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General expressions for the superfluid current and the orbital angular momentum in a superfluid liquid with 
the structure of the A phase of 'He at T = 0 are derived which go over in the limit A BE, into the 
corresponding expressions for a Bose liquid consisting of molecules with spin fil. It is shown that the local 
intrinsic angular momentum in 'He-A, unlike the corresponding quantity in a Bose liquid, is defined only in 
variations, and its spontaneous part is small on account of the smallness of (A /E,)'. The Lagrangian 
formalism is used to construct the nonlinear orbital dynamics of 'He-A at T = 0. It is shown that in the 
presence of textures in the I-vector field the dynamical equations are not Galilean invariant, which is another 
manifestation of the difference between 'He-A and a Bose liquid. The noninvariance stems from the fact that, 
because of the absence of a gap in the excitation spectrum, the nonsingular textures in 'He-A possess normal 
momenta, as a result of which the normal-component density is nonzero even at T = 0, and the velocity of the 
normal component does not drop out of the dynamical equations. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION Bose case the intrinsic-angular-momentum density will 
be equal to the sum, iRp1, of the spins of all  the mole- 

The A phase of superf luid 3He is formed through the cules. 
Cooper pairing of the helium atoms in the state with 
orbital angular momentum I = 1 and a component of the The idea of proceeding to the limiting Bose case be- 
momentum along the preferred direction equal to I , =  1. longs to Mermin and M u ~ i k a r , ' ~  who have obtained for 
The orbital part 9 of the order parameter of 3He-A is the superfluid current an expression that is valid both 
given by the spherical harmonic Y,,(n) in the coordinate in the weak coupling limit, which simulates theA 
system with the z axis oriented along the direction of phase, and in the very strong coupling limit, i.e., for 
the angular momentum 1= el X e, of the Cooper pair: the Bose liquid: 

Y =A, (T) Y,, (n) = I ~ A ,  (T) (e,+iez, n). (1) j=p~ .+ ' /~  rot '/2hpl-L/2fiCol (1 rot 1). 

Here is the energy gap, n =  k /k  is the direction of Here v, is the superfluid velocity and the coefficient C, 
the opposite momenta of the particles in the Cooper varies continuously from zero in the case of the Bose 
pair, and e, and ez a r e  two orthonormal vectors. It i s  liquid to the density in the weak coupling limit. 
natural to expect the 3He-A liquid a s  a whole to possess 
a spontaneous intrinsic orbital angular momentum 
even when it i s  in the completely homogeneous state. 
The computation of i t s  magnitude was first  carried out 
in Anderson and Morel's now classical paperZ (see also 
Ref. 2 for a review), and has since then been the sub- 
ject of numerous  publication^^-'^ which have continued 
to appear up till now. The values obtained for the angu- 
l a r  momentum density L lie in the range from Ep/2 to 
R p ( ~ d c , ) ~ ,  i.e., they differ by up to six orders  of mag- 
nitude. There a r e  also discrepancies in the expres- 
sions for the superfluid current and in the structures of 
the hydrodynamic equations corresponding to the orbital 
degrees of freedom in 3He-A. 

The complexity of the indicated range of problems is 
due to the fact that the dimensions 5 of the Cooper pairs 
a r e  significantly greater than the pair spacing a ,  and 
therefore the orbital angular momentum of the liquid is 
not simply the sum of the angular momenta of the 
Cooper pairs. Meanwhile, we should obtain upon the 
intensification of the pairing -inducing interaction, i.e., 
in the A, >> E ,  or ,  equivalently, 5 <<a limit, in place of 
a system of Cooper pairs, a system of isolated identi- 
cal molecules, each of which possesses a spin R1 (i.e., 
anA -phase structure Bose liquid), the orbital proper- 
t ies  of which a r e  much easier to investigate; for in the 

The object of the present paper is to find the general 
features of, and the differences between, the orbital 
properties of the A phase and the Bose liquid, i.e., to 
consider from the standpoint of the indicated passage 
to the limit the problem of the intrinsic orbital angular 
momentum and the orbital dynamics. We shall show 
that it is precisely the deviation of C, from zero in the 
A phase of 3He that gives r ise  to the important differ- 
ences between theA phase and the Bose liquid, a fact 
which is reflected both in the unusual properties of the 
intrinsic orbital angular momentum of the liquid and in 
the existence in the inhomogeneous A phase of a nor - 
ma1 component even at T = 0. We shall use the pheno- 
menological approach. This approach describes the 
system in both limiting cases, and, what i s  more, our 
results  go over in the weak coupling limit into the 
microscopic-theory results obtained by the Green-func- 
tion or matrix-kinetic-equation method. 

