

Let us est imate the value of the overlap integral I,,, 
(5.6). By virtue of the condition j >> 1 ,  which i s  pre-  
determined by the inequality (5.11, we use the quasi- 
classical  approximation fo r  the function ~,,(fi). In the 
range of distances H z H *  (H* i s  the position of the 
maximum of the effective single potential and depends 
little on the rotational quantum number), where the 
bulk of the integral Zvj is built up, the function X~;,,)(K) 
practically coincides with the wave function of the 
f r ee  motion [k,,Rf << f ,  R t j  <H* , where R, i s  the 
value of R a t  which the centrifugal potential coincides 
with Ut ( R ) ] .  Bearing in mind an upper-bound estimate, 
we assume for  the definition of xu,(&) the limit I EvjI 
-- 0, and f o r  xi0'(H) we retain the solution in the form 
(3.5) a t  R > R* . Recognizing that a t  R 2 R* the centri- 
fugal potential greatly exceeds the singlet potential, 
we obtain after  integrating in (5.6) 

The factor C G ) ,  just a s  A*, depends little on j .  Its 
appearance i s  due to the presence of the normalizing 
fac tor  in the singlet wave function, and to the fact 
that in a relatively narrow vicinity of the point Rsj 
(Usi(Rsj) =0)  the centrifugal potential i s  comparable 
in magnitude with the singlet potential. Direct est i-  
mates a t  j-10 show that C(j)-1. 

Substituting (5.8) in (5.5), we obtain the following 
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expression for  the decay probability: 

We see from this that the decay probability and the 
rate constant ( 5 . 7 )  decrease rapidly with increasing 
rotational quantum number. The character of the func- 
tion a V j ( E 0 )  is  governed to a considerable degree by 
the relation between E, and T .  This relation has a 
maximum at E, = (j - 1 ) T .  In this case 

An estimate of expression ( 5 . 9 )  at  the smallest pos- 
sible j =  10 yields 

If E, s2pBH and H  - l o 5  Oe, then the lifetime bj = W;; 
- lo7  sec.  At all densities of interest, the molecule 
certainly experiences inelastic collisions during this 
time, and these collisions shift it to lower non-decaying 
states. The recombination rate is therefore actually 
determined by the constant a v j  (5.7), ( 5 . 1 0 ) .  

At j = 10 we have 

and in the temperature region T  < 3  K it does not 
exceed -lo-" cm3/sec. This rate constant corresponds 
to a polarized-gas lifetime 7 > lo6  with respect to the 
process of resonance recombination all the way to 
densities n -10'' ~ m - ~ .  The polarized gas thus turns 
out to be stable with respect to this decay channel. 

We emphasize, in concluding this section, that the 
stability of the polarized gas to resonant recombination 
i s  due decisively to the large value of the rotational 
quantum number of the corresponding discrete levels. 
If this is not the case and molecules can be produced in 
states with small j, then the considered decay channel 
may cause considerable trouble. Such a situation 
should apparently take place in deuterium o r  in a mix- 
ture of hydrogen with deuterium, a fact f irst  pointed 
out by Stwalley. 

6. THRESHOLDLESS DEPOLARIZATION. ROLE OF 
COLLECTIVE SPIN EXCITATIONS 

We have seen that in pair collisions of polarized 
hydrogen atoms in a strong magnetic field the depolar- 
ization has in principle a threshold. This circumstance 
caused the appearance of the factor e x p ( - 2 b H / T )  in 
the expressions for the depolarization rate constants 
(r , , (2 .18)  and ~ ~ ~ ( 3 . 1 0 ) .  

At higher densities, an important role can be as- 
sumed by multiparticle processes, which already 
admit of the appearance of thresholdless depolariza- 
tion and recombination channels. In the case of de- 
polarization we must take into account the energy- 
lowering interaction between the particles appearing 
with opposite spin projection in the states c p ,  o r  c p ,  
with the background (see Ref. 8).  

At T  rrO we a re  dealing in fact with the energy of 
"impuriton" excitation in a Bose-condensed gas of par- 
ticles that i s  a mixture of hydrogen atoms in the 
states c p ,  and q, in equal concentrations, o r  a t  infra- 
low temperatures only in the state q.,. In the for- 
mer  case the interaction of the particles in the state 
c p ,  and Vz with a mixed Bose condensate leads to the 
appearance of two types of spin excitations with energies 

(9-9 0 ) .  If the background consists of particles in the 
state (P4, then the excitation energy in the presence of 
an "impurity" particle in the state cp, is  determined by 
Eq. ( 6 . 2 ) ,  and in the presence of a particle in the 
state cp ,  i t  is determined by Eq. ( 6 . 1 ) .  

