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We develop a translationally invariant strong-coupling theory for the Landau-Pekar polaron which is 
considered to be a three-dimensional soliton. We construct the theory on the basis of a rigorous account of the 
kinetic energy of the polarization of the crystal. We study the effect of the role played by the optical-phonon 
dispersion. We show that when the polaron speed increases up to a critical value, its effective mass increases 
and the localization is increased. If the polaron sped exceeds the critical one, a further increase in the speed is 
connected with a delocalization of the electron and a decrease in its effective mass. 

PACS numbers: 71.38. + i, 71.25.Jd 

1. INTRODUCTION 

Recently much attention has been paid to a study of 
non-linear wave equations in homogeneous media 
which have solutions corresponding to the spontaneous 
breaking of the local symmetry (self -localization). 
Particularly intensive has been the study of one-di- 
mensional systems described by the non-linear 
Korteweg-de Vries, Schrijdinger , and sine -Gordon 
equations which have particle-like solutions in the 
form of solitary waves -solitons .' 

In recent years several attempts have been made to 
study the possibility that solitons a re  formed in media 
of two and three dimensions. Most success was 
achieved in the study of the so-called topological soli- 
tons which have wavefunctions with various values cor- 
responding to the zero-point energy (degenerate 
vacuum). For instance, in an isotropic ferromagnet 
the vacuum state, i.e., the state with the lowest ener- 
gy, corresponds to complete magnetization. The mag - 
netization vector can then be in an arbitrary direction. 

It was shown by ~ z ~ a l o s h i n s k i i  and Ivanov2 that top- 
ological solitons which a re  localized in three dimen- 
sions can exist in a ferromagnet. Rebbi3 has discussed 
the general conditions for the formation of topological 
solitons in media of various numbers of dimensions. 
He noted that the field which characterizes the states 
of two- and three-dimensional solitons must have a 
vector character with two and three components, r e -  
spectively. 

Appreciably less definite results a re  obtained when 
one studies the formation of non-topological solitons 
in media of two and three dimensions. The wavefunc- 
tions of non-topological solitons vanish on the infinite 
sphere (non degenerate vacuum). 

Recently ~ o ~ o l ~ u b s k i ?  has shown that the transition 
from a one -dimensional to a three -dimensional system 
leads, as  a rule, to a narrowing of the stability of both 
scalar and spinor solitons. In particular, he showed 
that in the case of a complex scalar field with self- 
action, which is proportional to the fourth power of the 
field, charged three-dimensional spherically symme- 
tric solitons a re  unstable in contrast to the one-di- 
mensional ones. The instability of spherically sym- 
metric solutions which vanish a t  infinity in three - 

dimensional space was noted by Zakharovs and Pet- 
viashvili6. 

We would like to draw attention to the fact that one 
type of stable three dimensional non-topological soli- 
ton has been known to physicists for a relatively long 
time. In fact, a t  present one uses widely in the theory 
of ionic crystals the polaron concept which was intro- 
duced by Landau7 and Pekar8sg more than forty years 
ago. 

A polaron i s  a self -localized state of an electron in 
an ionic crystal and i s  caused by non-linear and non- 
local interaction of an electron with the vector field 
of the polarization produced in the crystal by the elec- 
tron itself. Thus, the Landau-Pekar polarons a re  
three-dimensional solitons in ionic crystnls. A com- 
prehensive study of such solitons (polarons) i s  thus of 
considerable interest from the point of view of eluci- 
dating the general conditions for the formation of non- 
topological solitons in a two- o r  three-dimensional 
system. 

The first  theoretical papers819 studied the properties 
of a polaron a t  rest. The effective mass of a polaron 
with small translational velocity was f i rs t  studied by 
Landau and pekar1° who used perturbation theory. A ' 

consistent translationally invariant adiabatic perturba- 
tion theory was developed by ~ogolyubov" and Tyabli- 
kov. l2 They considered the kinetic energy of the ions 
as a small perturbation. 

Bogolyubov and Tyablikov introduced three extra de- 
grees of freedom for the description of the motion of 
the center of the polarization well. This required the 
introduction of three additional coupling conditions be - 
tween the degrees of freedom of the system. The 
great complexity of the theory prevented i t  to be widely 
applied in practice. 