Not least among the causes of the astonishing dis- 
crepancies in the results  of the computations of the or-  
bital angular momentum in 3He-A is the absence of 
simple physical ideas about the angular momentum of a 
liquid consisting of particles whose dimensions a r e  
much greater than their spacing, and which possess 
identical angular momenta til. Therefore, we shall be- 
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gin the discussion of the orbital properties of 'He-A 
with a discussion of a naive mechanical model. 

2. A NAIVE MODEL OF THE ORBITAL ANGULAR 
MOMENTUM 

Let us  consider a Bose liquid consisting of identical 
molecules with density $p, identically directed orbital 
angular momenta til, and dimensions much smaller  
than their mean spacing. Clearly,  the angular momen- 
tum of a unit volume isolated inside such a liquid will 
be L = fipl/2 (below we se t  A= m = 1, where m i s  the 
mass  of the atoms of the liquid). The angular-momen- 
tum variation is equal to 

Here i t  is reasonable to call the coefficient attached to 
61 (i. e., Lo = i p )  the spontaneous orbital angular mo- 
mentum of the liquid; the coefficient attached to 6p, 
the reaction of the angular momentum to a change in 
the density, o r  the induced angular momentum. 

Let us now begin to increase the dimension [ of the 
molecules in our Bose liquid, and examine whether the 
local intrinsic angular momentum will be defined when 
the dimension of the molecules becomes greater  than 
their spacing a. For  this  purpose, let  u s  isolate in the 
liquid some region of unit volume. This can be done in 
two ways, namely, the boundary of the isolated unit 
volume can be considered to be ei ther  fictitious, in 
which case i t  will c ros s  some molecules, s o  that the 
volume will contain on the average )p molecules, or  
rea l ,  in which case the volume will contain exactly )p 
molecules. Clearly, in the second case the value of 
the orbital angular momentum of the isolated volume 
does not depend on the molecular dimensions. This 
fact can also be explained, using the picture of molecu- 
l a r  currents. Let the angular momentum 1 of each of 
the molecules be produced by a molecular ring cur - 
rent. Then, if the volume contains exactly $p mole- 
cules irrespective of their  dimensions, even though the 
molecular currents  inside the volume on the average 
cancel each other out, there exists  along the surface a 
current that gives the angular momentum 

In contrast, in the f i r s t  case  the currents  cancel each 
other out a t  any point within the volume o r  on the su r -  
face, and L, = 0. Moreover, an uncompensated part  of 
the angular momentum a r i s e s  in the f i r s t  case  only on 
account of the presence of part icles whose dimension 
is smaller  than their spacing. The fraction of such 
particles in the a r e a s  of the c ros s  section of our vol- 
ume in the plane perpendicular to the direction of 1 (the 
overlap of the molecules along the direction of 1 is un- 
important) is 

Consequently, L, = ~ ~ p l / [ ~ .  Recalling that the molecule 
(Cooper pair) dimension = vF/a0, where v, is the 
velocity a t  the Fe rmi  surface, we can represent  the 
est imate for L, in another form: L,= ( ~ d e , ) ~ p l .  

The responses of the local angular momentum of the 
liquid to changes in the density, 6p, and direction, 61, 
correspond to the two cases  defined above. Indeed, if 
we change the density of the liquid in a given volume 
isolated inside the liquid with the aid of a fictitious 
boundary by a certain amount bp, then the orbital angu- 
l a r  momentum of this  volume changes by 6 L =  &6p/p 
= $16p, since the number of molecules inside the given 
volume actually increases by $ 6 ~ .  If, on the other 
hand, leaving the density unchanged, we change the 1 of 
each molecule in the volume in question by a certain 
smal l  amount 01, then the orbital angular momentum of 
this  volume changes by 6L = l L, l dl. 