It follows from ( 6 . 2 )  that the depolarization process 
continues to have a threshold so  long as the inequality 

i s  satisfied 

Relations ( 6 . 2 )  and ( 6 . 3 )  differ radically from those 
obtained by Berlinsky8 (see also Ref. 9). The reason 
i s  that Berlinsky used implicitly the assumption that 
the pair correlation functions of particles with parallel 
and antiparallel spins a re  equal. 

The criterion ( 6 . 3 )  turns out to be much less strin- 
gent than Berlinsky's result. It i s  satisfied with a 
large margin for such densities a s  1021 cm-', when 
the corrections of higher order in the density can 
still be neglected. 

If we confine ourselves to densities n 2 10'' cm-', 
then the multiparticle effects will be actually caused 
only by ternary collisions. In ternary collisions of 
polarized atoms, a thresholdless process correspon- 
ding to simultaneous depolarization and recombination 
is possible. This process consists of a transition of 
the particles to a bound singlet molecular state 
with high degree of vibrational excitation. The binding 
energy released in this case is carried away by a 
third particle ( I  Evjl > 2 p B H ) .  This process can take 
place both in exchange and in dipole-dipole interactions. 
Since the spin state of the system must be altered by 
the collision process, the rate of this process should 
be slow compared with the rate of the ordinary three- 
particle recombination. 

7. THRESHOLDLESS THREE-PARTICLE 
RECOMBINATION IN EXCHANGE INTERACTION 

In this section we consider the exchange recombina- 
tion channel. When three polarized atoms collide, 
a transition of a pair of particles into a bound singlet 
state takes place in this case only if simultaneous 
allowance is made for the exchange and hyperfine in- 
teractions. The structure of the Hamiltonians of the 
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exchange of hyperfine interactions predetermines the 
conservation, in the result  of this process,  of the 
projection of the total spin (electron and nuclear) of 
a l l  three  part icles,  as well a s  the fact that the pro- 
jection of the electron spin changes by not more  than 
unity. By virtue of this circumstance, only the fol- 
lowing transitions a r e  possible: 

I paramolecule + 14) 
(444) -t orthomolecule (MI = 0) + j4), 

orthomolecule (MI = I )  + (31, 

I paramolecule* + {3 )  
(344)-* orthomolecule (MI = - 1) (412 (7.1) 

orthomolecule(M~ = 0) + ( 3 )  

(MI is the projection of the total nuclear spin of the 
molecule). 

Regarding the potential energy of the interaction a s  
the sum of paired interactions, we write down the am- 
plitude of the transition of particles 1 and 2 into a 
bound s ta te  ( v ,  j )  with acquisition by the third particle 
of a momentum qf relative to the mass  center  of the 
produced molecule, in the form 

This equation i s  obtained directly within the frame- 
work of ordinary inelastic-scattering theory. Here 
R=R12, r i s  the distance from the third particle to 
the mass  center of the quasimolecule (1 - 21, 5, and 
qr a r e  the se t  of spin variables of the electrons and 
nuclei, M' = (2/3)M i s  the reduced mass  of the mole- 
cule and of the atom, and of is the projection of the 
total spin of the third particle in the final s tate (the 
value of = O  corresponding to the spin wave function 
q 4 ,  while of = -1 corregponds to the wave func_tion 
q,). The Hamiltonian V(r,,) = U,(rl,) + (r,,)(g1s3 + 114) 
describes the interaction of the third particle with the 
i-th atom of the quasimolecule (1-2). The t rue  wave 
function @(R, r ,  t i ,  11,) corresponds to three  polarized 
atoms in the input channel, *JR, 5,, t 2 ,  711, q2) and 
p g(53, q3) a r e  respectively the wave function of the 
bound state of the molecule and the spin wave function 
of the third particle in the final s tate.  The hyperfine 
interaction i s  included here  in the definition of al l  the 
functions in (7.2). 

The interaction ?(r,,) separates effectively in the 
integral (7.2) a region of relatively short  distances r,,. 
This region is separated also in the product P(r,,) 
@(R, r ,  5,, TI,). From pure geometric considerations 
it is c lear  that the correlation in the relative positions 
of the particles 2 and 3 plays a minor role in  the deter-  
mination of this  product, and to estimate the amplitude 
of the transition in  the limit as T-- 0 we can use  the 
following approximate representation: 

and analogously fo r  ?(Y,,)@(R, r, f , ,  71,) (of is the 

projection of the total spin of the third part icle in the 
initial s tate) .  The reason why the relative motion of 
the third particle and of the i-th atom i s  described in 
this relation by a triplet wave function i s  the sma l l  
value of the hyperfine interaction compared with the 
exchange interaction in the region of the effective in- 
teraction. 

