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The possibility of the appearance of incommensurable superstructures as a result of the presence of non- 
Lifshitz-type gauge invariants in the crystal-free-energy expansion is investigated. Conditions for the 
occurrence of first- and second-order phase transitions into the inhomogeneous state are derived in terms of 
the values of the parameters of the thermodynamic potential. The shape of the phase diagram is established. 
The characteristics of the appearance of incommensurable phases in ferroelectric crystals are analyzed, and 
the existence domain and the structure of such phases in the ferroelectric perovskites are estimated with the 
aid of the available experimental data. The critical behavior in those cases in which the phase transitions into 
the homogeneous and inhomogeneous states are second-order transitions is studied with the aid of the 
renormalization-group technique, and it is shown that allowance for the fluctuations transforms these phase 
transitions into first-order transitions. 
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INTRODUCTION 

Much attention has recently been attracted by phase 
transitions into spatially modulated structures whose 
period varies with varying external conditions, and is 
not directly related to  the crystal lattice constant. Such 
helical superstructures were first observed experi- 
mentally in magnetic substances.' Within the frame- 
work of the Landau theory, their appearance i s  a con- 
sequence of the presence in the free-energy expansion 
of invariants that a re  linear in the derivatives of the 
order-parameter components cpl, i.e., invariants of the 
type 

(Lifshitz  invariant^).^ Let us note that an incommen- 
surable structure (IS) ar ises  in this case at any value of 
the coefficient a attached to the invariant (1) (the value 
of which determines the magnitude of the IS period), 
i.e., the origin of the IS has a purely symmetry-related 
character. The characteristics of the phase transivon 
for magnetic IS were first studied by ~ z ~ a l o s h i n s k i i , ~  
and, a s  applied to ferroelectrics (FE), by Levanyuk and 
~ a n n i k o v . ~  

At the same time the appearance of an IS is not nec- 
essarily connected with symmetry-related causes, and 
can arise at certain values of the parameters of the 
thermodynamic potential of the system. In this case 
there appears on the phase diagram a multicritical point 
separating the lines of phase transitions into the IS and 
the commensurable phase. The simplest example is  the 
model proposed by Hornreich, Luban, and ~ t r i k m a n , ~  
which can be described by a thermodynamic potential of 
the form 

in Gayl,, G&Sc,,, liquid crystals (the point of inter- 
section of the nematic-smectic-A-smectic-C phase 
transition lines), a s  well a s  in crystals that undergo 
structural transitions (see Ref. 6 for a review). A LP 
was quite recently detected experimentally in UAS.' 

The LP, defined a s  points separating lines of phase 
transitions into different commensurable and incom- 
mensurable phases, have been classified by Aslanyan 
and ~ e v a n ~ u k . '  They, in particular, demonstrate in 
their paper' the possibility of the existence of another 
type of L P  a s  a result of the presence in the thermody- 
namic-potential expansion of third-order-in the order- 
parameter components-derivative invariants of the 
type 

Such invariants occur in the expression for the f ree  en- 
ergy in those cases in which the nonsymmetric part of 
the cube of the order-parameter representation contains 
a vector representation. The purpose of the present pa- 
per is to investigate the nature of the phase transitions 
in systems whose symmetries admit of the existence of 
invariants of the type (3) .  To begin with, we shall con- 
sider within the framework of the Landau theory the 
properties of the phase transitions in crystals in which 
there a re  no dipole forces. We shall, a s  a result, con- 
struct a qualitative phase diagram. Then we shall anal- 
yze the characteristics of the phase transition in ferro- 
electric crystals, and estimate the temperature range 
in which the inhomogeneous phase exists in these crys- 
tals and the characteristic scale of the periodic struc- 
ture of the phase. After this, we shall investigate the 
effect of the fluctuations on the properties of the phase 
transition with the aid of the renormalization-group (RG) 

Q (q) =a,cp2+a,cp'+. . .+c, (Vcp)Z+c,(V2cp)2+. . . , (2) technique. 

where the coefficient cl  a s  a function of the external pa- 
rameters (the pressure, concentration, etc.) can change DESCRIPTION WITHIN THE FRAMEWORK OF THE 

its sign. The point on the phase diagram at which cl LANDAU THEORY 

vanishes was named5 the Lifshitz point (LP). Such mul- We begin the study of the properties of the phase tran- 
ticritical LP can occur in the rare-earth alloys, e.g., sitions in systems that admit of the existence of invari- 
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ants of the type (3) with the analysis of the simplest mo- 
del describing the phase transition occurring in an 
"easy-plane" type of crystal, and characterized by a 
two-component vector order parameter p,(r), p,(r). 
Let us write the thermodynamic-potential density of this 
model in the form 

We assume in the expression (4) that A =&(T - To), g 
> 0 ,  and d > 0 .  

