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The interaction between regular and random waves described by the Burgers equation at large Reynolds 
numbers in the region of existence of sawtooth waves is investigated. The one-point velocity probability 
density and recurrence relations for the moments are derived. A closed equation for the average velocity with 
turbulent viscosity is obtained and the viscosity is calculated. The various stages of evolution of the statistical 
characteristics of the velocity and their dependence on the parameters of the initial distribution are studied. 

PACS numbers: 47.35. + i 

1. INTRODUCTION The evolution of an initial random disturbance with 
characteristic amplitude a  and scale 1 a t  large Rey- 

In the propagation of finite-amplitude acoustic waves nolds numbers Re = a l / v  passes through three stages. 
in a liquid or a gas, an essential role is played by the At t < l / a  the solution (1) takes the form of a simple 
interaction of a regular periodic signal with the noise. wave satisfying (1) at v= 0, and consequently i ts  sta- 
The non-coherence of sound and ultrasound ones sources tistics can be obtained from the statistics of the para- 
used in laboratory practice and in geophysical experi- meters  of a simple wave. 4 9 5  

ments leads to the result that their radiations have a 
noise component. The same problem ar ises  in the re-  
cording of sound waves from natural hydrodynamic 
sources. The spectra of the radiation that ar ises  in 
such phenomena a s  explosions, vibrations, cavitation, 
electric discharges, and jet streams consist a s  a rule 
of regular and noise components. Finally, the same 
questions a r e  raised in connection with the analysis of 
the parameteric interaction of acoustic waves. The ef- 
fects observed in similar situations a r e  quite varied and 
depend on the amplitudes and scales of the signal and 
the noise, the acoustical Reynolds number, and so on. 

One-dimensional finite-amplitude waves satisfy the 
Burgers equation1 

where u i s  the vibrational velocity, v is the viscosity 
coefficient, t and x in acoustical applications a r e  con- 
nected with the real  coordinates by the relations 
t = cilx' and x = x' - cot1 (c, i s  the sound velocity in the 
medium ). 

Equation (1) can also be regarded a s  a model for non- 
linear media without dispersion and i s  used in radio- 
physics and hydrodynamics. By considering the evolu- 
tion of a random o r  mixed initial disturbance, we 
reach the state of acoustic turbulence, which is of 
interest by itself, and which can also be used for the 
study of vortical turbulence. ' v 3  

Although the Burgers equation is solved exactly by the 
substitution method of Hopf-Cole, there a r e  difficulties, 
connected with the averaging, in the calculation of the 
statistical characteristics of the velocity waves. These 
difficulties a re  especially significant a t  large Reynolds 
numbers, when the spectral methods turn out to be in- 
effective, since the spectrum is enriched during pro- 
pagation by a large number of intense and very strongly 
mutually correlated harmonics. 

At t >l/a ,  i. e.  , after the toppling of the simple wave, 
an ensemble of sawtooth waves interacting with one 
another is formed (acoustic turbulence), the slopes of 
the fronts of which a re  limited by the v i s ~ o s i t y . ~  In 
this region, the simple wave is formally multivalued, 
and to construct the statistics of the velocity in the 
sawtooth wave, i t  is necessary to draw on additional 
considerations. Where the shock waves have just been 
formed, i t  is still possible under certain restrictions, 
to investigate the statistics of the random and mixed 
signals, using the statistics of the positions of the 
wavefronts. More universal is the application of the 
rule of selection of that value of the velocity in the sim- 
ple wave to which corresponds the minimal value of the 
action s = judx.  Such a form of the selection rule fol- 
lows from the Burgers equation, and it is used in Ref. 
7 to construct the statistics of the ensemble of saw- , 

tooth waves that ar ise  upon evolution of a noise pertur- 
bation with a zero dc component in the spectrum. 

At t such that the running Reynolds number, which 
falls off (together with the energy of the wave) a s  a 
consequence of the dissipation a t  the fronts, becomes 
of the order of unity, degeneracy of the acoustic turbu- 
lence takes place. 