We determine now the amplitude of the transition in 
an approximation l inear in the hyperfine interaction. 
To this end we use in the (7.2) and (7.3) wave functions 
determined within the framework of perturbation theory 

in ahf. We begin with consideration of the formation of 
a paramolecule (even j )  in a collision of three  part icles 
in a s ta te  q4 [see (2.1)]. In this case the wave func- 
tions take the form 

cs) ,p "7 a The overlap integrals (9i:'l \kvj) and (*k, I r e  de- 
fined here in the usual manner, X, and x,, a r e  the 
singlet and triplet wave functions fo r  the electron and 
nuclear spins of the quasimolecule (1-2) and m i s  the 
spin projection in the tr iplet  s tate.  The wave function 
of the bound state contains also increments with 
electron-spin projection equal to 0 and 1. In the 
approximation l inear in the hyperfine interaction, 
however, these increments make no contribution to 
the transition matrix element, and a r e  not taken into 
account in (7.4). 

The leading t e rm in the considered transition am-  
plitude is connected with the admixture of the singlet 
s tate in the function *klz on account of the homogeneous 
action of the hyperfine Hamiltonian [the second t e rm 
in (7.5)]. When the initial energy of the particles 
tends to zero ,  we can se t  the total angular momen- 
tum of all t h r ee  particles and the angular momentum of 
the recombining pa i r  in the initial s ta te  equal to zero .  
In this case ,  taking (2.11) into account, we have 

(the numerical coefficients a r e  different here  because 
the nuclei in  the recombining pa i r  a r e  identical). Then, 
integrating over the angles in (7.2) and summing over 
the spin variables in explicit form,  a s  well a s  recog- 
nizing that the amplitude is tripled on account of the 
identity of the initial spin s ta tes  of the atoms,  we ob- 
tain 
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where mi i s  the projection of the angular momentum j 
in the bound state (we assume the volume of the sys- 
tem to be equal to unity); 

~ ( 9 1 -  M M "  TI (r)  (u! (r) + T) sin (qrr) dr. 
qfR@Ao 

The correction to the wave function of the bound state,  
which is proportional to the hyperfine-interaction con- 
stant A and is due to the admixture of states of the 
continuous spectrum [the second term in (7.4)], and 
conversely, the correction due to the bound states to 
the wave function of the continuous spectrum [the 
last term in (7.5)], add to the transition amplitude 
a contribution which is small compared with (7.7) in 
the ratio 2pBH/I  E,,l. In the f i rs t  case this can be 
verified by leaving out E,, from the denominator of 
the integrand (the characteristic value &,, i s  less than 
I Ev,l ), after which the expression for the correspon- 
ding amplitude can be greatly simplified. 

There is no explicit small parameter in the fourth 
term of (7.5). Direct calculations show, however, 
that the contribution from this term to the amplitude 
of the transition is likewise small compared with (7.7). 
It must be emphasized that these conclusions remain 
in force also when other variants of the transitions 
a re  considered. Realistically, therefore, when de- 
termining the transition amplitude, account need be 
taken in the wave function of the continuous spectrum 
of only the corrections that correspond to the second 
and third terms in (7.5). 

We now obtain the amplitude for the production of the 
orthomolecule (odd j). Here we must already distin- 
guish between cases corresponding to different values 
of the projection of the nuclear spin of the molecule. 
It is easily understood that the triplet increment to the 
wave function of the recombining pair [the third term 
in (7.5)] leads to formation of an orthomolecule with 

= 0. Explicit calculation of (7.2) yields then 

Actually, expression (7.3) contains one more cor- 
rection proportional to n. It is due to the form of the 
spin wave function of the third particle cp,(E,,, 17,). 
Allowance for this correction leads to a transition 
wherein the third particle has in the final state a spin 
configuration cp,(E,,, I),), while the orthomolecule turns 

out to be in a state with a nuclear-spin projection M, 
= 1. The corresponding amplitude i s  calculated in 
analogy with (7.10): 

f / ~ ~ ( ~ ~ - - l ) = - ~ " ' f ~ ~ ' ) .  (7.13) 