Recently Gross13 developed a translationally invariant 
perturbation theory in inverse powers of the dimension- 
less  coupling parameter of the electron with the po- 
larization field, without introducing extra variables. 
The state of the electron was described relative to the 
center of a spherically symmetric polarization well. 
The effect of temporal retardation of the polarization 
cloud relative to the spatial distribution of the electron 
was neglected in that paper. 
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In all the mentioned theoretical studies of polarons 
the kinetic energy of the polarization of the crystal 
was taken into account through perturbation theory 
methods. Therefore the possible change in the spheri- 
cal symmetry of the polarization cloud was neglected 
together with the temporal polarization retardation due 
to electron motion. Moreover, optical phonons with- 
out dispersion were considered. These limitations 
a re  removed in the present paper. Taking into account 
the dispersion of the optical phonons, we determine 
for the polaron energy and i ts  other characteristics 
expressions which a re  valid for any velocity for which 
the continuum approximation can still be used. 

2. EQUATIONS DESCRIBING A MOVING POLARON 

An excess electron in a homogeneous polarizable 
medium causes the displacement of ions from their 
equilibrium positions. The Hamiltonian function of 
the produced vector polarization field P(r, t )  can be 
written in the form 

where E is the effective inertial permittivity, intro- 
duced by Pekar. 

The vector field P( r , t )  corresponds to longitudinal 
optical phonons with a positive dispersion law 

In the case of negative dispersion we must substitute 
-G for V i .  

The Hamiltonian function of the electron in the con- 
duction band of the crystal has in the effective mass 
(m*) approximation the form 

where 8, i s  the energy of the bottom of the conduction 
band. 

The interaction of the electron with the polarization 
produced can be written in two equivalent forms: 

H,.,=-e J cp(r, t)  IY (r, t) I' d3r-- J P(r, t)D(r, t)dar, (2.4) 

where -e is the effective electron charge, and p(r ,  t )  
is the potential of the polarization created by the 
electron and is defined by the equation 

v,cp (r, t) =4nP(r, t) . (2.5) 

The electron produces an electric field in the crystal 
with an induction vector determined by the equation 

darl 
D(r,t)=-eV,J lY(r,,t)la-. 

Ir-r, I (2.6) 

The sum of the expressions (2. I ) ,  (2.3), and (2.4) 

determines the complete Hamiltonian function of the 
system; with the i ts  help we find the equations of mo- 
tion 

To take the translational symmetry of the problem 
into account we shall look for the solution of this sys-  
tem of equations in the form of excitations which move 
with constant velocities V. We direct the z-axis of 
the coordinates of the system along the velocity V and 
use the equations 

cp(r, t) =v(p), Y (r, t )  =a-"G(p) exp [t(kr-at)] (2.9) 

to introduce the real functions cp(p) and G(p)  which 
depend on the dimensionless vector p with components 
determined by the equations 

E=x/a, q=y/a, S= (z-zo-Vt) la, (2.9a) 

where a is the lattice constant, k = mV/R, tio = E,, 
+q,, is the energy (in the laboratory frame of refer- 
ence) of the electron interacting with the polarization 
field. 

With the aid of (2.91, Eq. (2.8) is transformed to the 
form 

where the operator .@' i s  defined by the formula 

in which we have used the notation 

We shall be interested only in the self -localized 
states of an electron. In that case the right-hand side 
of Eq. (2.10) decreases faster than Thus, we 
need the particular solutions of Eq. (2.10) which satis-  
fy the boundary condition 

The condition (2.13) can be satisfied in the p by 
coordinate system by considering the p-space in the 
form of a cube of edge length 2L moving together with 
an electron, located in the region p = O ,  at a constant 
velocity V relative to an unbounded dielectric at rest. 
In this case the particular solution of (2.10) which 
satisfies the condition (2.13) will have the form 

with 

578 Sov. Phys. JETP 54(3), Sept. 1981 A. S. Davydov and V. Z. inol'skiy 578 



The summation in ( 2 . 1 5 )  i s  over all  values of the com- 
ponents of the dimensionless wavevector 

whichare eigenvalues of the operator 9 defined on the 
se t  of differentiable functions in the closed volume ( 2 ~ ) ~  
with zero boundary conditions. 