Let us show that at certain values of the coefficients 
in (4) the system will undergo a phase transition into an 
inhomogeneous state. For this purpose, we use, fol- 
lowing Aslanyan and Levanyuk's suggestion,' the varia- 
tional principle. Let us choose the tr ial  functions for 
rp,(r) and p,(r) in the form 

cp,=p cos qr, g,=p sin tqx (5) 

and compute with them the value of @ a s  a function of 
the parameters p, q, and t: @ = @o +iAp2 +a(t2 + l)gp2q2 
+bqp3+(t) +fup4p(t)  +bdp6~( t ) ,  

1 1 1  t 
cp(t)=-{5n+[-i+stcos4nt+---- 4n 

~ ( 1 - t Z )  ] sin 4n t } ,  
sin %at tz-2 sin 2nt 

Ip(t)=- - 
(6)  

2n [ ~ ~ - ~ + T Z F I '  
7 9 sin2nt sin 4nt ( 2  c o s 2 ~ t + 3 1  

r(t)=-----+-- 
4 ant 64nt 

t1+4t'-t-16 1-4t-4t2 +- 
( l - t ' )  (P-4) 1-4tz 

cos 4nt 1). 
Differentiating then the expression for cp with respect to 
p, q, and t, we obtain the following system of equations 
determining the minimum of @: 

Assuming that po+ 0, we find from the second equation 
of the system (7) that 

We can verify that the value to corresponding to the 
minimum of @ for the functions (5) is quite close to two 
(to= 1.87). In order to  avoid unwieldy formulas, we 
shall hereafter set  to =2, since this will be sufficient 
for our purpose [which i s  to  show that the minimum of 
@, (4), is  realized in an inhomogeneous state]. Substi- 
tuting (8) into the first of the equations (7), we obtain 
for q: the following expression: 

where the dimensionless parameter 

It is convenient to consider the x > 1 case first. Then 
the expression (9) for A- 0 (T -- To) assumes the form 
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It can be seen from (1 1) that, for x > 1, an IS can ar ise  
only when A a 0. Substituting (8) and (11) into (6) (with 
to = 2), we obtain the thermodynamic-potential value 
@Is(po, go, to) for the inhomogeneous phase at A - 0: 

Comparing this value of a,, with the potential, 

of the homogeneous phase, we find that, for x < 5 ,  (@, (go  

= 0) 1 < 1 @,I , and, consequently , the appearance of an 
IS at A c 0 i s  advantageous. Since on the segment A = 0, 
1 <  x < 5, a s  can be seen from (8) and ( l l ) ,  the IS ap- 
pears continuously (without the order parameter's un- 
dergoing a jump), the phase transition into the IS is a 
second-order transition. 

The point with the coordiantes A =0, x = 5  turns out to 
be a LP at which two second-order phase transition 
lines separating the high-symmetry homogeneous phase 
from the homogeneous low-symmetry and inhomogene- 
ous phases and another phase transition line lying be- 
tween them converge (touch). The last line will most 
likely be a first-order phase transition line on which 
po, go # 0 (as in the case of a phase diagram having a L P  
of the type considered in Ref. 51, although we cannot 
prove this, since the expressions given in Ref. 5 for 
cp,(r) and q,(r) a r e  only t r ia l  functions and not at al l  ex- 
act values of the order-parameter components in thein- 
homogeneous phase. 

For x < 1 the phase transition line between the homo- 
geneous high-symmetry and inhomogeneous phases is  
determined from the condition that their thermodynamic 
potentials be equal: 

from which we obtain an expression for the transition 
temperature: 

Substituting this expression into (9), we find the corre- 
sponding value of the IS wave vector qob) at the transi- 
tion point (T =Tc): 

It is  clear from (15) that, for the values of x <  1, the 
phase transition into the inhomogeneous state occurs at 
temperatures ~ , k )  > To. In their turn, a s  can be seen 
f rom (8) and (16), the IS-order-parameter components 
p,(r) and cp,(r) have finite values at the transition point, 
and, consequently, this phase transition is a first-order 
transition. The point with the coordinates A = 0, x = 1, 
which separates the lines of f irst-  and second-order 
phase transitions into the IS, thus turns out to  be a tr i-  
critical point with unique properties. In particular, the 
character of the temperature dependence of the wave 
vector qo changes in i ts  vicinity: as A-0, x -  I(-', 96 
varies in proportion to (T - T ~ ) * ' ~  [see (9)], and not to 
T - T o ,  a s  in the formula (11) for 5 > x > 1 .  

For x < 0, a first-order transition into a homogeneous 
state i s  possible in the system. The corresponding 
critical temperature Ti, expressed in terms of the 



FIG. 1. Phase diagram for the model (4) in the temperature- 
dimensionless parameter x plane. 

quantity A ,  is given by the well-known formula 

It can easily be verified, however, that a phase transi- 
tion from the high-symmetry phase directly into a 
homogeneous low-symmetry phase is advantageous only 
at fairly large values of Ix 1; at low 1x1 values the tran- 
sition will, a s  before, be into the IS. It is easiest to 
determine the Ix, I value at which the homogeneous 
phase begins to be energetically more advantageous 
than the inhomogeneous phase by equating the tempera- 
ture values in (15) and (17). We then obtain Ix,1=33. 
The boundary line between the homogeneous and inho- 
mogeneous phase can be completely determined by 
equating the corresponding thermodynamic potentials. 

