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An investigation is made of plasma waves in films, layer structures or inversion channels in those cases when 
an electron plasma has several components. These components are groups of electrons differing either in 
respect of the quantum number of transverse motion or in respect of the layer number. The spectrum of 
plasma oscillations of such systems includes not only the usual wave with the square-root dispersion law, but 
also additional branches some of which resemble ion-acoustic waves in a gas plasma whereas others are 
analogous to excitons. The characteristics of the Landau damping and of the optical absorption spectra of 
such systems are explained. 

PACS numbers: 71.45.Gm. 73.90. + f 

1. INTRODUCTION tion. Next, we shall investigate two-level and two-lay- 

Plasma waves in two-dimensional electron systems 
have been investigated quite thoroughly both theoretic- 
ally and experimentally. The main objects in these in- 
vestigations have been electrons in inversion channels 
of metal-insulator-semiconductor (MIS) structures 
and, to  a lesser degree, deliberately constructed peri- 
odic structures (multilayer superlattices in which thin 
conducting layers a r e  separated by practically insulat- 
ing intervals). In both cases  it is assumed that an elec- 
tron gas is in an ultraquantum state with respect to the 
motion which is transverse to the layers, i.e., that al l  
the electrons occupy the lowest transverse quantization 
level. However, modern technology of preparation of 
thin films and layer structures makes it possible to  
vary easily the parameters of such systems. The num- 
ber  of layers, their thickness, degree of doping, and- 
consequently- the ca r r i e r  density can all be varied 
within very wide limits. Therefore, it i s  interesting to 
consider systems which a r e  essentially two-dimension- 
a l  but exhibit to some extent a transverse degree of 
freedom. In the case of a quantum film this means that 
several transverse layers a r e  populated and that tran- 
sitions between them have to be allowed for. In the 
case  of a layer structure one may have to allow for the 
tunneling between the layers. 

We shall consider plasma waves in films and layer 
structures in those cases when an electron plasma has 
several components. The components a r e  groups of 
electrons differing either in respect of the quantum 
number of transverse motion (film o r  inversion chan- 
nel) or  in respect of the number of layers (layer struc- 
ture). The spectrum of plasma waves in such systems 
has a number of interesting features. New oscillation 
branches appear and some of them resemble ion-acous- 
tic waves in a gas plasma, whereas others a r e  analo- 
gous to excitons. The Landau damping in such systems 
and the optical absorption spectra of such systems also 
have special properties. 

In Sec. 2 we shall derive general formulas which give 
the dispersion law of plasma waves obtained in the self- 
consistent field approximation for systems with the 
spectrum of the kind expected for a quantum film. The 
derivation will be made using a matrix dielectric func- 

e r  systems (the rank of the characteristic determinant 
i s  generally n2, where n is the number of plasma com- 
ponents). In Sec. 3 we shall consider a system of spa- 
tially separate plasma layers, whereas in Sec. 4 we 
shall deal with plasma modes in a quantum film. In 
Sec. 5 we shall explain the characteristics of the optical 
absorption spectra of the systems under consideration, 
and in Sec. 6 we shall give the main results  in the spe- 
cific case of inversion channels in MIS structures.  

2. PLASMA WAVES IN MULTICOMPONENT SYSTEMS 
CONSIDERED IN THE SELF-CONSISTENT-FIELD 
APPROXIMATION 

We shall consider a system whose one-electron spec- 
t rum is 

W ,  ( p )  =En+p2/2m, (1 

where En a r e  the transverse energy levels correspond- 
ing to wave functions cpn(z); p is the twedimensional 
momentum. We shalJ seek the linear response to a per- 
turbat ion 

U ( z ,  k) exp {i(kp-at)). 