Thus, the variation of the orbital-angular -momentum 
density for a liquid consisting of particles whose di- 
mensions a r e  grea ter  than their mean spacing will have 
the form 

so  that 

This means that in such a liquid only the variation of 
the local angular momentum, and not the momentum it- 
self, i s  defined. 

Now we can explain the colossal spread, indicated in 
the Introduction, in the values obtained for  L for theA 
phase in the various investigations. Specifically, in 
some  paper^^'^'^ the authors computed the magnitude L, 
of the spontaneous angular momentum, which turned 
out t o  be equal (at T =  0 and in the absence of Fermi-  
liquid corrections) to 

In other papers ei ther  the authors calculated directly 
the response of the orbital angular momentum to a den- 
sity change,14 i.e., L,, which turned out to be equal (at 
T = 0) to 

L,='/,P, (6) 

or  they found the magnitude of the orbital angular mo- 
mentum in a vessel  with a fixed number of parti- 
c l e ~ , ~ ' ~ ' ' ~  which is naturally also equal t o  E ,  = i p  a t  T 
= 0 [or  L,= $pip,(T) a t  temperatures different f rom zero]. 

Although Brinkman and Cross'sL0 cri t ical  comments 
directed a t  Ishikawa's7 and Mermin's8 investigations, in 
which operations a r e  performed with a singular Coop- 
er-pair  wave function @, a r e  valid, the origin of the 
answer L =  i p l  obtained in these papers is, a s  has  a l -  
ready been pointed out, not a t  a l l  connected with the 
singularity of 0 ;  but simply with the consideration of a 
vesse l  with a fixed number of particles. The argu- 
ments adduced in Combescot's paper,I2 where an angu- 
l a r  momentum i p l  is assigned to each particle and 
-ipl, to each hole, s o  that L = 0 in the particle-hole 
symmetry approximation, a r e  apparently invalid. Al- 
though they yield the correct  value for  the magnitude of 
the spontaneous angular momentum Lo <<p/2, they con- 
tradict our intuitive idea that the total angular momen- 
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tum of a system of N particles does not depend on the 
dimension of the pairs, and is equal to  t iN/2 .  

Let us also mention Fomin's paper," which occupies 
a special position. In this paper Fomin proves on the 
basis of general symmetry arguments the equality of 
the spontaneous orbital angular momentum Lo in the A 
phase and the spin angular momentum S, in the A, 
phase of 3He. The latter is also given by the expression 
(5). There is no induced spin angular momentum in the 
A, phase (i.e., S,= O), for the A, phase is a mixture of 
superfluid and normal cpmponents with practically the 
same [to within density and equal [also to 
within in magnitude but oppositely directed 
magnetizations. Therefore, simultaneous changes in 
the densities of the two components do not lead to a 
change in the spin angular momentum. 

3. INVARIANT EXPRESSION FOR THE LOCAL 
INTRINSIC ANGULAR MOMENTUM 

The expressions (4)-(6) can be derived by a simple 
phenomenological method that i s  valid for both limiting 
cases of a Fermi and a Bose liquid. The following ex- 
pression has been proposed by us6 and Mermin and 
Muzikar16 for the superfluid current: 

Here a, is the phase of the pair wave function (1) and 
n, i s  the particle distribution function. The integration 
by parts of (7) leads to the following expression: 

Using the equalities (8) 

where 6 (k,) is a delta function and k, = k - l(k . 1), we 
obtain for the current the expression (2), f irst  obtained 
by Mermin and ~ u z i k a r l ~ :  

j=pv8+'Iz rot '1,pI-'IzCpl(l rot I), 

1 
C. = 7 fdkzkz2n(O, 0, k.) 

(an) - _  
The orders of magnitude of the terms in (2) correspond 
with the orders of magnitude of the terms in (8); k ,  
= k .  1. The parameter Co is equal in the superfluid- 
Fermi-gas limit to k:/3n2, i.e., i s  approximately 
equal to the density p. The deviation of Co from p is 
due to the pairing-induced change in the density. In 
other words, Co = p(A, = 0) (see Ref. 16). In the limit- 
ing case of a Bose gas, in which n,= p6(k), the parame- 
t e r  C, is equal to zero. 