Using all the above results, we arrive at the (T, x) 
phase diagram shown in Fig. 1. The letters TCP and 
LP in the figure indicate respectively a tricritical point 
and a bicritical LP, and xTCp and x,, a r e  the values of 
the parameter x for these points. The Roman numbers 
I and I1 indicate the first- and second-order phase tran- 
sition lines. The dot-dash parabola corresponds to the 
equation a, =ao (for x < O), xc= -33 is the value of x at 
which Tc(x,)=T,. The region hatched with thin horizon- 
tal  lines is  the existence domain of the homogeneous 
phase, while the obliquely hatched region represents the 
existence domain of the inhomogeneous phase. 

As we have already noted above, the phase diagram in 
Fig. 1 was constructed on the basis of calculations in 
which essential use was made of the explicit form of the 
tr ial  functions (5), which do not describe the true struc- 
ture  of the inhomogeneous state. Therefore, it is nec- 
essary to ascertain which of the results obtained remain 
valid when exact expressions for the order-parameter 
components, qx(r)  and q,(r), in the inhomogeneous 
phase a r e  used. Firstly, it is clear that the existence 
domain of the IS can then only expand, and, consequent- 
ly, the phase transition into the inhomogeneous state 
will, a s  before, be possible. Secondly, the assertion 
that this phase transition may be of first o r  second or- 
der is  also apparently valid. In the case of the second- 
order transition the wave vectors describing the IS 
should vanish at" T =Tc, and the phase diagram should 
contain characteristic L P  and TCP. Thus, it may be 

thought that al l  the main qualitative features of the dia- 
gram in Fig. l survive in a more exact solution of the 
problem within the framework of the Landau theory. 
But the numerical characteristics, in particular, the 
positions of the TCP and LP, will undoubtedly change, 
since the true values of their coordinates, X T ~ ~  andxLp, 
a re  clearly greater than the values indicated in Fig. 1. 

Let us now show that phase transformations similar 
to those occurring in the model (4) a r e  characteristic of 
other systems, the expression for whose thermodynam- 
ic potential contains terms of the type (3). Let us in- 
vestigate, for example, the nature of the phase transi- 
tions occurring in cubic crystals with the group O h ,  and 
characterized by an order parameter that transforms 
according to the three-dimensional irreducible (nonvec- 
tor)  representation Fzu. Let us write the thermodynam- 
ic potential corresponding to this representation in the 
form 

(18) 
For definiteness, we shall assume that v > 0 in (1 8) ,  so  
that in the absence of the third-order invariant the sys- 
tem will undergo a transition into the homogeneous 
phase with q, =q2 = 0, q3# 0. 

The analysis of the properties of the phase transition 
in the model (18) will literally be a repetition of the a- 
bove-performed investigation of the model (4) if we take 
the t r ia l  function q, = 0  and for the functions q2(r) and 
q3(r) we use the expressions (5). All the changes a- 
mount to the replacement of u in the numerator of the 
expression for the dimensionless parameter x by the 
linear combination u +*v: 

The (T,x') phase diagram then remains the same a s  the 
diagram for the model (4) shown in Fig. 1. 

It must be noted that the case in which the phase tran- 
sition i s  described by the irreducible representation F2, 
was recently considered by Aslanyan and ~ e v a n ~ u k . ' ~ '  
To elucidate the nature of the phase transitions, they 
decided to use the variational method, but the repre- 
sentation chosen by them for the tr ial  functions, which 
was in the form of a five-parameter family, turned out 
to be so  complex that it was impossible to carry out the 
computations to the end, i.e., find the adjustable-pa- 
rameter values corresponding to the minimum of the 
potential (18). As a consequence, they were not able to 
compute the thermodynamic potential of the inhomogen- 
eous state and compare i ts  magnitude with the value of 
the potential of the homogeneous phase. Theref ore, 
they could only limit themselves to postulating the oc- 
currence of a phase transition into the IS state a s  the 
temperature i s  lowered in the region A > 0, a transition 
which, in their opinion, will be of f irst  order because 
of the presence in (18) of a term that i s  cubic in the or- 
der-parameter components. As a result, they asser t  in 
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their paper8 that the line of transitions into the homoge- 
neous phase goes over into a line of first-order phase 
transitions into the IS phase, i.e., that there should in- 
tersect at the LP (whose coordinates were not deter- 
mined) two first-order and one second-order phase 
transition lines. In order for such a L P  to a r i se  in the 
system, it was considered necessary to  take into ac- 
count in the expansion (18) third-order invariants (inthe 
order-parameter components and their derivatives) of 
the type 

In fact, a s  has been shown above, the L P  is the point of 
intersection of one line of first-order phase transitions 
(from the homogeneous phase into the IS) and two sec- 
ond-order transition lines (see Fig. 1). The period of 
the resulting superstructure then becomes infinite not 
only at this point, but also at every point on the segment 
of the line of phase transitions into the IS state from 
the LP to the TCP [see (11) and (16)]. 