If one of the colliding particles i s  in a state p,, and 
the two others in a state cp,, then only the latter can form 
a paramolecule. The third particle remains in the 
state cp,, and we have for  the transition amplitude 

f  g.) =ifsf:?. (7.14) 

The atoms in the initial spin states cp, and cp, can 
form at T -- 0 only an orthomolecule. This i s  easily 
established from the form of their paired wave func- 
tion 

Y,.(R, f,, EX, 11, Vr) =Z-"'Y;,:) ( R ) x I - I ( ~ ~ ,  ~Z)XLO{VI ,  VZ) 

-z- '~YY)(R)x,- ,  ( f I ,  f2)x.(ql,  nI ) -2 - 'h~~: : ) (R)~ ,o (E , ,  %z)xL-,(vI, 1%) 

+ ~ - " % Y ~ , ~ ' ( R ) X ~ ( ~ I ,  E ~ ) x ~ - I ( ~ I ,  nz). (7.15) 

The formation of a paramolecule can be connected only 
with the second term in (7.151, with account taken of 
the correction, proportional to u, to the spin 
wave function of the third particle. The expansion of 
the coordinate wave function * ~ : Q ) ( R )  in spherical har- 
monics then includes only odd j , and the transition 
amplitude contains, compared with the previously ob- 
tained ones, an extra power of the small initial mo- 
mentum. The same smallness i s  possessed also by 
the orthomolecule-production amplitude connected 
with the singlet correction [the last term in (7.15)]. 

The transition that leads to formation of an ortho- 
molecule with projection 'MI = -1 i s  connected with 
the third term in (7.15). Doubling the transition am- 
plitude (7.21, since two i3, 4) pairs can recombine, 
we obtain 

f::,)) (MI=-1) =-2'hfty' 13. (7.16) 

The formation of an orthomolecule with projection 
M I  = 0 can take place when particles recombine in 
states cp, and cp, on account of the increment to the 
spin wave function of the third particle. A similar 
transition takes place also when two particles recom- 
bine in a state cp, [the corresponding amplitude is 1/3  
the value of (7.10)]. Adding both amplitudes we have 

In principle, orthomolecules with projections M I  
= -1 accompanied by a departure of a third particle in 
the state cp can be produced in the (334) collision. Such 
a transition can take palce both upon recombination of 
particles in the states rp, and rp,, and upon recombina- 
tion of two particles in the state cp,. In the limit a t  
T- 0 ,  when the singlet increment to (7.15) can be 
neglected, the corresponding amplitudes a re  equal in 
magnitude and opposite in sign, s o  that this transition 
does not take place. 

We use now the usual connection between the ampli- 
tude and the probability of the inelastic transition 
Taking into account the paramolecule production am- 
plitudes (7.7) and (7.14) and the orthomolecule pro- 
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duction amplitude (7.101, (7.13), (7.16), and (7.17), 
and allowing for the relative concentrations of the 
particles cq4 in the states cp, and cp,, we obtain after 
summing over the projections m j  and M, for the sum- 
mary transition probability 

(naturally, for each j either 72' o r  j iy' i s  different 
from zero). 

Substittting in (7.18) the expressions (7.7) and (7. lo) ,  
we obtain directly 

Wcez~=J'/J n'x2 (Aa,2nIMRo) (nROS) (3c,'+ caciz) ycr ( H )  , (7.19) 

In expressions (7.18)-(7.201, the value of the final 
momentum qf is  determined by the energy-conserva- 
tion law 

which predetermines i ts  dependence on v ,  j ,  and H. 
The overlap integrals Avj(H) and JVj@) a r e  determined 
by relations (7.8) and (7.9) for even j and by (7.11) 
and (7.12) for  odd j ,  and depend on the magnetic field 
via qf. 

We compare now the results with the probability of 
exchange depolarization in the pair collision (2.17) 
and (2.18). We must note primarily the absence from 
(7.19) of a factor that depends exponentially on the 
temperature. This is due to the thresholdless charac- 
t e r  of the considered three-particle process. It i s  
important that in this case the characteristic time of 
the decay of the polarized state remains finite a s  
T- 0. 