The problem of the interaction of the determinate 
and random signals has been considered for various 
special cases. 195.8 .9  We consider the evolution of the 
sum of a regular signal and noise with zero dc com- 
ponent in the spectrum in the region of the intermediate 
asymptote that corresponds to times that a r e  much 
longer than the time of toppling of the noise wave, but 
shorter than the time of degeneracy of the turbulence. 
For  this region we shall obtain a one-point velocity 
distribution function. It follows from its form that we 
can obtain a closed equation of type (1) for the average 
velocity with turbulent viscosity. Questions connected 
with the closure of the equations for the moments of the 
random fields by the introduction of turbulent viscosity 
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have been discussed for some time in connection with 
the Burgers equation, and also with the more compli- 
cated problems of the interaction of acoustic waves 
with ~or t ices . '~* ' '  In the present work we have suc- 
ceeded in connecting the turbulent viscosity with the 
characteristic scale of the st irr ing of the field in the 
regular wave. 

In the final section of the paper, we carry  out a con- 
crete study of the statistical characteristics of saw- 
tooth waves a t  different stages of the evolution of the 
mean velocity. 

2. PROBABILITY DENSITY AND MOMENTS OF THE 
VELOCITY FIELD 

We consider the evolution of a perturbation which sat- 
isfies the Burgers equation and which has the form 
uc(x) + u,(x), where u,(x) is a regular cyclic signal with 
amplitude a, and period LC, and un is stationary Gaus- 
sian noise with the following properties: 

We shall assume the acoustic Reynolds number, 
which is calculated from the parameters of the signal 
and the noise, to be large: a,lJv>>l, a,ln/v>>l. The 
Hopf-Cole substitution leads to an exact solution of the 
problem: 

where 
(2 

9 I. 

s.(x~)= J u.(to)&o, sn(xo)= J u,,(to)d~o. 
-- - - 

Under the assumptions made, we can calculate the 
integral of (2) by the saddle-point method, and at t lon- 
ger than the time of toppling of the simple wave, Q takes 
the form 

where 

s=sc ( t o n )  f sm (20,) + (2-z,,) '/2t, 

while x,, satisfies the conditions 

un(zom) +u,(z,) - (z-ze,)/t, a~/at,>o. 

The action s satisfies the Hamilton-Jacobi equation 
as i as a -+- - =o, 
at 2 (82) 

while v =  as/ax is the equation of the simple wave. 

Each term of the sum (3) corresponds to one of the 
stable modes of the simple wave that a r e  produced after 
i ts  toppling and dominate in that region where the action 
connected with them is minimal. In this region is 
formed the sloping part of the sawtooth, on which 

u = urn= (x - x,)/t (i. e .  , all the sawteeth have the same 
slope). Near the shock fronts, the location of which i s  
determined by the equality of two partial actions 
s,= s,,, we must take two terms of the sum into ac- 
count and the expression for the velocity takes the 
form 

The ensemble of sawtooth waves exists a s  long a s  the 
running Reynolds number is large, i. e.  , ui, t/v >> 1, 
where u,, is the characteristic amplitude of the saw- 
tooth wave. In the opposite case there a re  many com- 
mensurate terms in the sum (3) and degeneracy of the 
acoustic turbulence takes place. 

The Hamiltonian-Jacobi equation is equivalent to the 
characteristic system of ordinary differential equations 
for S ,  U ,  X, I =  axlax,, q= av/ax,: 

A consequence of (4) is the Liouville equation for the 
probability density in Eulerian variables (for a fixed 
point of obse rva t i~n) '~  