Here, z and p a r e  the coordinates in the transverse and 
longitudinal directions, respectively. Standard pertur- 
bation theory calculations yield corrections to  the wave 
functions of the system, and then the correction to the 
electric charge density caused by the perturbation. If 
we neglect the retardation effects, which a r e  unimpor- 
tant in this case  with the exception of a narrow range of 
anomalously low values of k, we find that the self-con- 
sistent field equation is simply the Poisson equation for 
a Fourier component of the potential U(z,  k): 

flu - kz[r=- - 4ne1 u.. (k) .g. ( z )  9" ( z )  
dz' e ( z )  n,m 

Here, U, a r e  the matrix elements U(z) of the trans- 
verse motion functions (selected to  be real); fn(q) a r e  
the Fermi  occupation numbers; E(Z) is the permittivity 
which, in the case of a layer system, has different val- 
ues for different ranges of z .  If the solution of Eq. (2) 
i s  expressed in t e rms  of a Green function and the ma- 
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trix elements a re  obtained for the functions cp,(z), the 
result i s  a closed system of equations for the quantities 
U,(k). Its specific form depends on the function ~ ( 2 ) .  
We shall give here the results for the simplest case 
when E =const, which corresponds to a quantum film 
immersed in a homogeneous insulating medium with the 
same value of E a s  the permittivity of the film materi- 
al. This describes approximately multilayer GaAs- 
G%Al,,As structures.' The strongly inhomogeneous 
case of an MIS structure will be considered in Sec. 6. 
If E =const, the Green function of Eq. (2) is 

and we obtain the following system of equations 

where 

f.(q) -fm(k+q) 
nm"'(k'w)--& W. ( q )  - W. (k+q) +@+id . 

The spectrum of plasma waves is obtained by equating 
to zero  the determinant of the system (31, whose rank is 
equal to the square of the number of transverse energy 
levels. This condition generalizes the familiar equation 
for plasma waves t(w, k) = 0 to the case of the matrix 
dielectric We note that allowance for the 
dependence of the quantities I,,,, on the momentum k 
corresponds to allowance for the finite thickness of a 
plasma layer. In the limiting case of a film of zero  
thickness we have cpn(z) = [ 6 ( ~ ) ] ~ ' ~  and then I,,,, = l .  
The spectrum of plasma waves in a multilayer superlat- 
tice can be obtained in the same approximation (seeRef. 
4): we shall do this assuming that cpt(z) = 6(z -en); 
then, only the quantitieslnn,,,= exp(-k /en-z, 1 ) differ 
from zero. The matrix I,,,, has the obvious transposi- 
tion symmetry 

I4j. " m - r j f ,  m"=I<, ,,,"=I"#", ,,. 
Moreover, in the case of a quantum film which is sym- 
metric to its central plane the wave functions rpn(z) a r e  
characterized by a definite parity. Therefore, the ma- 
trix elements relating one even state to three odd states, 
and vice versa, all vanish. For example, we find that 

I'. <*I ,  ""=I,!, a, "*l=o. 

The quantities II,(k, w) form the matrix of a polariza- 
tion operator which describes renormalization of the 
Coulomb interaction because of the dynamic screening. 
In terms of the diagram technique, Eq. (3) is equivalent 
to summation of electron loops and the zeros of the 
characteristic determinant coincide with poles of a two- 
particle Green function. 

We shall conclude this section by quoting the solution 
of the problem of two-dimensional plasma waves in a 
one-component plasma of finlte thickness. A physical 
model of such a system is a quantum film in which only 
the lowest transverse energy level is populated. We 

shall consider an arbitrary dependence of .the electron 
density on the transverse coordinate. The problem is 
solved in Ref. 5 in the special case of an exponential 
distribution. Let us assume that the electron density is 
distributed in accordance with the law cpq(z)= p(z). 
Then, 

where vo is the Fermi velocity (we shall consider only 
the case  of a degenerate electron gas). The dispersion 
equation for the k c  mvo case has the form 

2nezI ( k )  
1 +- (1-  ( ~ - k ' ~ ~ l ~ ~ ) - ' ~ ) - O  

ek 

and it differs from the equation for the case  of zero- 
thickness layer (see Ref. 6 )  by the renormalization of 
the charge by the form factor I @ ) .  In the limit of long 
waves the correction to the plasmon frequency is nega- 
tive [because Z(k) is maximal at k =0] and i ts  relative 
order is kL, where L is the characteristic film thick- 
ness, 

N is the surface density of particles. If p(e ) -e2  e x d - a )  
and w >> kvo, the results  of  erste en' follow from Eqs. 
(5) and (6). 

