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Potential fluctuations lead to the appearance of electronic energy levels lying below the bottom of the 
conduction band. The density of such levels in a strong magnetic field and the cyclotron-absorption-line shape 
due to the electrons occupying these levels are derived. 

PACS numbers: 71.20. + c, 76.40. + b 

Light uncharged impurities in semiconductors can be 
described by a random potential. The density of states 
in such a potential has a tail, i.e. , it exponentially falls 
off in the region of large negative energies. l" The 
dominant contribution to the density of states at these 
energies is  made by the levels that occur in the expon- 
entially r a r e  deep potential wells. 

A magnetic field has a strong effect on the magnitude 
of the density of states. The weak-field induced change 
in the exponent in the energy dependence of the density 
of states i s  found with the aid of perturbation theory. 
A strong magnetic field modifies the dependence of the 
exponent on energy. The pre-exponential factor is  
computed exactly in this case. 

In a film o r  a thin surface layer, a normal magnetic 
field makes the spectrum discrete and infinitely mul- 
tiply degenerate. Impurities smear  out this spec- 
trum. Exponential tails occur near each Landau level 
at both positive and negative energy values. Impurities 
smear out the cyclotron resonance line. At low tem- 
peratures and low electron concentrations the cyclo- 
tron resonance line splits up into a large number of 
sublevels. The position and shape of each sublevel's 
line a r e  found. 

I. THE DENSITY OF STATES 

The Hamiltonians of electrons in a magnetic field and 
in the field of impurities have the form 

by the relation 

eH,=cw, (m,m,)"', w,=ell,/c (mpm,)" ' ,  

where cr f /3 f y. The modulus of the vector w is equal to 
the cyclotron-resonance frequency. In the new variables 
the Hamiltonian (1) has the form 

H=-'/,B2+V, B = V + i [ o ~ r ] l 2 .  (4 

The density of states a t  the energy E i s  given b y  the 
continuum integral: 

P ( E ) = J  ~ p 6 ( ~ - H )  W ( V ) D V .  (5) 

p(E)  is  determined with exponential accuracy by the 
maximum of the exponent in the formula (2) with the ad- 
ditional condition that H $ = E $ .  Performing a V varia- 
tion, we obtain1 

v=-lqIs, (6) 

where cp i s  found by solving the linear equation 

' 1 2 ( B L q )  +cpl=Eq. (7) 

To compute the pre-exponential factor in the density of 
states, we must expand the exponent of the exponential 
function in a ser ies  in the small deviations of the ran- 
dom potential from the extremal value given by the for-  
mula (6): 

v-lcplz=C a.~,. (8) 

Here we choose 

v,= lcpl2l,"', v,=v lcpl'l;", 
I d  e 2  

H=- ZK(.=-- i - A = )  + V b ) ,  where J,  and J, a r e  the normalization integrals: 

where the random potential V(r) i s  distributed accord- 
ing to the Gaussian law: 

Let us reduce the Hamiltonian (1) to the isotropic form 
by making the change of variables 

-'I. r,-+r,m, , A , = A , ~ : ~ ,  r - r n m i ' h .  (3) 

This change of variables does not change the form of 
the distribution (2). It i s  convenient to choose the vec- 
tor potential A in the new variables in the gauge ec4A 
= i w  x r, where the w ,  a r e  the components of the vector 
w along the principal axes of the mass ellipsoid; they 
a r e  connected with the magnetic-field components H, 

J , = J  Icp14d"r, I,,= J ( V , I ~ I ~ ) ~ ~ ~ I .  (9) 

Further, let us  use the method proposed in Ref. 3. The 
dominant contribution to the formula (5) i s  made by the 
smallest eigenvalue of the Hamiltonian H .  Computing 
this eigenvalue in first  order in a, and second order in 
a,, we have 

p ( E )  = (I e" da,, )-' I ( a o ~ ~ . ' h + ~ a I ~ n p ( ~ - ~ ) - l c P ~ V a a ) e ~ ~ d a a a  