The variation 6L of the local angular momentum can 
be found directly from the current by introducing the 
local changes 61 and 6p and computing the response 

6 L  = ]d~r[r6~~ 

under the condition that outside the volume in question 
61 = 0 and 6p = 0. We can use in the computation either 
the formula (2), or the expression (7) directly. In the 
latter case we have 

Thus, we obtain for the spontaneous angular momen- 
tum Lo the general formula 

which yields the expected value Lo = $p in the limiting 
case of the Bose gas (C, = 0). In the limiting case of a 
Fermi gas with weakly interacting particles 

When the Fermi-liquid effects a r e  neglected, the coef- 
ficient attached to i s  given by the expression 
(5). The induced angular momentum of the liquid, i.e., 
the coefficient attached to bp in (11) occurs in both 
limiting cases. 

Thus, we have obtained the dependence of the local 
intrinsic angular momentum on the parameter C,. In 
the case of the Bose liquid (C, = O), the local angular 
momentum i s  well defined, and is equal to ipl .  In the 
case of the Fermi liquid (C,#O), only the magnitude of 
the local-angular -momentum variation i s  defined. In 
the following section we shall confirm this conclusion 
by investigating the equations of the orbital dynamics. 
Let us point out that we can define the local angular 
momentum a s  

assuming that C, i s  a density -independent parameter, 
i.e., that C, is a dynamic invariant. In this case the 
variation of L with respect to p and 1 is given by (11). 

4. THE INTRINSIC ANGULAR MOMENTUM GIVEN 
BY THE LINEAR DYNAMICAL EQUATIONS 

It is usually thought that the subdivision of the angular 
momentum into a mechanical angular momentum of the 
current and an intrinsic angular momentum L has an 
element of arbitrariness about it. Indeed, the intrinsic 
angular momentum i s  usually eliminated from the hy- 
drodynamic equations by redefining the current, j - j 
+ $ curl L, and simultaneously symmetrizing the mo- 
mentum flux tensor. The question of the intrinsic angu- 
lar  momentum is therefore said to have a semantic 
character. But in the case of systems with an order 
parameter with rotational degrees of freedom, there 
exists an equation of motion for these degrees of free- 
dom that is invariant under current transformations, 
and this allows us to uniquely separate a local intrinsic 
angular momentum from the total angular -momentum 
density. 

In 3He-A the variables characterizing the rotational 
degrees of freedom a r e  the vector 1 and the phase cp , 
which is at  the same time the angle of rotation about 
the direction of 1. The hydrodynamic equations for 1 
and q ,  obtained in the linear approximation from the 
microscopic theory for T =  0 (see, for example, Ref. 
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I?), have the following form: 

where F is the free energy. This equation is the equa- 
tion of motion for the intrinsic angular momentum. In- 
deed, the right-hand side is equal to -dF/66, where 60 
is the angle of rotation of the order parameter, and is 
connected with cp and 1 by the relations 61 = 60 X 1 and 
6q = -1.60. Therefore, the left-hand side of (15) is 
the time derivative of the intrinsic angular momentum. 

Taking account of the fact that -+6+(a@/ap)" is none 
other than a change, 6p, in the density, we obtain for 
the intrinsic-angular -momentum variation the expres- 
sion 

which differs from the expression (11) in that (16) con- 
tains an additional induced moment that stems not from 
the change in the density,, but from the rotation of 1 
with angular velocity [ l -  11. The last term in (16) can 
also be derived from the expression (7) (see Ref. 6) if 
we allow for the dependence of the distribution function 
n, on 1. Thus, the dynamical equation for the order 
parameter confirms the correctness of the choice of 
the intrinsic angular momentum in the form ( l l ) ,  and 
the intrinsic angular mgmentum in the A phase, being a 
participant in the dynamics of the rotational degrees of 
freedom, has a clear physical meaning, just a s  in the 
case of an angular -momentum-carrying Bose liquid, 
for which Co = 0. 