3. SPATIALLY SEPARATE PLASMA LAYERS 

The simplest case of a two-component two-dimension- 
a l  plasma i s  represented by a system of two quantum 
films separated by an insulating gap. We shall assume 
that in each film only the lowest level is occupied by 
electrons and the tunneling across the insulator-is neg- 
ligible (allowance for the tunneling makes the system 
fully equivalent to a film with two populated levels, 
which is considered in the next section). Assuming also 
that the layers a re  infinitesimally thin, we find that 

' 

Il l~ll=Z22,22=1 and I,,,,,=exp(-kA), where A is the dis- 
tance between the films. The dispersion equation for 
coupled waves is then 

where a l e2  a r e  the effective Bohr radii and a r e  the 
Fermi velocities of the electrons in the films. Equation 
(8) describes two branches of plasma oscillations. If 
kA, ka,, 2<< 1, one of these branches represents cophasal 
oscillations of particles in both films and it is charac- 
terized by the usual (for two-dimensional plasmons) 
square-root dispersion law 

where N i , z  a r e  the surface densities of the particles in 
the films. The condition w >> kvl,z is satisfied in this 
range of wavelengths. On the other hand, if kA >> 1, the 
coupling between the films disappears and Eq. (8) yields 
two-independent two-dimensional plasma waves. In 
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each of them the phase velocity of plasmons i s  greater 
than their "intrinsic" Fermi velocity, i.e., of w, > kv, 
and w, > kv, for any value of k no matter how large. If 
ka,, >> 1, the dependence w,, z(k) becomes of the type 
characterizing zero  sound w,,,= kv,,,. Therefore, if v, 
+ v,, one of the branches must exhibit the Landau d a m p  
ing even at absolute zero: plasmons in the film with the 
lower Fermi velocity a r e  damped by the interaction with 
the electrons in the other film. This is manifested for- 
mally by the fact that one of the quantities R,,, becomes 
imaginary. We can easily see  that the branch w+(k) re-  
mains undamped for any value of k, irrespective of the 
parameters of the system. We shall now show that for 
a definite relationship between A, v,, ,, and a,, , the sec- 
ond solution is also undamped in a finite interval of wave 
numbers. 

In the limit k-- 0 the second branch w.(k) describes 
antiphasal oscillations of electrons in the films and ex- 
hibits the acoustic dispersion w- = sk. Substituting this 
value of w in Eq. (8) and going to the limit k- 0, we ob- 
tain the following equation for s: 

To  be specific, we shall consider the case when v, > v,. 
Equation (10) gives the rea l  and positive value of s if 

We can thus see  that i f  A > A o, the damping of the 
branch o- vanishes exactly for sufficiently low values of 
k. In order to determine the limit of the interval of the 
wave numbers in which Im w_ = 0, we must clearly find 
the intersection of the w-(k) curve with the straight line 
w =kv,. In Eq. (8) we shall assume that R ,  = 0 and then 
we find that the point of intersection" kc is given by 

If A >> Ao, we find that kc- 1 / 2 ~ , ,  whereas if A - A,, 
<<Ao, we obtain kc= (A - A~)/A,. The Landau damping of 
the w.. wave is "activated" for k > kc. 

Equation (10) is easily solved in the s >> v,, , case. It is 
then found that 

and this assumption is justified if A>> aIo2 (the particle 
densities a r e  assumed to be quantities of the same order  
of magnitude). If A < Ao, the wave w- is damped for all 
values of k. This damping is weak in the sense that Im w 
<< Re w, if v ,  >> v2 (for example, when the electron densi- 
t ies in the films differ strongly). 

FIG. 1. 