Expression (7.19) contains the usual small factor 
nR:. On the other hand, analysis of the factor ),,(H) 
calls for a direct calculation of the overlap integrals. 
Recombination takes place most effectively in the 
state with the maximum vibrational quantum number 
v =  14, to which there correspond in the discrete spec- 
trum four rotational sublevels with 0 c j < 3. By way 
of illustration, Table I lists the overlap integrals at 
H = lo5 Oe. From the presented data it is seen that 
the modulus Avj of the overlap integral changes little 
f o r  the recombining pair with changing j. Moreover, 
it changes little also in a wide range of the magnetic 
field. On the contrary, the overlap integral J::' for 

TABLE I. 

the third particle turns out to be very sensitive to the 
value of j. The recombination probability i s  deter- 
mined in fact by the transitions to the level with j = 3. 
In this case y,,(H) turns out to be larger than unity. 

In contrast to AD,, the integral J; ,~X'  is sensitive to 
the value of the magnetic field. With increasing H, 
a tendency of I J,(,c"l to decrease is observed, and 
this predetermines the appearance, in the expres- 
sion for the reciprocal decay time of the polarized 
state, of an additional dependence on the magnetic 
field, besides the factor v? -1 'Hz. This decrease i s  
effectively connected with decrease of the parameter 
qfRCc! ( I Z , f f  is the characteristic interaction radius) 
with increasing H and with the onset of a situation of 
the Ramsauer-effect type. 

The fact that the factor y,,(H) does not produce ad- 
ditional smallness in (7.19) compared with (2.18) 
is unexpected. This result is  explained by the fact 
that in the course of the paired exchange polarization 
an abrupt decrease took place in the cross section a s  
a result of the anomalous shortening of the scattering 
length in the triplet state (a, <<A,). There i s  no such 
efect in the three-particle process, and linear scales 
of the order of H, are  restored. 

From (7.19) we get for the reciprocal decay time of 
a polarized gas in the process under consideration, at 
c3 = c,, the following estimate: 

At H= lo5 Oe, the factor b,, (H) = 1. With increasing 
H, in the interval from 5. lo4 to 1.5.  lo5  Oe, it de- 
creases monotonically from 2 to 0.3.  

Attention must be called to the fact that according 
to (7.18) and (7.19) the probability of decay of the 
polarized gas depends decisively on the density of the 
particles in the state cp,. Missing from these ex- 
pressions is not only a term proportional to ci ,  a s  is 
physically obvious, but also a term proportional to 
Gc, (it appears only at a fininte temperature). There- 
fore the time 7:: increases like l/< with decreasing 
c4. 

8. DIPOLE THREEPARTICLE RECOMBINATION 

Dipole-dipole interaction can also lead to simul- 
taneous depolarization and recombination in ternary 
collision of polarized atoms. Just  as  in the case of 
paired depolarization (see Sec. 3), the hyperfine in- 
teraction can be left out when this process i s  considered. 

For  the zmplitude of a transition in which particles 
1 and 2 produce a molecule in a mixed state and particle 
3 goes off with a momentum qf relative to the mass cen- 
t e r  of this molecule, we use Eq. (7.2) a s  before. Now, 
however, we must add to the Hamiltonian ?(r,,) the 
Hamiltonian pd (yi3) (3.1) of the dipole interaction, and 
the true wave function @(R, r ,  t i ,  q,) must be deter- 
mined with allowance for the dipole-dipole interaction. 
In the approximation linear in this interaction, it is  
convenient to represent the transition amplitude a s  a 
sum of two terms: 
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Here *(R, r ,  5 , ,  q,)  is the true wave function with the 
dipole-dipole interaction neglected. No account is 
taken in (8.1) and (8.2) of the increment due to the 
dipole interaction to the wave function of the bound 
state, since i t  makes no contribution to the transition 
matrix element. 

We find first  the amplitude f f .  Since neglect of Hhf 
leads in the considered process to conservation of the 
nuclear spin, only orthomolecules can be produced 
in the 1333) and i4441 collisions. A paramolecule can 
be produced only by particles in the states 40, and cp,. 
For this purpose, however, i t  i s  necessary that the 
initial angular momentum of the recombining pair be 
odd and this, a s  already noted, leads to vanishing 
of the transition amplitude as T - 0. 

In the calculation of (8.1) we retain the approximate 
representation (7.3) with ?(Y,,) replaced by ?,(Y,,), 
although it is possible that in the case of a dipole- 
dipole interaction this approximation is somewhat 
worse. A triplet quasimolecule wave function enters 
in this case in (7.3). Using the limiting values of the 
wave functions (7.6) and summing (7.2) over the spin 
variables and integrating over the angles, we obtain 
for the amplitude of the transition without change of the 
spin state of the third particle in the (444) collision 
(taking into account the tripling of the amplitude be- 
cause the particles a r e  identical) 

where 

and qf is specified in accordance with (7.20). Expres- 
sion (8.3) i s  given only for  oddj'. 