As L - .o the wavevector q runs through a quasi- 
continuous number of values with discreteness interval 
a * / L  - 0 .  Therefore the sum in ( 2 . 1 5 )  can be replaced 
by an integral so  that 

1 exp ( iqp) d'q 
w(P)=TJ (2n) i-~"p.'+o~"~ ' ( 2 . 1 7 )  

When evaluating ( 2 . 1 7 )  the rule for going round the 
poles q, = i ( o Z  - u ~ ) - " ~  when oZ  > o: must be chosen 
in accordance with the causality principle. 

The function W ( p  - p , )  in ( 2 . 1 4 )  takes into account 
the non-locality of the interaction between the electron 
and the polarization field. This non-locality i s  caused 
by the phonon dispersion (o,# 0 )  and the temporal r e -  
tardation due to the motion of the electron (o# 0 ) .  

Using ( 2 . 17 ) '  Eq. ( 2 . 7 )  i s  transformed into an inte- 
gro-differential equation 

( 2 . 1 8 a )  
is the energy of the electron in the potential well q ( p )  
which i s  moving with the velocity V. 

Without solving Eq. ( 2 . 1 8 )  we can evaluate the func- 
tion G ( p )  by a variational method, minimizing the func- 
tional 

is a dimensionless parameter which is proportional to 
the ratio of the Coulomb energy to twice the energy of 
an electron with momentum E / a  in the conduction 
band. " 

When there is no dispersion and the polaron i s  at 
res t  (o, = o= 0)' the function ( 2 . 1 7 )  reduces to a 6- 
function. In that case the functional ( 2 . 1 9 )  changes 
into Pekar's f u n c t i ~ n a l ~ * ~  and the zeroth-approximation 
functional from the papers by Bogolyubov and Tyabli- 
kov. 11e12 

The energy of the polarization of the crystal ( 2 . 1 )  
changes, when we change to the p variables and use 

the relation 

to the form 

If the function G , (p )  minimizes the functional ( 2 . 19 )  
under the condition GE (p)d 3 p  = 1 ,  the vector field of 
the polarization is determined according lo ( 2 . 5 )  and 
( 2 . 1 4 )  by the expression 

The total energy (E,, + E,,, + E,) of a pdaron moving 
with a constant velocity V is, when we use the identity 

in which we have the operator 

expressed by the formula 

( 2 . 2 3 )  
The expressions obtained a r e  valid for any velocities 

of the polaron for which we can still use the continuum 
approximation. 

3. DIRECT VARIATIONAL METHOD 

We can perform the minimization of the functional 
( 2 . 1 9 )  by a direct variational method. Bearing in mind 
that when the electron moves the polarization accom- 
panying i t  has cylindrical symmetry, we use a s  tr ial  
function the normalized function 

2 % 
G (p) = (--) a") exp (-azc-VR'),  R2=r+qZ, ( 3 . 1 )  

which depends on two variational parameters: a and 6. 

Substituting ( 3 . 1 )  in the functional ( 2 . 1 9 )  we get the 
function 

in which 
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The explicit evaluation of all expressions given 
above depends on the form of the function (2.17) which 
depends on o, uo, and the ratio 

When 02, > 0 and 0 c s2  < 1 the function (2.17) is given 
by the formula 

w ( p )  = [4no2(6'+ ( I -sz)Rz) "I-' exp (- (C2+ (I-s') Rz) " 
oo(l-sZ) " ) (3.5) 

When ug >O and s2  > 1 the function (2.17) takes the 
form 

(5'- (s2-1) R Z )  '" 
W (p) =cos [ 2 n a o 2 ( ~ -  (8'-l)R2) 

ao(s2-I) - (3.6) 

provided the inequalities 

5'0 and CZ> (2-1)R2,  (3.7) 

a re  satisfied and i t  vanishes if these inequalities a re  
not satisfied. 

The exact expressions (3.5) and (3.6) a re  very com- 
plicated for analytical calculations so  that we shall 
use approximate values which a re  valid under some 
limitations on the parameters of the system. 