It should be  stressed that Eqs. (1 1)  and (12) give the 
exact criterion for the existence of an undamped part of 
the branch w-. Naturally, this criterion i s  governed 
only by the parameters of the system and not by the val- 
ue of w/kv and the waves described by Eqs. (13) and (14) 
cannot exist simultaneously (see Ref. 7). 

A special situation occurs when v, =v,. We then have 
Ao=O [see Eq. ( l l ) ]  and k,--m, i.e., the Landau damp- 
ing vanishes in both branches for all values of k. In 
fact, Eq. (8) with v, =v2 can be solved exactly and both 
solutions satisfy the condition w > kv. If kA << 1 and 
~ / a , , ,  has an arbitrary value, w+(k) is described by Eq. 
(9) with N, = N ,  whereas w- i s  given by 

o- ( k )  =kv 
A+b al+a2 

(2Ab+bZ)'h ' b - -  4 '  

Thus, in al l  the cases discussed above the branch w. 
i s  analogous, in respect of the dependence on k and also 
the damping mechanism, to ionic sound in a gaseous 
plasma. One should simply bear in mind that for the 
same sign of charge ca r r i e r s  in the films the wave w- 
corresponds to antiphasal oscillations of the particles, 
whereas for a pair of n- and p-type films it corresponds 
to cophasal oscillations. 

The dispersion curves w +(k) a r e  shown schematically 
in Fig. 1. The strong damping range is identified by a 
dashed curve. 

We can easily see  that in the case of a system of n 
layers (again without allowance for transitions from 
layer to layer) the spectrum of plasma oscillations con- 
s is ts  of n branches and one of them obeys w = k"', 
whereas others obey w- k in the limit k- 0. For ex- 
ample, in a system of three identical films distributed 
equidistantly with intervals A, we obtain wi = 3wi, wi 
= 2 k ~ w % ,  w! = % k ~ w i ,  where &z 2ne2~k /&m.  

We shall now give the result for  the most realistic ex- 4. PLASMA WAVES IN A QUANTUM FILM 
Perimental case  a,,,<< A, kaL ,<< 1: In the case of plasma oscillations in a quantum film 

2neZN,k u, ka, exp {-2kA) with several populated transverse energy levels there i s  
0-2 = - ( i - e - zm)  [ i - i -  

E ~ Z  v, [kaz( i -e-zAA) 1''' 1. (14) a basically new feature which i s  the possibility of tran- 
sitions between the levels. We shall write down the 

As expected, the damping decreases exponentially in the characteristic determinant for a two-level system on 
range kA >> 1. The relative smallness of Im w- is en- the assumption that the film in question is symmetric 
sured by the condition kvl>> w (a small proportion of the and that the parity selection rules given in Sec. 2 apply. 
particles is in phase with the wave). We shall introduce the matrix motation in accordance 
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with the following scheme: (11) = 1, (12) =2 ,  (21) = 3 ,  
(22) = 4. W e  then obtain 

where y = 2ne2/& k. It i s  clear from Eq. ( 1 6 )  that the 
dispersion equation has two groups o f  solutions. One o f  
them describes zero-gap plasma-wave excitations, 
similar t o  those investigated in the preceding section: 

W e  can easily show that the quantity D(k) =z1iz44-~i4  
vanishes linearly in the limit k-• 0 and i s  positive for k 
> 0 ( ~ u n ~ a k o v s k i i - ~ c h w a r z  inequality). 

The derivative d ~ / d k  at k = 0 ,  denoted below, by Dt(0),  
i s  of  the same order of  magnitude as the f i lm thickness 
L and it governs the criterion o f  existence of an un 
damped branch of  the w- type. This  criterion i s  obtain- 
ed from Eq. (10) by substituting a ,  =a2 =a and replacing 
4A with 2D'(0). W e  shall express the result in t e r m s  o f  
the surface densities o f  particles at the first and second 
f i lm levels N,,z (we shall assume that N2 < N,): 

If Df (0)  - L >> a ,  the dispersion law w-(k) i s  readily found: 