(10) 

where 

K - I  = J" c p ~  ddr,  A=- 1,+21~a, + ( an2 ) / 21- 

Let us  perform the integration with respect to a, with 
the aid of the 6 function; the integration with respect 
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to a,  i s  equivalent to integration with respect to the 
coordinate origin, and yields to within the Jacobian the 
volume Ld of the system. The a, (n > 1) Gaussian inte- 
gral i s  equal to the product of the eigenvalues of the 
quadratic form (MI. An important change in the calcula- 
tions a s  compared to the zero magnetic field case con- 
s is ts  in the following. The eigenfunctions of the Hamil- 
tonian with a magnetic field cannot be chosen to be real;  
therefore, the operator H i s  Hermitian, but not sym- 
metric, and the coefficients a, a r e  real .  Consequently, 
the quadratic form should be symmetrized before the 
evaluation of the integral. Evaluating the integral, we 
obtain 

p ( E )  = exp ( - 1 0 / 2 7 ) ~ d ( 2 n y )  - ~ ~ + ' I ~ Z ~ ; ' ~ ~ - L ] C - I  J : k m z D - ' b  , (11) 

where D = IIh, , the A, being the eigenvalues of the oper- 
ator 

D i s  the product of al l  the AL, except the first  ones, 
which a r e  equal to infinity and zero, and correspond to 
the functions Vo and V,. 

1. Weak fields 

The integral J ,  entering into the exponent of the for- 
mula (11) depends on the energy a s  follows: 

The function f can be found in the limits of small and 
large arguments. In weak fields, in which the cyclotron 
resonance frequency w i s  low compared to the energy 
E ,  Eq. (7) can be solved with the aid of perturbation 
theory. As a result ,  we obtain 

Determining cpo by numerically solving Eq. (7), we ob- 
tain at w = 0 the expressions 

Although the relative change in the index of the exponen- 
tial function is  small, the absolute change can be large. 
Consequently, even in this case the density of states 
strongly depends on the magnetic field. The magnetic 
field dependence of the pre-exponential factor can be 
neglected. 

2. Strong field. The two-dimensional case 

In the two-dimensional case the impurities smear out 
all the Landau levels in a strong magnetic field. Each 
level has an exponential tail both on the side of nega- 
tive, and on the side of positive, energies. To the pos- 
itive energies correspond a potential hump, and not a 
potential well, and we should change the sign of the non- 
linear term in Eq. (7). If the energies a r e  close to the 
Landau-level energies En = ~ ( n  + $), SO that IE -En I 
<< w ,  then we can solve Eq. (7), treating the nonlinear 
term a s  a perturbation. In this case q=C,$,, where 
4, i s  the normalized wave function corresponding to the 
n-th Landau level with zero spin. Let us find the coef- 
ficients Cn by multiplying Eq. (7) from the left by $, and 
integrating: 

Thus, the integral Jo entering into the exponent is 
equal to 

where the numerical coefficients a, a r e  equal to: a o = l ,  
a1=2. 

Let us  compute the pre-exponential factor only for the 
lowest level with n = 0 .  We should, in computing the 
eigenvalues of the operator (121, take into considera- 
tion only the states corresponding to the lowest n=O 
level and the various angular-momentum values (i. e. , 
the Go,* $:, states). As a result, we obtain 

Hereandbelow ~=E,-E=w/2-E,A'=w,y/2n.  The 
sample dimension L and the parameter y a re  connected 
with their values in the original units by the relation 
(3) .  

3. Strong field. The three-dimensional case 

The presence of impurities leads to the smearing out 
of the density of states and to the appearance of states 
below the zeroth Landau level. For IE - w ,/2 I << w ,, 
Eq. (7) can be solved. To do this, let us expand q in 
the equation into the product sum 

where the z axis i s  oriented along, and the p axis per - 
pendicular to, the field. The solution corresponding to 
the minimum action i s  axially symmetric; therefore, 
if the a, a r e  the eigenfunctions of the operator g2 in the 
axial gauge, then the dominant contribution to the sum 
i s  made by the t e rm corresponding to the zeroth Lan- 
dau level. The remaining equation for f(z) will be one- 
dimensional: 

Its solution yields the expressions 

Hence we obtain for the exponential density-of-states 
function the expression: 

To compute the pre-exponential function in the for- 
mula (111, we must compute the product D. For this 
purpose, we regularize, a s  is  done in Ref. 3 ,  M by 
adding to the Hamiltonian the term -6qS, which leads to 
the disappearance of the zero and infinite eigenvalues 
of M. The eigenvalue corresponding to shifts parallel 
to the field will be equal to 6/2, the one corresponding 
to shifts in the direction perpendicular to the field will 
be equal to 6,  and the infinite eigenvalue will become 
equal to 2/6. Therefore, 

D = lim 6-2 Det MR. 
0-0 

(20) 

The operator M, is  axially symmetric; therefore, let 
us  expand it in terms of the functions having the angular 
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dependence eime. For m # 0 ,  one of the terms in the 
sum [(E - HI-'+ (E - H*)-'1 is  much smaller than unity; 
for m=O they are equal. Neglecting the small terms, 
and factoring the resulting determinant into a product 
of two determinants, we obtain 