In connection with the employed continuum approxi- 
mation we study only excitations in a localization r e  - 
gion which appreciably exceeds the lattice constant. 
In that case the dispersion of the optical phonons is 
always small, so  that the inequality 

holds. Therefore, when u2 > uz, we can replace the 
function (2.17) by the approximate expression 

where 

We must bear in mind that due to the quasi-continuity 
of the wavevector (2.16) the quantity (u2 - 02, )'112 also 
takes on quasi -continuous values 

with a discreteness interval which tends to zero a s  
L-03. 

If at the same time a s  the inequality (3.8) the in- 
equality 

pression 

Although Eqs. (3.9) and (3.13) a r e  written down for 
the case of positive phonon dispersion, when u: > 0, 
they a r e  also valid in the case of negative dispersion, 
when u;<O. 

In the following sections we give the calculations of 
G(p), E ( V ) ,  and other quantities which characterize 
a moving polaron for the case when Eqs. (3.9) and 
(3.13) a re  valid. 

4. SMALL DISPERSION, SLOW POLARON 

We shall assume the polaron motion to be slow when 
inequality (3.12) holds. For characteristic ionic 
crystals ano  r, 2.5 x lo6 cm/s . Hence, the inequality 
(3.12) is satisfied even for not very small electron 
velocities. 

If we use in (2.19) the approximate expression (3.13), 
the wavefunction (3.1) minimizes the functional (3.2) 
a t  the values 

Hence, the square of the wavefunction (3.1) has the 
form 

The spatial probability distribution of the electron is 
thus spherically symmetric in the case of a polaron a t  
res t  (o= 0). According to (4.1) positive dispersion 
(0; > 0) leads to a smaller and negative dispersion to 
a greater localization of the electron. 

At nonzero polaron velocity (u2 + 0) the constant val- 
ues of Gg(p) a re  situated on surfaces which have the 
form of an oblate ellipsoid of revolution with an axis of 
symmetry directed along the polaron velocity. An in- 
crease in the velocity, while inequality (3.12) remains 
valid, is accompanied by an increase of i t s  localization. 
The total energy of the polaron (including the polariza- 
tion energy) can be written in the form 

where the energy of a polaron at rest  is 

(4.5) 
m i s  the mass of a free electron and E ,  = me4/E2 is 
the atomic unit of energy. 

The effective polaron mass is 

is satisfied, we can use for W(p)  the even simpler ex- 
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When the polaron velocity increases i t s  effective 
mass increases in correspondence with the increase 
of i ts  localization. 

5. FAST ELECTRON 

If the condition ( 3 . 1 2 )  for small velocities i s  not 
satisfied, but the dispersion of the optical phonons is 
small ( 1  0 2 ,  I C< 1) we must perform the calculation with 
a value of ~ ( p )  given by Eq. (3 .10 ) .  In that case the 
function ( 3 . 2 )  takes the form 

( 5 . 1 )  
where a, is given by Eq. ( 4 . 2 ) ,  

j = (aZ-g2) -" arctg (a2-pa) ", ( 5 . 2 )  

and the function 

a t  the value x  = 1  /2 aa. 

For small dispersion (0, z 0 )  minimization of the 
function ( 5 . 1 )  is realized a t  values of a and P shown 
in Fig. 1  as functions of the variable 

which is proportional to the velocity. The dependences 
of the parameters a and 6 on the velocity undergo a 
considerable change on going through the critical value 
a,~,,  ~ 0 . 1 4 .  

An increase in the subcritical velocities i s  accom- 
panied by an increase in the self -localization of the 
electron, especially in the longitudinal direction (0 

> 8) .  On going through the critical value, an increase 
of velocity i s  accompanied by delocalization and by a 
diminution of the longitudinal-transverse asymmetry. 
The medium does not manage to get completely po- 
larized due to the fast motion of the electron. 

FIG. 1. Along the axes are plotted uog and a/ao (upper curve), 
p/a0 (lower curve). The maximum values 1.90 and 1.43 are 
reached, respectively, for uao = 0.13 and ua0 = 0.15. 