In the case of  a GaAs f i lm of thickness 200 the branch 
w-(k) exists beginning from electron densities (4-5) 
X loi2 cm-'. Naturally, for any electron density there is  
a branch w+ with the square-root dispersion law at low 
values of k .  It i s  interesting to  note that w: i s  propor- 
tional to the total number o f  particles only in the limit 
kL-  0. I f  the f i lm thickness i s  much greater than the 
effective Bohr radius a ,  there is  a range of  wavelengths 
where ka << kL < 1.  The inequality ka << 1 ensures that 
the condition w >> ~ T J , , ~  i s  satisfied and then we have 

Thus, for a given value of k ,  the plasmon frequency i s  
governed by the total electron density N = N ,  +N2 and by 
the separation between the f i lm levels E2 - El = S2, be- 
cause the occupation numbers N ,  and N2 are functions of  
N and 51. 

An additional solution o f  Eq. ( 1  6 )  i s  related to  the non- 
diagonal elements o f  the matrix of  the polarization oper- 
ator lT2 and I13. It follows f rom the properties o f  the 
matrix I that Zz2 = Iz3  = J(k).  Bearing this point 
in mind, we obtain the dispersion equation 

2ne21 (k) 
1 +- 

ek 
[ I I r ( o ,  k)+na(o, k) l=O. 

In the limit k-  0 the value J (k )  vanishes because o f  the 
orthogonality o f  the functions cp,(z), whereas 112 and 113 
remain finite: 

This  solution can be completed by employing an oscil- 
lator model of a f i lm ,  i.e., by assuming that 

Then, i f  kL  << 1, we have J = k ~ / 2 ~ / ~ n ~ / ~  and the solution 
o f  Eq. (21) becomes 

W e  shall not give the fairly cumbersome expression for 
the dimensionless function f .  W e  simply note that f i s  
positive i f  N ,  > N2 (by definition, we have S2 = E l  - E ,  > 0). 

Equation (24) describes an excitation of  an exciton- 
type wave. A similar expression was obtained in Refs.  
8 and 9 for the case when N2 = 0 and k = 0 and it was in- 
terpreted as representing a shift o f  the energy o f  an in- 
tersubband transition due t o  the depolarization field. It 
should be noted that this shift [second t e r m  in Eq. (2411 
increases on increase in the electron density as long as 
only the lowest level i s  populated, which was assumed 
to  be the case in Refs .  8 and 9. As  soon as  the Fermi 
level r ises  above E2, the difference N ,  -Nz  becomes 
constant N ,  - N2 =m(E2 - ~ ~ ) / ? r .  At absolute zero there 
i s  no damping of  an exciton wave right up to values of  
the momentum ko = (w - S2)/vl, whereas at temperatures 
T > 0 the damping i s  proportional to exp[-(w - S 2 ) % 2 ~ $ ] ,  
where U, i s  the thermal velocity. Since - N ~ )  = L - ~ ,  
the quantity in the argument o f  the exponential function 
can be regarded as equal to ( e 2 / & U T k ~ ) ' .  

5. ABSORPTION OF ELECTROMAGNETIC WAVES 

W e  shall now discuss the question of the optical activ- 
ity o f  the investigated oscillations. It i s  clear that the 
branch w+ for a f i lm  or for a layer system i s  fully anal- 
ogous to a plasmon in a one-component plasma and that 
it interacts resonantly with a longitudinal inhomogene- 
ous electric field $, exp[i(kx- w t ) ] ,  as found experi- 
mentally.'4 " The branch w- i s  also, in principle, op- 
tically active ( for  the same fields), but the amplitude , 

and width of the absorption resonance di f fer  consider- 
ably f rom the corresponding parameters in the w, case. 

W e  shall f irst  consider spatially separate plasma lay- 
ers .  The scattering of  electrons in the two layers will 
be described by collision frequencies v ,  and v2. The ab- 
sorption coefficient will be defined as the ratio of  the 
power dissipated per unit area to  the surface energy 
density of  a plasma wave amounting t o  0;/8nk. In the 
case o f  constant frequencies v ,  and vz  the calculations 
are elementary. The  resonance values of Q and o f  the 
widths r o f  the resonances are given by the following 
expressions. 