5. GENERALIZED ANGULAR MOMENTUM I N  THE 
LAGRANGIAN FORMALISM 

Let us now show how the hydrodynamic equations can 
be phenomenologically derived in a manner that will 
make them applicable to the two limiting cases under 
consideration. Let us use for this purpose the La- 
grangian formalism. Equation (15) can be written in 
the form of the Euler equation 

where the Lagrangian Y is given by 

Here LC, the generalized angular momentum, differs 
from L only in that the term with the spontaneous angu- 
lar momentum Lo in it has a factor 3 attached to it; 
specifically, 

6L ~=' / ,Lo8lfL/ ,18p.  (19) 

For simplicity, here the terms with x,,, a r e  not includ- 
ed in LC. The factor 2 stems from the fact that the 
term with Lo in Eq. (17) is varied twice: once with r e -  
spect to 6 and the second time with respect to 8, and 
both variations yield identical contributions unified in 
Lol. 

We have proposeds for LC a phenomenological expres- 
sion, 

(where 6% i s  the variation of the particle distribution 
function), that, as we shall now show, turns out to be 
applicable not only to the A phase, but also to an angu- 
l a r  -momentum -carrying Bose liquid. The formula (20) 
can easily be justified with the use of only the form of 
the phase of the pair wave function +,, more exactly, 
i t s  dependence on the angle of rotation 68. If the sys- 
tem rotates with angular velocity 8, then the particle 
energy E, changes by the local value of the chemical 
potential *Q k= 1, 8'. The generalized -angular -momen - 
tum variation 6Ls is obtained from the free-energy 
variation 

by differentiating it with respect to the angular velocity. 
As a result, we obtain (20). 

Let us transform the formula (20) a s  follows: 

Taking account of the fact that 

we have 

Thus, we have obtained a formula, (19), with the 
same value of Lo = i ( p  -C,) a s  in (11). This demon- 
strates the applicability of the definition (20) of*LC both 
in the case of 'He-A and in the case of an angular-mo- 
mentum-carrying Bose liquid. Using the formula (21) 
for the generalized angular momentum, we construct in 
the following section nonlinear orbital hydrodynamics 
for T = 0. 

6. NONLINEAR HYDRODYNAMICS OF THE A PHASE 
AT T=O 

The nonlinear hydrodynamics of the A phase a t  T =  0 
should meet the following requirements. First ,  the 
equations should, on being linearized, go over into the 
equations obtained from the microscopic theory. Sec- 
ondly, the correct equations should be obtained in the 
limit of an angular-momentum-carrying Bose liquid. 
As to the requirement that the terms containing the 
velocity v, of the normal component vanishI8 a t  T =  0, 
for theA phase i t  i s  in the f i rs t  place apparently un- 
fulfillable and, in the second, not obligatory. As we 
shall see below, the t e rms  with v, do not vanish when 
the 1 field contains textures, which play the same role 
played by vortices in 4He, producing a normal compo- 
nent even a t  T = 0. 

It is convenient, in constructing the nonlinear hydro- 
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dynamics, to wri te  the order parameter in the form 

(e,+ie,) e'", 

thereby separating out the phase iP of the condensate. 
Naturally, this  phase will enter into r e a l  physical 
quantities only in combinations with the angles of rota-  
tion of the vectors el and e, about 1. Thus, the super-  
fluid velocity v, has the form 

which is invariant with respect  to a change in by 
6@(r,  t) with simultaneous rotation of el and e, through 
the angle 68 = lb+(r, t), which does not change the o r  - 
der parameter ,  and, consequently, should not change 
V, a s  well. 

The Lagrangian of the system has  the following gen- 
e r a l  form: 

It should be varied with respect to a l l  the variables 1, 
p, v,, @, Lr and 8 under the conditions (21) and (22), a s  
well a s  the condition 61= 68 X 1. Notice that the con- 
straint  (21) has  a nonholonomic character. For  defin- 
iteness, we concretize Y i n  the form 

The standard variation of the Lagrangian under the 
conditions of the nonholonomic constraints leads, after 
the elimination of the Lagrange multipliers, to the fol- 
lowing three Euler equations for  1, p, and v,: 

where D = a/a t  + v,V is the total-derivative operator. 
These equations in the linear approximation coincide 
with the equations obtained microscopically. 