Allowance for the invariant (20) i s  not by any means a 
necessary condition either for the existence of a L P  for 
the system, o r  the occurrence of a phase transition into 
the IS state [as follows from (111, it can generally be 
neglected in the vicinity of the line of second-order 
phase transitions into the IS state]. Thus, we see that 
the computation of the thermodynamic potential of the IS 
with the use of tr ial  functions of the form (5) that do not 
even correspond to  i ts  minimum allowed us neverthe- 
less to verify the validity of Aslanyan and Levanyuk's 
conjectures,' and obtain new results  concerning the 
properties of the phase transition into the IS state. 

The case in which the order parameter of the cubic 
crystal transforms according to an irreducible vector 
representation [the invariant (3) then has the form 
P2 div P (Ref. 9)] can similarly be investigated. Since 
for systems with short-range interaction potentials this 
case does not differ significantly from the situation with 
the nonvector representation Fa, we shall consider in 
the following section the case of a vector representation 
for the phase transitions in cubic FE, which, because 
of the presence of dipole forces, have their own char- 
acteristics. 

CONDITIONS FOR THE APPEARANCE OF IS IN 
FERROELECTRICS 

It is convenient, in describing the phase transition in 
a system with the dipole interaction, to go over to the 
Fourier transform P(q) of the polarization field. Let us 
write the thermodynamic potential of a cubic F E  in the 
form 

Here ,u i s  the mass coefficient for the polarization os- 
cillations and w, and w, a r e  respectively the frequen- 
cies of the longitudinal and transverse branches. 

The last term in (21) assumes a nonzero value (i.e., 
div P# 0) upon the appearance of an IS in the FE, and 
consequently acquires a longitudinal component afterthe 
polarization. Therefore, the difference between the 
longitudinal- and transverse-phonon spectra should be 
taken into consideration. At the same time, the aniso- 
tropy of the polarization-fluctuation spectrum can be 
neglected, and the corresponding term in (21) has been 
dropped. The sixth-order term has been included in 
(21), since phase transitions in the cubic FE a r e  al- 
ways first-order transitions and the fourth-order term 
i s  assumed to be negative. For definiteness, we shall 
assume that u < 0, v > 0, and that there occurs in the 
absence of the last term in (21) a phase transition from 
the cubic into the tetragonal phase3' (as in, for exam- 
ple, KNbO,, BaTiO,, and PbTiO,). 

In the case in question here of a phase transition in a 
FE, the formation of a longitudinal polarization wave is 
a necessary condition for the appearance of an IS. If the 
crystal were an ideal dielectric, then the appearance of 
a depolarization electric field would make the phase 
transition into the IS state energetically disadvantage- 
ous. Real FE, however, contain significant amounts of 
impurities, which transform even wide-band FE into 
semiconductors with characteristic Debye-screening- 
length (r,) values of the order of'' ~ m . ~ )  
Therefore, the dipole gap in the longitudinal-mode spec- 
trum w,(q) vanishes, and, for q<< ri ' ,  the difference be- 
tween the longitudinal and transverse oscillations is in- 
significant. 

The relation between w,(q) and w,(q) is given by the 
formula1' 

where E (0) and E ( = )  a r e  the values of the static and high- 
frequency dielectric constants respectively. The trans- 
verse-soft-mode spectrum w,(q) for q<< a-' (a is the - 
crystal-lattice constant) for cubic FE  of the displacive 
type has the form9 

Here C is the Curie-Weiss constant, z i s  the effective 
charge of the ferroelectric ion, v,  is the volume of the 
elementary cell, and st is a quantity of the order of the 
square of the velocity of sound in the crystal. In the 
case in which the FE is a good dielectric, we can as- 
sume that rD-- -, and the formula (22) then goes over 
into the well- known Lyddane-Sachs-Teller relation for 
ionic crystals, written with allowance for one longitud- 
inal, and one transverse, oscillation branch: 

To determine the conditions for the appearance of an 
IS in a FE, we can use a s  tr ial  functions for P, and P, 
the expression (5), which contains a longitudinal com- 
ponent P,, and set  P, equal to zero. Then it follows 
from (21)-(23) that the situation is entirely similar to 

57 1 Sov. Phys. JETP 54(3), Sept. 1981 



the case of the phase transition described by the non- 
vector representation FZu,  but in place of the character- 
istic parameter x' there appears the parameter5' x": 

If the period of the IS is fairly large and qorD << 1 ,  then 
the difference between the parameters x' and x" i s  in- 
significant, since on such large scales the dipole forces 
a r e  screened. As to the formation of an IS with q 2 rz 
in a FE, it i s  highly improbable. Let us  now estimate 
in order of magnitude the value of the parameter x" for 
ordinary cubic FE. In the cgs system the nonlinearity 
coefficients u and v for FE of the displacive type a r e  of 
the order of The quantity b has the value a3/z 
- 1 0-13. Let us note that the contribution to this coeffi- 
cient that stems from the coupling between the critical- 
phonon and acoustic branches6' i s  of the same  order of 
magnitude: 

where q is the electrostriction constant and a' is the con- 
stant of the acoustic spectrum. Assuming that q o r 2  << 1 ,  
we have 

Thus, we obtain for the parameter xu in a FE the value 
x V -  -1 [let us recall that the fourth-order t e rm in (21) 
is negative for a FE]. Above we showed that the crystal 
undergoes a first-order phase transition into an IS state 
at values of 1 x 1 ~  Ix,I=33 (see Fig. 1). 