For the w+ branch, we have 

For the w- branch, we obtain 

The resonance frequencies w * occurring in Eqs. (25) and 
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(26) a r e  given in the kA << 1 range by Eqs. (9) and (131, 
respectively; w, and w2 a re  the frequencies of two-di- 
mentional plasmons in the layers. The expression for 
QP*' given above is valid on condition that vlvz(w~ + w:) 
<< (w: + wt). We can easily show that in the case of a 
symmetric structure (wl = w2, v1 = v2) the value of QT*' 
i s  proportional to v in the frequency range w -w-, 
whereas outside this interval the absorption decreases 
in accordance with the law vw!/w2. Thus, in the case of 
a symmetric structure the optical activity of the w- 
branch is anomalously weak and the absorption differs 
only slightly from that due to the Drude background of 
f ree  carriers.  This is due to the fact that the branch w- 
corresponds to antiphasal motion of like charges in the 
layers. The total current in the system at resonance 
differs from zero  only because of the electron scatter- 
ing. In the calculation of the absorption by the w ,  
branches in a quantum film we have to allow for the 
scattering of electrons accompanied by transitions be- 
tween the subbands. The related problem of the conduc- 
tivity of a quantum film in a homogeneous field in the 
case  when electrons a r e  scattered elastically by impur- 
ities reduces to solution of a system of coupled trans- 
port equations s o  a s  to find the distribution functions f, 
6z is the number of the film s ~ b b a n d ) . ~  As a result, it 
is possible to introduce the relaxation time T,, which 
occurs additively in the total conductivity. However, in 
our case an alternating electric field is strongly inhom- 
ogeneous s o  that the absorption coefficient cannot be ex- 
pressed solely in terms of the quantities 7,. 

For simplicity, we shall consider the model of 6-like 
scatters. The probability of a np- mp' transition aver- 
aged over the positions of the impurity centers will be 
denoted by v , 6 [ ~ , (  p)  - w,,,(P)], where v,, = v,, and it is 
independent of the momenta. The acceleration of a par- 
ticle, which has to be substituted into the transport 
equation, is governed by the sum of the external field 
go and the field g ( z )  of a plasma wave. The latter 
should obviously be averaged over z with the weighting 
(pi(z) in the equation for the function f,. Bearing this 
point in mind, we obtain the following system of equa- 
tions for the nonequilibrium parts  of the distribution g,: 

where gm= go + +S ~(z)cpkdz.  The "outflow" t e r m  in Eq. 
(27) contains only zeroth cylindrical harmonics g,(pl)  so  
that the problem can be reduced to a system of linear 
algebraic equations for  small quantities (gd, where 
(. . .) denotes averaging over the angles in a two-dimen- 
sional p space. The expressions for  Q, a r e  very cum- 
bersome even in the case of a two-level model. We 
shall give only the formulas for the resonance widths 
r*. The absorption coefficients themselves correspond 
qualitatively to Eqs. (25) and (26); the value of Qf" can- 
not obviously be anomalously small  because in the case 
of a film we have Nl#N2. We shall introduce v, =vli 
+v12 and v2 =vz2 +v,,, which determine the conductivity 
of a film 0, in a static field 

Then, r, and r.. a r e  described by 

Comparing Eq. (28) with Eqs. (25) and (26), we can see  
that the formulas for I'+ a r e  identical for a film and a 
layer structure, and they can be expressed in t e rms  of 
the relaxation t imes = 1 / ~ , , ~  introduced in Ref. 2. 
In contrast, the formulas for r.. contain an additional 
t e rm which cannot be expreesed via T , , ~  and which ap- 
pears precisely because of the intersubband scattering. 

6. METAL-INSULATOR-SEMICONDUCTOR 
STRUCTURE 

The most thoroughly investigated MIS structures a r e  
those made of silicon. The intersubband infrared ab- 
sorption, plasmons, and magnetoplasma resonance 
have been observed precisely in Si-Si02-metal sys- 
tems. In this section we shall discuss the main results  
of our study specifically in the case  of MIS structures. 