Let u s  now investigate how the Eqs. (24)-(26) for the 
Bose liquid and 3He-A differ. In both cases  the f ree  
energy has  the form 

1 I pl I 
F= Id3r  (a (p, I) + - p,' + -v, rot - - - C. (lv.) (1 rot I) 

2  2 2 2  

while the current  

As can be seen, in the nonlinear case the expression 
for  the current contains, besides the t e rms  entering 
into (2), a te rm connected with the dependence of the 1 
field on the time. The same t e rm characterizes the 

case  of the spin dynamics of theA and B phases," 
where i t  includes the time derivatives of the angles of 
rotation (or the spin density). The expression for  & 

h a s  the standard form: 

e(p, 1) =~o(p)+'/2Kl(VI)Z+'12K2(1 rot l)Z+'/2K3[1 rot 11'. 

Naturally, the K coefficients in the 1-dependent part  
~ ( p ,  1) of the energy have different values in the various 
limiting cases. This is, however, not the qualitative 
difference. The important difference s t ems  from the 
las t  t e rm in (27), which contains C,, and, hence, van- 
i shes  in the case  of the Bose liquid. Because of th is  
t e rm,  Eq. (24) for 3He-A turns  out to be noninvariant 
under the Galilean transformation 

i.e., there appears  on the left-hand side of (24) a cor -  
rection equal to 

The Eqs. (25) and (26) a r e  Galilean invariant if we con- 
sider  Co to be an invariant of the motion. 

Thus, the s ame  coefficient Co that gives r i s e  to the 
important difference between the orbital angular mo- 
menta of theA phase and the Bose liquid leads t o  the 
violation of Galilean invariance if 

(lV)l=- [I  rot 1] #0. 

Furthermore,  i t  can be shown that, for Co + 0, the Eqs. 
(24)-(26) do not satisfy the law of conservation of cur-  
rent. Indeed, we can, by differentiating the current  j 
given by (28) with respect  to the t ime and using Eqs. 
(24)-(26), easily verify that, for Co# 0, the time de- 
rivative of j cannot be represented in the form VIrIk, 
i. e., that 

This paradox can be eliminated by introducing a normal 
component. 

7. DENSITY OF THE NORMAL COMPONENT AT 
T=O 

The presence of a normal component in  the A phase 
a t  T = 0 is not connected with the shortcomings of our 
method; i t  i s  a property of the A phase, stemming di- 
rect ly from the absence of a gap in the excitation spec- 
t rum with k,= 0. Indeed, the fact that the system i s  not 
Galilean invariant in the presence of a texture with 
(1*V)1#0 indicates the existence of a preferred coordi- 
nate system in which the texture i s  a t  res t .  The non- 
conservation of current  indicates that there  i s  associ-  
ated with the moving texture an additional nonsuperfluid 
current  that has  not been considered by us. Thus, the 
textures play the role of impurities, producing a nor-  
mal component even a t  T = 0. The normal component in 
SHe-A consists  of quasiparticles that, owing to  the ab- 
sence of a gap in the k,= 0 spectrum even a t  T = 0,  
collect in the potential wells produced by the textures. 
The Bose liquid does not contain a normal component, 
is Galilean invariant, and conserves the superfluid 
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current. The density of the normal component of theA 
phase a t  T = 0 can easily be estimated. 

Let us use the expression for the excitation spectrum 
in the A phase: 

The quasiparticle distribution function v, at  T = 0 is a 
9 function of k .v, - Ek,  where v, i s  the velocity of the 
normal component, and is different from zero at arbi- 
trarily small gradients of 1 and arbitrari ly small  v, 
-va because of the absence of a gap a t  k,= 0. As a r e -  
sult, there always exists in the presence of a texture an 
excitation current 

Varying P with respect to v, -v,, we obtain in the 
linear (in v, -v,) approximation the magnitude of the 
normal density: 

where E, no longer depends on v,. The evaluation of 
the sum in (33) yields 

Thus, the presence of a texture with (1 V)1# 0 indeed 
leads to the appearance of a normal component in the 
A phase even at T = 0. The nonanalytic form of pn a s  a 
function of the gradients should be noted. The exist- 
ence of a pn(T = 0) and the difference of C, from zero 
a re  closely connected facts. They a r e  each a conse- 
quence of the singularity of the pair wave function at k, 
= 0: pn ar ises  on account of the vanishing of the gap a t  
k, = 0 and the related nonanalyticity, and Co is nonzero 
because of the &-function singularity at k,= 0. Let us 
also note that the coefficient K, attached to the term 
[I x curllJ2 = ((1 ~ ) 1 ) *  in the energy &(p ,  1) has a loga- 
rithmic singularity caused by the vanishing of the gap 
a t  k,= 0 (Refs. 3 and 17). It can be seen directly from 
the expression (34) that pn- 0 in the Bose liquid (i.e., 
for Ao- 00). 