In order to find those values of the Debye length rD at 
which this result i s  valid, let us  determine the spatial 
period, Xo = 27r/qo, of th e IS for I x" 1 - 1. The formula 
(16) for go can be rewritten in the form 

where we have separated the dimensionless combina- 
tion 3u2/16d, which can be expressed in t e rms  of ex- 
perimentally known quantities: 

Since S , / ~ - U ~ ,  we obtainfor the IS period for 1x"I- 1 
the estimate 

We see  that the quantity Xo is roughly of the same or- 
der of magnitude a s  the normal screening-length values 
for FE. Therefore, it may be inferred that the question 
of the appearance of an IS in cubic F E  does not have a 
universal answer: the appearance of IS i s  possible in 
low-resistance F E  with strong internal screening, but 
apparently impossible in high-resistance FE. Above 
we treated r, a s  a phenomenological parameter, and 
used the experimental values for it, since the theoreti- 
ca l  computation of the screening length in a FE, in 
which the charged-defect concentration is certainly not 
low, is a separate complex problem." 

Since the period XI, increases a s  the parameter x" in- 
creases,  it is more likely that IS will be observed in 

FE subjected to hydrostatic compression. Indeed, the 
fact that in the "free" crystal the phase transition is of 
first order and the nonlinearity coefficient u < 0 is pri- 
marily due t o  electrostriction. At the same time, for 
the "clamped" crystal  u > 0 (see, for example, Ref. 9) 
and according to  estimates x'' 2 1. If for a given FE the 
coefficient u changes i ts  sign at pressures normally 
used in experiment (up to 10 kbar), then the IS can be 
observed. The width AT of the temperature domain of 
existence of the IS will then be determined by the in- 
equality ril > qo(T), which, for x" - 1 ,  can be written in 
the form 

For rD - 1 o ' ~  we obtain for the temperature range AT a 
value of the order of several  degrees. 

Let us note that Aslanyan and ~evanyuk" investigated 
the problem of the existence of IS in FE of the type 
BaTiO,, and obtained for AT a value of the order of 
hundredths of a degree. As a consequence, they con- 
cluded that the inhomogeneous phase that ar ises  during 
the second-order phase transitions in F E  can hardly be 
observed. Although the estimate for AT was derived by 
another method, the main cause of s o  large a disagree- 
ment with our result lies in the fact that the superstruc- 
ture  wave vector go i s  estimated in Ref. 12 on the basis 
of general arguments to be 

whereas it follows from the above-presented calculation 
that go i s  given by the formula (111, in the denominator 
of which stands the Curie-Weiss constant C instead of 
To. Since, because of the presence of a small  param- 
eter ,  FE of the displacive type a r e  characterized by 
large C values, and T,/C - (3 - 8) x (Ref. 9), it i s  the 
neglect of this  fact that led to the two-to-three orders 
of magnitude underestimation of the temperature domain 
of existence of the IS in Ref. 12. 

EFFECT OF FLUCTUATIONS ON THE NATURE OF 
THE PHASE TRANSITIONS 

The phenomenological theory constructed in the pre- 
ceding sections shows that in the systems (41, (181, and 
(21) the phase transitions into both the homogeneous and 
inhomogeneous phases at x > 1 a r e  second-order transi- 
tions. Therefore, the effect of the fluctuations should 
be taken into account in the description of their proper- 
ties. As i s  well known, to  solve this problem, we 
should go over from the thermodynamic potential to an 
effective Hamiltonian corresponding to the given sys- 
tem.13 For a cubic crystal ,  the phase transition in 
which is described by a vector order parameter, the ef- 
fective Hamiltonian can be written in the form 
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Here P,(q) is the vector order-parameter field, n, 
=q./q, and bo, uo, and vo a r e  bare  coupling constants 
(uo > 0, vo > -uo). The "bare mass" ro is a linear func- 
tion of the distance to the phase-transition line in the 
phase diagram. The presence of the constant ho(ho > -1) 
reflects the nondegeneracy of the spectra of the longi- 
tudinal and transverse order-parameter fluctuations. 
Another quadratic-in q-anisotropic invariant, P(q), 
has been dropped in (32), since its consideration i s  un- 
important for us. 