The energy of the polaron is determined by the values 
of a and p which we have found through the expression 

( 5 . 5 )  
where the functions f and F are  given by ( 5 . 2 )  and 
( 5 . 1 ) .  

The energy ( 5 . 5 )  of the polaron is proportional a t  low 
to the square of the velocity. When the velocity in- 
creases further this dependence becomes more com- 
plicated. One can, however, retain Eq. ( 4 . 4 )  for the 
energy provided the deviation from the quadratic de - 
pendence is characterized by the velocity -dependence 
of the polaron effective mass. 

Using an electronic computer to evaluate the energy 
( 5 . 5 ) ,  we find the velocity-dependence of the effective 
mass me,, (V) shown in Fig. 2 .  The polaron effective 
mass thus increases steeply when the polaron velocity 
approaches i t s  critical value, which corresponds to the 
maximum self -localization of the electron. 

6. POLARIZATION OF THE CRYSTAL 
ACCOMPANYING THE ELECTRON MOTION 

The motion of an electron in an ionic crystal is ac-  
companied by a local polarization which is given by 
Eq. ( 2 . 2 1 )  with the appropriate values of the wavefunc - 
tion ( 3 . 1 ) .  

When the polaron i s  a t  res t  the wavefunction (3.1) 
is spherically symmetric (a= B= a,) and the function 
wb) becomes a delta-function. In that case the pro- 
jection of the polarization vector along any direction 
away from the center of the polaron (p=O) is given by 
the expression 

( 6 . 1 )  
where @ ( x )  is the probability function. The polariza- ' 

tion field (6.1) has the symmetry 

vanishes for 1; = 0 and, decreases like g-2 at  large val- 
ues of 1;. 

FIG. 2. Along the axes are plotted uao and the effective mass 
of the moving polaron divided by the effective mass of a pola- 
ron at rest. 
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For low polaron velocities when one can use the first  
terms of the expansion (3.131, the component of the 
polarization vector along the direction of the motion 
(I;-axis) can be written in the form 

in which P,;,(O, 0, f ) is given by (6.1) with 

For values u uo the radial dependence of the poten- 
tial energy of the interaction of the electron with the 
polarization field is given by the expression 

ecp, (p) --eg@ (2'"ap)laFp. 

This potential well has a depth - e ' ~ ~ 2 ~ / ~ / a  E ~ T ~ ~ ~  and 
has the symmetry 

When the polaron moves with a velocity V= a&, > Vo 
in the frame of reference moving with the polaron, the 
I; -dependence of the potential energy along the sy mme- 
try axis is given by the integral 

(6.6) 
The depth of this well in the region f = O  is equal to 

where F ( z )  is given by Eq. (5.3) with the value z 
= 1/23f 2 ~ ( u 2  - u:)'/~. Thus, when the polaron velocity 
increases the depth (6.7) of the well f irst  increases 
somewhat and later decreases. As f - .o the function 
(6.6) has a simple asymptotic form: 

The asymptotic form of the function (6.6) contains in 
the region of large f -values, apart from e2/aZ I f I, a 
small oscillating term 

which vanishes when (3.11) is taken into account. 

7. CONCLUSION 

The method proposed in this paper for solving the 
problem of a moving polaron (three -dimensional soli - 
ton) does not, in contrast to known methods, use per-  
turbation theory with regard to the ion kinetic energy. 
Taking the dispersion of the optical phonons into ac- 
count, i t  allows to study the effect of the non-local 
character of the interaction which i s  caused by spatial 
dispersion. This method can be applied for a study of 
strong-Coulomb-interaction systems which consist of 
vector and scalar fields which possess dispersion. 

The authors express their thanks to ~ . ~ . ~ u ~ r i i  for 
his help with the calculations represented in Figs. 1 
and 2, and to V. A. Kuprievich, I. V. Simenog, and 
0. V. Shramko for useful discussions. 

') Our parameter y is connected with the dimensionless para- 
meter ap introduced by Frijhlich, which characterizes the 
interaction between the electron and the optical phonons, by 
the simple relation 

For crystals of the NaCl, NaItype (Da 5 x lo i3  Hz, a = 5 x loe8 
cm, m*m3m, apm9) we have y =0.8ffR=7.2. 
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