For c << w ,  it i s  sufficient to limit ourselves in the 
determinants entering into (20) to the expansion in terms 
of the functions corresponding to the zeroth Landau lev- 
el; therefore, in the formula (20) 

Using the explicit forms of rp2 and +,,, we find that 
(q?)m=2-m(cp2)0; therefore, all the determinants in the 
product (21), except three, cancel out: 

Det M ,  = 
Det (E-H-GqZ/2) ,  Det ( E - H + 2 q Z ) ,  Det ( E - H - 6 q V 2 ) ,  

D e t ( E + d Z l d z 2 )  Det (E+dZldzZ)  D e t ( E - H )  , ( 2 2 )  

where 

All the eigenvalues of  the operators entering into the 
the last quotient in the formula (22), except the discrete, 
nearly zero ones, are equal. The eigenfunctions and 
the spectrum of the one-dimensional operators entering 
into ( 2 2 )  are well known. The first operator in the 
right member o f  (22) has one discrete level with energy 
6/3 and a continuous spectrum; the second operator, 
two discrete levels with energies 26/5 and 1 and a con- 
tinuous spectrum. 

Let us compute the contribution from the continuous 
spectrum. It does not have a singularity at 6 = 0. The 
eigenfunctions of  these operators do not have an echo 
wave. Let us use their asymptotic forms: 

where f, and f2 are the eigenfunctions of  the first and 
second operators in the right member of  (22). 

Let us impose periodic boundary conditions at the 
walls of  a large box of  dimension L .  Then kL + cp(k) 
=2nn, and each quotient in (22) is equal to 

Evaluating the integral in (23), and multiplying it by the 
eigenvalues of  the discrete spectrum, we obtain 

Det Mn=2'.3.5-162.  (24) 

Collecting all the factors entering into the expression 
(11) for the density o f  states, we obtain 

II. CYCLOTRON RESONANCE 

1. Let us  consider the absorption of a high-frequency 
electromagnetic field in the presence of a strong magne- 

tic field. The absorption rate is given by the formula 

where nf i s  the Fermi distribution function, while 

Here i), and Ji, are the wave functions o f  an electron with 
energies E, and E, in the potential V ( r )  and d i s  the di- 
pole-interaction operator. At high electron densities or 
high temperatures ( i .  e.  , for c,, T>> w ,,), the semiclas- 
sical procedure is  suitable for the description o f  the el- 
ectrons, and in this case the absorption line has the 
Lorentz shape with width 

At low electron concentrations and temperatures ( i .  e .  , 
for c f ,  T<< w ,,) all the electrons are at the zeroth Lan- 
dau level. I f ,  however, z f  or T is  higher than A, then 
the absorption-line width is of the order of A. Below 
we shall derive the explicit form of the tails of this 
line. I f  c f  lies in the forbidden band ( i .  e .  , i f  w , 
> I c l > A, T < A), then the cyclotron resonance line 
splits up into several sublevels. The position and 
widths o f  these lines depend on the temperature. The 
integral (26) over E has a maximum at E = c i f  T<< A, 
and at E = 4A3/9T2(3D), E = A2/2T(2D) when T > A,, where 
A, = ( A ~ / C ~ ) ' ~ ( ~ D ) ,  Al = A2/E f (2D) .  

At T < D the electrons reside in deep potential-fluc- 
tuation wells that differ little from the optimal wells 
whose potential is  given by the formulas ( 6 )  and (7).  
This potential l i f ts the infinite-multiple degeneracy o f  
the first Landau level, and leads to the splitting of the 
cyclotron-resonance peak. The location of each peak is  
determined by the energy level in the potential (6).  In 
order to find the shape of  the peaks, we should mini- 
mize V2ddr with the additional conditions Det(E -H) 
= O  and Det(E+w-H)=O. As a result, we find that 

where cp and cp, are found from the set of equations 

The positions o f  the peak centers can be found by solv- 
ing (30) i f  d is  neglected in comparison with $; qf 
can be taken into account in the vicinity o f  the center of 
a peak ( i .  e . ,  in the region w - am<< E )  with the aid of 
perturbation theory. 

2. The cyclotron resonance in the two-dimensional 
case. The functions cp and cp, in the system (30) are 
proportional to the eigenfunctions o f  the operator 9': 

For the coefficients a: and a:, we obtain a linear sys- 
tem of equations; e .  g . ,  for the m= -1 case we have 

where c l=E+w -3wH/2= & + w - w ~ .  

Solving this system, and substituting the values ob- 
tained into the formula (291, we obtain an expression for 
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the index of the exponential function: 

where 

o ~ > = w H +  $=E, gn,=l-  (mf 2)2-"'-a/m+1, 

for m = -1, w,, = w,, and A, =Ao. 