As the system approaches the second-order phase 
transition line, the parameters of the basic Hamiltonian 
(32) vary, and the thermodynamic behavior is deter- 
mined by their renormalized (temperature-dependent) 
values. In order to elucidate the distinctive features of 
the fluctuation theory for the Hamiltonian (32), let us 
first consider within the framework of perturbation the- 
ory the form of the correlation corrections to  the bare  
values of the coefficients in (32). Here we can, for 
simplicity, take the free Green function G::) to be iso- 
tropic: 

In first order perturbation theory, the diagrammatic 
representation for the fluctuation corrections to  the 
bare values of bo and uo(vo) is given by the single-loop 
diagrams shown respectively in Fin::. ?a and 2b. A 
wavy line going out of a third-order vertex is  associat- 
ed with the factor %. Besides those shown in Fig. 2, 
there a r e  other single-loop diagrams with a different 
wavy-line "topology," but it is not difficult to verify that 
all of them cancel out, and do not make a contribution to 
the values of the coupling constants. The integrals I ? )  
corresponding to the n-angle diagrams with internal 
wavy lines in Fig. 2 have the form 

It follows from (34) that the fluctuation corrections 
vary with temperature like T ' ~ - ' ) ' ~  both for the third- 
and fourth-order vertices; therefore, the highest criti- 
cal dimensionality for our problem i s  d, =4 .  This re- 

FIG. 2. Single-loop diagrams contributing to the renormaliza- 
tion of the thfrd-order (a) and fourth-order (b) vertices. 

sult allows us to apply the &-expansion method (& = 4  
- d l ,  with the aid of which we can obtain asymptotically 
exact results  for &-- 0. Nevertheless, below we shall 
not use the & expansion; rather we shall perform the 
calculations by the RG method directly for three-dimen- 
sional space. This computational scheme is preferred 
for two reasons: f irst ,  there is always the usual diffi- 
culty in the &-expansion method of extrapolating the re- 
sults to  the E = 1 value, a process which results in the 
loss of the asymptotic exactness of the theory; second- 
ly, and this i s  even more important, the choice of this 
analytic continuation in our problem is itself nonunique, 
since it is necessary to set the dimensionality of the 
field P,(q) equal to that of the space. At the same time, 
it is known from the solutions to the problem of the 
phase transition in cubic crystalst4 and the problem of 
the nematic-isotropic liquid transition occurring near 
an isolated pointi5 that the two analytic-continuation 
procedures lead to qualitatively different results. 

Let us now proceed to the derivation of the RG equa- 
tions for  the Hamiltonian (32) in the region of highly de- 
veloped fluctuations; choosing as  the independent vari- 
able u ,  the reciprocal correlation length. The critical 
behavior of the system i s  determined by the tempera- 
ture  dependences of the third- and fourth-order vertex 
functions r3(q, qt , q", H) and rf' ')(q, q', q", q", K )  re- 
spectively. Above we established within the framework 
of the phenomenological approach developed there that a 
transition on the line of second-order phase transitions 
into either the homogeneous phase o r  the inhomogeneous 
state is characterized by the wave vector qo = 0. Con- 
sequently, to describe the properties of these phase 
transitions, we need to  investigate the asymptotic forms 
of the vertex functions I',(q,, ic) for small Q. The re- 
normalized coupling constants uR and vR can be intro- 
duced in the process in the usual fashion: 

u,(x)=~!~'  (q,=o, x ) ,  

and the renormalized charge b , ( ~ )  for the third-order 
vertex can be defined by the equation 

In the first approximation in the charges, the renor- 
malized Green function separates into a longitudinal, 
and a transverse, part: 

where hR is the renormalized value of ho. 

Let us note that the presence of the third-order ver- 
tex r3(qi,  u) leads to the renormalization of ho and the 
coefficient attached to q2 in (32) even in the first ap- 
proximation; therefore, the system of RG equations for 
the renormalized charges u ~ ( K ) ,  VR (K) ,  and b ~ ( u )  
should be supplemented by the corresponding propagator 
equations. This is ,  however, not necessary in the case 
of large bare values of ho. In fact, a direct verification 
shows that, a s  he-- a, only the transverse part of the 
Green function, with which the third-order vertex 
r,(qi, u) does not interact, makes a critical contribution 
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to the diagrams, and therefore the propagator i s  not re- 
normalized in the first approximation. The system of 
RG equations for the renormalized charges then gets 
significantly simplified, since the charge bR(u) will not 
enter into the equations for uR(u) and v R ( n )  (since the 
diagrams containing wavy lines drop out) and i ts  tem- 
perature dependence is entirely determined by the evo- 
lution of uR(u) and vR(u). 