The existence of the new variable v, a t  T = 0 requires 
another equation for this variable. Such an equation i s  
the momentum conservation law, which is no longer a 
consequence of the Eqs. (24)-(26), a s  it was in the case 
of the Bose liquid, but an independent equation. The 
derivation of this equation, a s  well a s  the extension of 
the results  obtained and the generalization of the equa- 
tions to the case of nonzero temperatures require fur-  
ther investigations. Here we only note that Eq. (24) is 
valid in the coordinate system in which v, = 0, and 
should in the general case be supplemented by the term 
$C,(v,. l)(l V)l in order to secure Galilean invariance. 
But under the conditions of a slowed-down normal com- 
ponent, i.e., forv, = 0 (fourth-soundor pinned-texture re-  
gime), the system of equations (24)-(26) constitutes a 
complete system. 

8. CONCLUSION 

We have elucidated the differences between the prop- 
er t ies  of a superfluid Fermi liquid and a superfluid 
Bose liquid with identical order parameters with the 
structure of theA phase of 'He. Although the posses- 
sion of the same symmetry by the order parameters 
leads, a s  is well known,lg to identical global superfluid 
properties (identical topologically stable defects and 
textures, identical properties of the persistent super- 
flows, identical mechanisms of the nonstationary Jo- 
sephson effect, identical vortex structures in a rotating 
vessel), the orbital dynamics of these liquids a re  sig- 
nificantly different. In the limit of a slightly nonideal 
Fermi gas  with the structure of the A phase of 3He, the 
singularities occurring in the excitation spectrum and 
the density of states give r i se  to new physical phenom- 
ena: 

1) the expression for the current contains an addition- 
a l  term in comparison with the expression for the cur- 
rent in the Bose liquid; 

2) the local orbital angular momentum of the liquid 
turns out to be defined only in variations, and i t s  spon- 
taneous part i s  small  on account of the smallness of 
(vo/~,r)~; 

3) the nonsingular textures possess normal momenta, 
as a result of which the density of the normal compo- 
nent does not vanish even a t  T =  0, and the velocity v, 
does not drop out of the dynamical equations. 

New problems can ar ise  at T#O. Let us briefly 
touch upon one of them. The dynamics of theA, phase 
has  recently been intensively studied. It h a s  been 
s h o ~ n ~ ~ ' ~ ~  that, although the angle of rotation cp of the 
spin vectors of the order parameter about the magnetic 
field and the phase of the wave function enter into the 
order parameter in an invariant fashion as q + $, the 
dynamics of the variables cp and 3 a r e  different. The cp 
dynamics i s  connected with the spin oscillations; the 
dynamics, with the density oscillations. .The responses 
of the spin S, and the density p to i / ,  and have the 

' 

form: 

where the cross  terms a,, and a,, a r e  equal to zero in 
the A, phase, a,, = x,, is the spin susceptibility, and a,, 
= -$ap/ay. 

A similar situation for the orbital angular momentum 
may occur in the A phase. Although the angle p of ro -  
tation about 1 and the phase @ enter into the order pa- 
rameter in an invariant fashion, their dynamics may 
differ. The following equations obtain in the general 
case : 

At T =  0 we have 

[see (15) and (16)], so  that 6L,= g6p. In the T#O case 
i t  may turn out that there exists a temperature range in 
which the two bp and 6L, motions a r e  independent. The 
oscillations of the z component of the angular momen- 
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tum at constant density will in this case be connected 
with temperature oscillations (second sound), like the 
longitudinal-magnetization oscillations in the A ,  phase 
that were predicted by Gurgenishvili and ICharadzeZ0 
and Liu:' and experimentally observed by Corruccini 
and O s h e r ~ f f . ~ ~  That 6L, and $6p become unbalanced at 
T #  0 can be discerned from Nagai'sz3 results, which 
show, in particular, that alz/az, = 1 - Y(T), where Y(T) 
i s  the Yosida function, equal to unity at T =  T, and 
zero at T = 0. 
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