The height of the peak i s  determined by the matrix 
element entering into (27); in the zeroth approximation 
in the potential, this matrix element i s  nonzero only 
for the transitions with m = -1. The transitions with 
m = +1 occur in the first-order approximation in the 
optimal potential; the remaining transitions occur only 
a s  a result of the unsymmetric fluctuations of the po- 
tential, and therefore have the additional smallness 

The dependence of the pre-exponential function on o 
can be neglected in the vicinity of the maximum of each 
peak. For not very large m the neighboring peaks do 
not overlap; therefore, the total intensity of the peak 
is equal to the product of the density of states and the 
matrix element, which allows us to calculate the pre- 
exponential function in (27). It now remains to evaluate 
the E integral in the expression (26). At low T (T < 41, 
nf(& )p(c ) has a t  E = E~ a sharp peak whose width is 
smaller than A; therefore, the integration amounts to 
the replacement of E by E f :  

where N i s  the total number of electrons. 

In the other temperature region, Al < T < A, nfq(& ) has 
at E = A ' / ~ T  a Gaussian peak of width A; computing the 
integral (26), we obtain 

r=2n'r2e2EP'A-1N(i+p,2Am) -"am~??exp (-A,) (35) 
X [ l-(l+$,-'Am-')-'l (o-om)'/Az, o,=o,,+$,A2/2T. 

Thus, the cyclotron resonance line splits up into sev- 
eral  lines, each of which has a Gaussian shape. As 
m increases, the peak spacing rapidly decreases, and 
they begin to overlap, but the distance between the first  
peaks i s  much greater than their widths. 

All the peaks merge into one broad peak of width A at 
w ,> T > A. For w - w ">> A, the tail of this line is  de- 
termined by the r a r e  potential fluctuations, and the in- 
dex of the exponential function in this dependence i s  
given by the formula (32) (m = -1): 

I-exp [-4n(w-oH)'/ywH I .  (36) 

This formula is also valid a t  low temperatures for fre- 
quencies far from w (in comparison gith the level 
spacing). 

3. The cyclotron resonance in the three-dimensional 
case. A qualitative difference between the three- and 
two-dimensional cases is connected with the fact that, 
besides the discrete spectrum, there is  a continuous 
spectrum in the three-dimensional case. At low tem- 

peratures and low electron concentrations the electrons 
occupy largely the discrete states below the zeroth Lan- 
dau level. For w - w ,, the transitions into the contin- 
uous spectrum of the zeroth level yield a weak-in terms 
of the quantity &/wH-smoothbackground, whichwillbe 
neglected below. The transitions to the first  level yield, 
besides the peaks characteristic of films, a broad peak 
lying above these peaks. The discrete levels lying be- 
low the first  Landau level a r e  not stationary levels, but 
their width, yw',/2, is  much smaller than the width of 
the isolated peak, and shall be neglected below. 

Let us, to begin with, compute the parameters of the 
discrete peaks. The dependence of the functions cp and 
ql of the system (30) on p i s  given by the eigenfunctions 
of the operator g2: 

For the functions f, and f,, we obtain a sy'stem of equa- 
tions; for example, in the m = -1 we k v e :  

[2(e-d"ldz2) - (foz+fl")]fo=O, 

[4(s-dVdzz) - (fo'+fiZ)] fa-0. 
(37) 

The peak centers a r e  found by solving the first equa- 
tion of the system (37) with fl = 0, and determining the 
eigenvalues of the second equation: 

o-l=oo, x=([i+2-v"+1(m+2)/m+il"-i)/~. (38) 

For w - w ,,,<< E , we can solve the system (37), using 
perturbation theory to take account of the term f f .  
Substituting the expressions obtained for q2 and qt into 
the formula (29) for the potential, we obtain the index 
of the exponential function for the dependence j(o): 

where 

As in the two-dimensional case, in the low-tempera- 
ture region, the integral over E i s  determined by the 
region in the vicinity of c , ,  and the absorption rate i s  
equal to 

where 

exp(-Bm)S - *63 exp(-36/2) 
i'07 1-2BJ3 1-4Bm1/9 
5<0, (1+23,,,/3)-' exp (-8-6) 

Q-A'.&;", u m = ~ i + + $ m ~ ~ .  

Here a m  i s  the dimensionless matrix element's value, 
which i s  determined in much the same way a s  (33): 

~ ~ r [  (58+i)/4~r(511T/2) 
a-I = 4rS[  (tiSh+3)/4lr[ (sh-i) /4]  ' a-, - (+)' 

a,-(Ale)', m+*i. 