Using the Ward identity for the bare Green function: 

we obtain the appropriate system of RG equations in the 
single-loop approximation: 

where we have denoted by K,, K2, and Kg the integrals 

The system of RG equations describes, in particular, 
the critical behavior of cubic FE, since for them the 
value ho-yi/a2 >> 1 ,  and the small  corrections of the or-  
der  of l/ho can be neglected. The last two equations in 
(38) have, for the above-indicated reasons, the same 
form a s  the RG equations for cubic ferromagnets in the 
dipole region (see, for example, Ref. 16). As is well 
known, the latter have only one nontrivial ( ~ e i s e n b e r g )  
fixed point (FP),  which i s  unstable, and the solutions 
run off beyond the stability limits uo =0 ,  vo =-uo. It 
therefore follows that the critical fluctuations in a sys- 
tem described by the Hamiltonian (32) leads, when ho 
>> 1, to the transformation of the second-order transi- 
tions into first-order transitions. As a result, the TCP 
disappears, while the bicritical L P  becomes a tricriti- 
cal  point. These a r e  the main qualitative changes that 
occur in the phase diagram obtained in the phenomeno- 
logical theory (Fig. 1) when the fluctuations a r e  taken 
into account. The phases' existence domains them- - 
selves do not, apparently, change much. 

To corroborate this conclusion, let us estimate the 
r a t e  of evolution of the parameter x" in the cri t ical  re- 
gion for the case in which the effective crystallographic 
anisotropy is small: (uR - vR)/uR << 1. Substituting into 
the f irst  of the equations (38) the expressions for uR(u) 
and vR(u) corresponding to the singular Heisenberg sol- 
ution: 

120 
u,' ( x )  = - n x ,  vn'=O, 

17 

we obtain for the charge bR(u) the following power de- 
pendence: 

From this we find for the parameter x N  -uR/b; the ex- 
pression 

It can be seen from (41) that x" depends very weakly on 
temperature. Similar computations for isotropic F E  of 
the "easy-plane" type yield for x" the dependence 

Similar slow variations of parameters with temperature 
a r e  quite often encountered in the theory of critical 
phenomena. For example, the isotropic-to-anisotropic 
critical behavior crossover rates for cubic and tetra- 
gonal crystals  in the dipole region a r e  given respective- 
ly by the expressions u-3117 (Ref. 14) and u-113 (Ref. 17). 

Having analyzed the case in which ho >> 1 ,  let us now 
investigate the critical behavior of a system with the 
Hamiltonian (32) for8' I ho I<< 1. We encounter the fol- 
lowing difficulty here: we can easily verify with the aid 
of perturbation theory that the renormalizations of the 
longitudinal and transverse parts of the Green function 
a r e  different, e.g., for ho = O  the fluctuation correction 
to the square of the "velocity" of the longitudinal wave 
is three t imes greater in absolute value than the cor- 
rection for the transverse wave. It therefore follows 
that, strictly speaking, we should, in constructing the 
RG equations, introduce two different scale factors, one 
for the longitudinal, and the other for the transverse,  
fluctuations. This not only very much complicates al l  
the calculations, it makes the system of RG equations 
itself very unwieldy. At the  same time, it can be veri- 
fied that the numerical values of the coefficients of the 
expansions of the Gell-Mann- Low functions in the RG 
equations for  the renormalized charges bR , UR, and VR 

change little when allowance is made for the renormal- 
ization of the momentum dependence of the propagator. 
Therefore, it seems natural to assume that the qualita- 
tive results  obtained with the use of the isotropic Green 
function ( h R  =0)  remain valid in the more exact compu- 
tations. 

In the isotropic-correlator approximation the RG 
equations for bR(u), uR(u),  and vR(u) have the following 
form: 

db I 2 8 
-I=-[(uR+-uR) dr.' 2%" 3 y , b ; - - $ " b  a 

2 
XBzbnz+-(BJ+59, )  27 bn' 1 , 

For the purpose of investigating the nature of the so- 
lutions of the systems (43), it is convenient to go over 
to the dimensionless charges 6 ,  k, and 5: 
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After the substitution of the values of Yi, the RG 
equations in the new variables assume the form 

It is well known that, for  = 0, the system (44) has 
three nontrivial FP: Ising (ii; =#, B* - 01, cubic (GF -4 -- =*, i7: =#), and Heisenberg (2; =v,  -*) FP,  only the 
last one being stable in the 5-t7 plane. For 6# 0, this 
F P  is,  a s  can easily be verifi* by linearizing the equa- 
tions (44) in b ,  also unstable ( b -  K-l'"). Besides the 
F P  lying in the d-v' plane, the system (44) possesses 
four other FP with the coordinates 

of which only the F P  with 

corresponds to real  values of the coupling constants. 
Calculations show that the FP is also unstable in the 
three-dimensional space of the charges 8 ,  u', and 5. 
Thus, Eqs. (44) have no stable FP; consequently, only 
first-order phase transitions can occur in a system de- 
scribed by the effective Hamiltonian (32). 