We obtain analogously an expression for the ampli- 
tude of the transition accompanied by a rotation of the 
electron spin of the third particle: 

In this expression qf i s  determined already from the 
relation 

For other collision variants, we have 

Exactly the same relations a r e  obtained also for the 
amplitudes of a transition with change of the state of the 
third particle f i d .  

Expression (8.2) is perfectly analogous in structure 
to (7.21, and when using for i ts  calculation the same 
approximation (7.3) we should replace in the latter the 
paired wave function Yklz-o by the correction to this 
function due to the dipole-dipole interaction. Direct 
calculation of f t  has shown that this amplitude is sub- 
stantially lower than f:, and we shall disregard i t  in 
the estimates of the transition probability. 

We note that in principle we could have treated a l l  
three dipole interactions a s  a perturbation within the 
framework of the distorted-wave method. If the wave 
function of the final state, taking into account the 
large value of qf, i s  approximately represented here 
in the form 

we would obtain the same result, since our choice 
of the wave function @(R, r t , ,  q r )  in the form (7.3) 
would cause the matrix element of Vd(rl,) to vanish. 
The ensuing inaccuracy turns out to be not very large, 
since the small distances r,, and Y,, a r e  practically 
excluded upon integration because of the behavior of 
the triplet wave function cp, 

Using the relations obtained fo r  the transition am- 
plitudes bee (8.3), (8.5) and (8.7)], and taking into 
account recombination channels with and without spin 
flip of the third particle, we get for the transition 
probability [cf. (7.18)] 

The summation here i s  only over odd j, while q, and 
q; are  determined in accordance with (7.21) and (8.6). 

Substituting in (8.8) expressions (8.3) and (8.51, 
we obtain 

96nZ pXaM ' fi 
W(" - (7) - ?t(&:) (c:+c~c:+c?c~+c~~)  y d ( H ) ,  

5 MRa (8.9) 

[the overlap integrals Ao, and Jf, are  determined by 
formulas (7.11) and (8.4)]. The recombination pro- 
cess goes in this case effectively to the same levels 
a s  in the case of exchange interaction, the only dif- 
ference being that now j takes on only odd values. By 
way of illustration, Table I lists the overlapping in- 
tegrals J::' in the expression for ?,@) at  H =  lo5 Oe. 
Again, the recombination to a level with j = 3  i s  de- 
cisive. An important role is played here by tran- 
sitions with simultaneous spin flip of the third par- 
ticle. 
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The coefficient ?,(HI (8.10) amounts to -lV3 and is 
smaller by more than two orders of magnitude than the 
coefficient (7.21). Therefore the role of the 
dipole mechanism in the three-particle recombination 
process is greatly decreased compared with the paired 
depolarization process. The reciprocal lifetime of 
the poalrized gas with respect to dipole recombination 
is 

it  turns out to be much less than 1/72)  (7.22) at H 
= lo5 oe. 

The factor b,@) has an inverse dependence on the 
magnetic field compared with b,,(H), namely, i t  in- 
creases with H and changes from 0.3 to 2 in the inter- 
val from 5 * lo4 to 1 .5 .  lo5  Oe. At larger values of 
H it begins to decrease. The principally different 
character of the dependences of 7;:' and 7i3' on the 
magnetic field causes the channels of the exchange 
in dipole recombination to become rapidly equalized 
in velocity with increasing H. 

We note one more circumstance. Direct calculations 
have shown that the modulus of the overlap integral 
~ v ' , d '  decreases strongly with increasing final momentum 
q f .  Therefore the model assumed by us seems to 
overestimate the probability w(,', since the real po- 
tential of the H-H, interaction has a well that in- 
creases the effective value of the final momentum in 
the interaction region. 

Thus, on account of simultaneous depolarization and 
recombination in the process of ternary collision of 
polarized atoms, the decay time of the metastable 
polarized gas phase remains finite a s  T - 0. This 
restricts in principle the attainable values of the 
density. As follows from the results, at H = lo5 Oe a 
lifetime of the order of hours is  possible only up to 
densities n - (1-2). 1P7 ern-'. In the limiting strong 
field H - (2-2.5). lo5 Oe such a lifetime corresponds 
to n - 1018 ~ m - ~ .  