We shall assume that the semiconductor layer occup- 
ies the region z > 0, that the insulator is located at -d 
< z  <-0, and the metal electrode i s  at z =-d. The ma- 
tr ix I of Eq. (4) i s  now described by 

where & and co a r e  the permittivities of the semicon- 
ductor and insolator, respectively. The functions cp,(z) 
a r e  known from self-consistent calcdlations based on 
the direct variational method.'' Since the functions cp, 
a r e  no longer classified in accordance with the parity, 
all the elements of the determinant (16) differ from 
zero. However, in the long-wavelength limit the situa- 
tion simplifies greatly. In fact, if kL- 0 (L i s  the 
thickness of the inversion channel), all the elements of 
ivanish ,  with the exception of I,,, I,,, and 14, and 
this is due t o  the orthogonality of cp,. The dispersion 
law for the branches w is then easily found: 

a+= = 
h e Z k  (N,+N,) 4nezD' (0, kd) N,Nz 

m(e+k,cth kd) ' @-' = m(e+eo cth kd) NI i N ,  ' (30) 

where Df(O, kd) denotes (in contrast to Sec. 4) the deriv- 
ative with respect to k of 1,,14, -I:, in the limit k- 0, 
but subject to  the condition that cothkd i s  regarded a s  a 
constant. This difference from Eq. (19) is due to the 
fact that we usually have L << d and when kL << 1 the val- 
ue of kd need not be small. The quantity D(0, kd) con- 
tains the combination ( &  - co cothkd) (& +&, coth kd)-', 
which tends to a constant both at high and low values of 
kd. We can thus see  that when two electron subbands 
a r e  populated in an MIS structure, we obtain w- = k3I2 
when kd<< 1 and w - a  k in the opposite limiting case. 

The exciton mode is characterized by a finite frequen- 
cy at k = 0. Hence, it follows that II, =II, = 0 and II,, II, 
# 0, and that the dispersion equation is identical with 
Eq. (21). Then, the contribution to ~ ( k )  of the second 
t e rm in Eq. (29) i s  proportional to  k2, whereas the dis- 
persion equation contains J(k)/k. Therefore, Eq. (24) 
applies to an inversion channel with the exception of a 
numerical coefficient in the second term.  Finally, we 
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shall use the experimental results  discussed in Ref. 13 
to estimate the importance of the finite thickness of an 
inversion layer in the one-level regime. It has been 
possible to record experimentally the fourth spatial 
harmonic of plasmons for which k- kJ7, but even inthe 
case of such large momentum there is nodeviation from 
the long-wavelength asymptote to the dispersion law 
[first of the formulas in Eq. (30)]. We wish to draw at- 
tention to the fact that the corrections for the finite 
thickness of the layer (expansion with respect to kL) 
and for the spatial dispersion (expansion with respect to 
ka) have opposite signs and in the present case they 
largely balance out. It follows from Eq. (6) of Ref. 6 
(in the case when ka<< 1) that the correction to the fre- 
quency is 

8 0 ,  3 h ' k  -=--(e+eooth k d ) .  
o 16 mea 

Having calculated the constant in Eq. (7) of the present 
paper for the function of the ground subband selected in 
accordance with Ref. 12 in the form $ - z  exp(-cuz/2), we 
obtain 

Under the experimental conditions discussed here, we 
have 6w1 + 6w2= 1.25X 1 0 - ~ w ,  which is approximately 
one-third less than the correction for the spatial dis- 
persion. 

The authors a r e  grateful to i . ~ .  Batyev ,and M.V. i n -  
tin for valuable comments. 

l)Strictly speaking, a t  the point kc there  i s  no intersection, but 
the w- (k) curve i s  in contact with the straight line kvl. If 
k > kc, the value of Ri formally changes its slgn, which cor- 
responds to a change to a different sheet of a Riemnn sur- 
face. Near kc the behavior of the w- curve i s  described by 
u - -kv1c  (kc-k)2, k <  kc. 
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