We can similarly investigate the critical behavior of 
cubic crystals, the phase transition in which corre- 
sponds to the nonvector order-parameter representation 
Fzu .  We shall not write out the effective Hamiltonian 
for this case, since it is evidently connected with the 
expression for the thermodynamic potential (18); rather 
let us give at once the corresponding system of RG 
equations for the renormalized charges9': 

dbR2 bn2 4 
7=-(sium-g92b,?) dv. 2x2 , 

dv, 1 5 

Going over, as  in (431, to the dimensionless charges, 
we obtain 

dii 9 2 -=-u"+-az+y- a+-5 g+-gz, 
d t  2 2 7  

In the = 0 plane the system (47) of course processes 
the same F P  a s  the system (44). Besides them, there 
are ,  for it 0, two other F P  with real  coordinate values: 
(5*=$,  v'*=O, 6*=3),  (ii*=0.5, Bfs0.23, 6*=1.5). All 
the F P  of the system (47) turn out to be unstable; con- 
sequently, a s  in the case of the vector representation, 
only first-order phase transitions a r e  possible. Let us 

note that the conversion of second-order phase transi- 
tions into first-order transitions in the fluctuation re- 
gion is generally characteristic of problems in which 
the number of important invariant charges is greater 
than two, and we can even adduce some general argu- 
ments to support the regularity of this circumstance.'& l9 
Therefore, it i s  alsonatural to expect the occurrence of 
only first-order phase transitions in those cases in 
which the symmetry of the system admits of the exist- 
ence of not just one (as  was the case above),lO' but sev- 
era l  independent invariants of the type (3). 

CONCLUSION 

Let us briefly discuss possible experiments in which 
the appearance of the above predicted long-period sup- 
erstructure can be detected. It follows from the per- 
formed analysis that the condition for the existence of 
the superstructure is the definite limitedness of the val- 
ue of the modulus of the dimensionless parameter x .  
Since this paramete-r is proportional to the magnitudes 
of the coefficients describing the anharmonic fourth-or- 
der interaction, the value of x will be small for phase 
transitions occurring in the vicinity of a TCP. There- 
fore, it seems to be expedient to carry  out the experi- 
mental search for IS primarily in those crystals whose 
phase diagrams contain TCP. Since according to the 
estimates made above, the period of an IS near a TCP 
turns out to be long, and can be longer than the wave- 
length of light, the superstructure can apparently be ob- 
served by the appearance of Bragg peaks in the elastic 
scattering of light. In the case  of smaller values of the 
superstructure period, the traditional techniques of 
small-angle neutron scattering and x-ray structural an- 
alysis can be used to detect the IS. In this case it is  
natural to regard the dependence of the superstructure 
period on the external parameters [see (9) and ( l l ) ]  a s  a 
characteristic indication of a transition into the IS state. 

As we have seen, the conditions for the appearance of 
IS in cubic FE a r e  more rigid than the conditions for the 
occurrence of phase transitions for which the dipole in- 
teraction does not play a distinct role. Nevertheless, 
the appearance of IS under these conditions is possible, 
especially in the vicinity of a TCP. Since the appear- 
ance of polarization is usually accompanied by an abrupt 
change in the forbidden-band width and, consequently, 
by a long-wave shift of the fundamental-absorption 
edge, it is possible in this case to observe IS in trans- 
mitted light of wavelength close to the fundamental ab- 
sorption edge. Even if the phase transition in the FE 
occurs at a point not too close to a TCP, the appear- 
ance of an IS in the crystal 's surface region, where a 
layer with a high ca r r i e r  concentration is  formed, 
seems to be p o ~ s i b l e . ' ~  

On the whole, the formation of IS of the above-investi- 
gated typeis possiblein a fairly broad class of crystals; 
therefore, their experimental detection is quite probable. 

In conclusion I thank S.L. Ginzburg, A.P. Levanyuk, 
S.V. Maleev, A.I. Sokolov, D.E. ~hmel 'nitskii ,  andB.N. 
Shalaev for useful discussions of a number of problems 
touched upon in this paper. 
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"This condition i s  a necessary condition for  the transition into 
the IS state to  be  continuous. 

 hey investigated the situation in which in the absence of 
terms of the type (3) the phase transition i s  of second order . 

"The case  of the transition into the orthorhombic phase, when 
u > 0, v < -u (as in GeTe o r  CsGeCb), can be investigated in 
an  entirely similar fashion. 

4 ' ~ e t  u s  note that a pure BaTiQ crystal  with the forbidden-band 
width A E= 3.2 eV would have at room temperature rD= 10 m. 
'We have, for  simplicity, chosen the value to= 2. 

"This coupling is described by a t e r ~ n  of the type ~ ( B P ~ / ~ X ~  

+ aP,/B%i h i j  in the thermodynasnic potential. For the coef- 
ficients B ,  a", q, and st we use  the values given in Ref. 9. 

')The complexity i s  due to the substantial disordering of FE 
crystals,  which contain, in contrast to doped semiconductors 
with m a l l  impurities, deep-lying impurity levels with an un- 
known band structure.  

"For the values of ho - 1 the crit ical  behavior will be  described 
by the crossover regime between these two cases.  

" ~ e t  u s  note that, in comparison with the case of the vector 
representation, there appear additional diagrams with intern- 
al wavy lines. 

l0'An exanple may be the easy-plane-type tetragonal crys ta l  
with a vector order parameter,  for  which the thermodynamic- 
potential expansion contains three such invariants. 
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