9. ROLE OF SURFACE EFFECTS 

When considering the gas phase at low temperature, 
we encounter in principle the strong role of the sur- 
face effects. Indeed, if the surface density of the 
adsorbed gas becomes large, then thresholdless depo- 
larization and recombination processes, similar to 
the processes considered in the preceding section, 
come immediately into play. The role of the third 
body, in particular, can be assumed in this case by 
the surface. The most troublesome here i s  the thresh-' 
oldless production of spin excitations in paired 
depolarization, which results from violation of an 
inequality similar to (6.3) if the coating of the surface 
is close to a monolayer. 

At T = O  the chemical potential of the adsorbed atoms 
is determined by the value z,, renormalized on ac- 
count of the interaction on the surface, of the ground 
state (E,) in the adsorption well (cf. Ref. 19): 

Here n, is  the surface density of the adsorbed atoms, 
and 6 -1 is  a dimensionless coefficient that depends on 
theinteraction of the atoms with one another and with 
the surface (c, < 0). 

The bulk chemical potential has the usual value for a 
rarefied gas: 

The number of free places on the surface for polari- 
zed hydrogen atoms is approximately equal to 

It follows directly from (9.1)-(9.3) that the inequa- 
lity n, < n,, a t  equilibrium ( F ,  = IJ.,) at  T = 0 can be 
satisfied only under the condition I c,J S 1 K .  So low 
a value of the adsorption energy is known at present 
only in a single case: on a surface covered with a 
helium film (I &,I ~ 0 . 9  K,20*21). In all the remaining 
cases the lowest value of Ic,I is of the order of tens 
of degrees (for example, c, -40 K on the surface of 
molecular hydrogen. The requirement n, < n,, can 
then be satisfied only at finite temperatures. Assuming 
that T i s  higher than the degeneracy temperature both 
in the bulk and on the surface, we obtain approximately 
for  the ratio of the surface density to the bulk density 
in the case of free motion of the atoms over the surface 

nB=n(2nhYMT)'" exp ( I EO I IT) .  (9.4) 

If the adsorption is localized, then 

na=nnso(2nh21MT)" exp ( 1 E, I IT) .  (9.5) 

It is  easy to conclude from (9.4) and (9.5) that at 
T S 1 K the formation of a monolayer is  unavoidable 
for all surfaces, except one covered with helium, 
a t  all bulk-density values of interest. 

It is therefore meaningful to estimate the role of 
surface effects just for the case of a helium coating. 
In this case the ratio ns/nso remains less than or  of 
the order of 0.1 at all temperatures down to T = O  
(at n S loz0 ~ m - ~ ) ,  SO that the question of thresholdless 
production of collective spin excitations is avoided. 
The leading decay channel of the polarized phase on 
the surface i s  then three-particle recombination with 
change of the spin state. If the result for the number 
of acts of bulk recombination of this type per unit time 
is represented in the form 

w,. (nRo3)ZnV=vvV (9.6) 

(V is  the volume of the system), then the total num- 
ber  of recombination due to ternary collisions of 
adsorbed atoms acts on a surface S can be written 
in the form 

ws (nsRoL) ZnsS=vsS. (9.7) 

The coefficients w, and w, a re  of the same order of 
magntitude . 

On the helium surface, however, a recombination 
process is possible with a change of the spin state,  
wherein the role of the third body is assumed by the 
helium atoms. This process was observed in ex- 
periment. 21 Since the binding energy of the helium 
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atoms in the film is small compared with the energy 
(7.21) transferred in the recombination to the third 
particle, we have in this case an estimated number of 
recombination acts 

The quantity zs can differ in principle somewhat 
from w, on account of the specifics of the kinematics 
of the collision and of the difference between the Ht- 
H t  and H-He interaction potentials. At the same time 
it is  of interest to note that the recombination rate 
constant obtained experimentally by Hardy et ~ 1 . ~ ~  for 
unpolarized atomic hydrogen in a helium atmosphere 
at T =1 K turned out to be quite close to the value 
that follows from (7.221, if the factor u2 is left out 
of the latter. 

We emphasize that the process of simultaneous 
depolarization and recombination with participation of 
the helium atom can be connected only with the ex- 
change mechanism. If one of the particles in the 
three-particle cluster has zero spin, the dipole- 
interaction cannot alter  the total spin. Consequently 
dipole recombination with participation of a helium 
atom turns out to be impossible. 