At temperatures A,<< T<< A, the product nf(& )P(E ) 
has a t  the point &=4A3/9T2 a peak of width (16A3/9T)1'2. 
This width is much greater than A"~& -'I2; therefore, on 
being integrated over c , the lines broaden and their 
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shape becomes Gaussian: 

I= (3/2)n 'e"&2N(TlA3)'hami3m-' exp [-~mZ9T(o-o,')2/16A3], 

o,'=os+4~,A3/9T, 
(41) 

where the Bm a r e  the same quantities defined in the for- 
mula (38). 

The lines have an interesting shape a t  T-  Al. The 
right (i.e., w > wm) line edge is determined by the for- 
mula (40), while the left (w < u m )  edge i s  determined 
by the formula (41). At T <  2 4 / 3 ,  wL< om and the line 
width decreases sharply. 

Let us now compute the absorption due to the transi- 
tion into the continuous spectrum above the first  Lan- 
dau level. Since the width of this peak is much greater 
than A, we can neglect the deviation of the potential 
from the optimal potential. The transition probability 
is  determined by the matrix element I (J,, Id 1 $,) 1' con- 
necting the electrpn bound state a t  the zeroth Landau 
level and the continuous-spectrum bound state of the 
fir st  Landau level. 

As in the case of the discrete spectrum, $, 
= f,(z)@,-,(p) and J ,  = f,(z)@,,(p), fl being the solution, 
normalized to unit flux density, of the linearized 
second equation of the system (37). 

The cyclotron absorption is expressible in terms of 
the matrix element connecting the functions fl and f, in 
the form 

Z=neZ&ZNg[(o-on)/e], 

g= I f.(z)h(z)dz)' / jb.(z)dz[2(u-w.-.) I". 

As for the function g, its asymptotic form can be found: 

Using the completeness condition for the solutions of the 
second equation in (37) and the fact that, besides the 
continuous spectrum (of the functions f,), this equation 
has only one discrete level, we obtain the integral of 
g corresponding to the total intensity of the peak: 

CONCLUSION 

A suitable object for the experimental verification of 
the results obtained is a semiconductor with a compar- 
atively high concentration of isovalent impurities. The 
number of charged impurities should be small. Because 
of the long-range character of the Coulomb potential, 
charged impurities cannot be considered to be white 
noise, and they give r i se  to another form of the density 
of states. Furthermore, the number of electrons in 
the conduction band and their temperature should be low, 
so that the electrons will occupy only the deep fluctua- 
tion levels. The magnitude of the random potential can 
be roughly estimated from the mean free time T at not 

very low temperatures or  densities, when the electrons 
exist a s  free carr iers ,  or  from the exciton-resonance- 
line width. Thus, the conditions for the observation of 
the 'fail" of the density of states in a strong magnetic 
field and the cyclotron resonance at the fluctuation lev- 
els can be written in the form 

The argument of the exponential function in the expres- 
sion for the density of states in a strong magnetic field 
can be computed in the same way, and has the same 
form, a s  in the one-dimensional case. But the pre- 
exponential factor has a different form, since the three- 
dimensional fluctuations a r e  essential to it. 

The cyclotron resonance a t  the fluctuation levels has 
several peaks connected with transitions to levels with 
different values of the magnetic quantum number m. 
The uppermost and lowest peaks correspond to transi- 
tions into rn = -1 states of the continuous and discrete 
spectra respectively. The ratio of their integrated in- 
tensities is  1 - ~ c Y - ~ ,  and they a r e  more intense than 
the remaining peaks lying between them. The width 
of the top peak i s  of the order of the peak spacing; that 
of the lower peaks is smaller than their spacing, but 
can be greater than the cyclotron resonance width a t  
high temperatures. The distance from the bottom peak 
to the lower edge of the top peak is equal to the bound- 
state energy & ,  of an electron a t  the first  Landau level. 
This energy is smaller than the bound-state energy &, 

of an electron a t  the zeroth Landau level in the same po- 
tential well: = 0 . 3 8 ~  ,,. Therefore, even the bottom 
peak has a frequency somewhat higher than the cyclo- 
tron-resonance frequency in the same magnetic field a t  
high temperatures, specifically, by the amount c ,, - E 

=1.63&,. 

In two-dimensional systems, e.  g. , in MOS systems, 
continuous-spectrum states do not occur. The density 
of states has Gaussian tails on both sides of each Lan- 
dau level, and cyclotron resonance does not have a top 
broad peak. 

The authors a re  grateful to E. I. Rashba for a useful 
discussion. 
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