A s  shown in the preceding section, in an ordinary 
mixture of hydrogen atoms in spin states cp, and V, 
the strong decay channel is  exchange recombination, 
by virtue of which recombination on the surface 
should be described by relation (9.8) (n,R: << 1) .  It i s  
important that if the third particle in the recombination 
is  a helium atom, then the value of the final momentum 
qf, which enters in all the overlap integrals, is  in- 
creased by a factor n. This leads to a weakening of 
the b,, (H) dependence, which becomes additionally 
weakened by the difficulty of formation of a molecule 
in a bound state with j = 3. As a result, the dependence 
of (9.8) on the magnetic field can be close to x2 1/H2. 
Such a dependence was recently observed for the con- 
sidered process in experiment." If we use the 
surface-recombination rate constant obtained in that 
reference, then we have for c, a s  T- 0 the estimate 
(n,=$u-3.10'3 cme2): c, 2-10'8 l / c m Z s s e c  (H=105 
Oe). It is easy to estimate here that surface recom- 
bination predominates over the volume recombination 
up to densities n -10" cm-,. If we arbitrarily intro- 
duce the reciprocal effective decay time 1/~,,, as the 
ratio of the number of particles recombining in the 
bulk and on the surface per unit time to the total num- 
ber  of particles, then i t  turns out that as  T - 0 the 
maximum value of ref, is  -0.2 sec .  This time de- 
creases both when the density increases and when it 
decreases from the value 1019 cm-,. 

The obtained estimates offer evidence that i t  is  
practically impossible to reach the Bose condensation 
region by direct means. It i s  possible, however, to 
accumulate a polarized atomic-hydrogen phase by using 
a finite temperature to which, according to (9.41, the 
condition n,/nFu << 1 corresponds. Thus, a t  T ~ 0 . 5  K 
we can reach densities n-1017 ~ m - ~ ,  and i f  H -(2-2.5) 
X lo5, then also n -lo1* cm-,, and we can get T,,, on 
the order of hours. 

The picture changes substantially if the polarized 
hydrogen atoms a re  only in the spin state 40,. In this 
case there is  no exchange recombination in the volume 
and on the surface, and the only remaining threshold- 
less  decay channel is  dipole recombination. A s  already 
noted, the channel of surface recombination with 
participation of a helium atom i s  suppressed in this 
case,  and recombination takes place only in the col- 
lision of three polarized hydrogen atoms. In this, 
relation (9.7) is already valid for  its rate. 

It is important that in the case considered the sur-  
face recombination decreases abruptly at H - (0.5 - 1) 
x lo5 Oe, both because of the small  parameter (n,R:) 
and because the rate constant (8.11) of the dipole 
recombination i s  smaller than the corresponding value 
for the exchange recombination. Estimates show that 
if we assume w, = w ,  and use relation (8.11), when 
refl reaches in this case a maximum value -10-100 
sec .  The corresponding volume density is n - 3  ' 10" 
cm-'. 

We note that any decrease of I c,l leads to a sub- 
stantial increase of the effective decay time, since 
v, - I &, I  (in films of the mixture He3-He4 the adsorb- 
tion energy was decreased to 0.6 K-Ref. 21). 

The presented estimate of T,,, is obviously approxi- . 
mate because of the inaccurate knowledge of such sur-  
face-recombination parameters a s  w, and the surface 
density as  T- 0 .  At the same time, as  already 
noted in Sec. 8 ,  the rate constant (8.11) of the bulk 
recombination is  apparently overestimated (con- 
sequently ?,, is  underestimated). As a result, 
a final assessment of the feasibility in principle of 
reaching the Bose-condensation region can be made 
only after greatly refining these parameters.  In 
any case,  however, the separation of spin-polarized 
hydrogen in the state cp, is to all appearances optimal. 

We note that dipole interaction between the electron 
spin of one atom and the electron and nuclear spins 
of another makes possible relaxation of the nuclear 
spin with a transition of the atom from the state V3 
into the state cp,. An analysis perfectly similar to 
that in Sec. 3 leads for the reciprocal relaxation time 
a t  T << A&, (A&, is the energy difference of the atoms 
in the states cp, and p,, and is equal to 5. K and 
H =lo5 Oe) to the value 

(1) is the magnetic moment of the proton). On the 
other hand, if 1 K 2 T>> Ac,, then an additional factor 
( T / A C , ) ~ ' ~  appears in the expression for are,. 

Thus, if we have a polarized-system decay time on 
the order  of hours, then this mechanism does not 
change the scale all the way to n - 10'' cm-'. 

It should be pointed out that a s  T - 0 the probability 
of three-particle exchange recombination i s  propor- 
tional to 4 [see (7.19)]. A similar result i s  valid 
also for recombination on a surface with participation 
of a helium atom. This, in particular, permits the 
presence of approximately 1% of a component in the 
state cp4 . 
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