Solving (5) with the initial condition 

and integrating with respect to q and I with account of 
the fact that the saddle points in (2) correspond only to 
Z > O ,  we obtain an expression for the probability density 
of the parameters s and v in the simple wave: - +- 

uZ 
W ,  s, u )  ( s -  t ,  t 1 q 

0 -a 

To obtain the probability density of the parameters of 
the sawtooth wave, i t  i s  necessary to carry out a cutoff 
of (6), taking into account only that one of the rays that 
is described by the system (4) and reaching the given 
point and corresponds the the minimal action. In other 
words, we must find the probability that if a ray with 
the parameters 5 ,  Z arrives a t  the point, then not a 
single ray s < S  arrives a t  the same point. A rigorous 
solution of this problem, which is very similar to 
problems dealing with the crossings of a specified level 
by a random process, can be obtained in the form of 
a continual integral in a form suitable for calculations. 
We can represent it in those cases when the number of 
random rays arriving a t  a point can be assumed to be 
either small  o r  large. 

We consider now the second case, assuming that 
t >> rn = ln/an, i. e.  , the simple wave of the noise is mul- 
tivalued. The dominant rays in this case a r e  those con- 
nected with large negative overshoots of s. The ray 
tubes of such rays, a s  is seen from (4) and (5), diverge 
rapidly and gradually fill a l l  space. Making use of the 
lack of correlation between the overshoots of s ,  a s  in 
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Ref. 8, we find the expression for the probability den- 
sity of s  and u  in the sawtooth wave: 

Here W ( s ,  u )  is given by the expression ( 6 )  at v a u .  The 
derivation of ( 7 )  turns out to be possible i f  sn(x)  is a 
stationary process, from which follows the need for 
requiring absence of a dc component in the velocity 
spectrum. The expression ( 7 )  is valid for s  satisfying 
the inequality 

-s+sGmi">anln, 

where SF'" = sc(mlc)  and ml ,  a r e  the minimum points of 

sc- 

Denoting by so the point of the maximum of fhe dis- 
tribution ( 7 )  at  the fixed values x = m l c  and u=O,  and 
assuming that 

at every point where (6) differs appreciably from zero, 
we get with accuracy to small quantities 

[s-s .  ( I -u t )  -1/2uzt]2= (so-sdnrn) * + ~ ( S , - S , ~ ' " )  [ S  

-so+scmia-so (5-ut) - I / =  u2 t ] ,  
[u,(x-ut) - ~ ] ~ = u , Z ( x - u t ) .  

Making use of these relations and calculating the inte- 
gral by the saddle-point method, we represent ( 6 )  in the 
form 

t(l/r,+cpo/z.) 
W ( S ,  u, 5 )  = exp { - ~ / ~ c p :  

2nan2ln 

with accuracy to small quantities, where 

For cpo we get the following equation from the extremum 
condition for ( 7 ) :  

cpo[s, (ut)  +'/ru2t-sri" I 
anLn 

The quantity cpo  plays the role of a cutoff parameter for 
the distribution ( 6 ) ,  and the condition ( 9 )  is equivalent 
to the normalization condition 

Substituting (8) in ( 7 ) ,  we have %([ ,  u)  = @(5)@(u) ,  
where 

has the character of a spike function and shows that in 
the given region the wave remembers not a l l  the va- 
rious initial data but only the vicinities of the points 
where ( - s )  is  sufficiently large. These points a re  sor t  
of ordering centers and the action s  plays the role of an 

order parameter which forms the sloping part  of the 
sawtooth. 

The limits of applicability of the obtained asymptote 
a re  determined by the inequality 

At cpo >> I the distribution W(g)  is concentrated a t  
5  -a, I n / c p , ;  consequently, the condition 1 s  - so 1 <<I so  1 
is satisfied wherever W(5)  differs materially from 
zero. As t - m, i t  follows from (8) that u:,, - anl,/tcpo, 
that i s ,  the requirement cpo  << an l n / v  is equivalent to 
Re - u:,, t/ v  >> 1. The region of values of t where the 
intermediate asymptote is valid is green by Eq. ( 9 ) .  

Integrating ( 7 )  with respect to L, we obtain an expres- 
sion for the one-point velocity probability density: 

The deviation departures of the velocity from the values 
in the simple wave, not taken into account in ( l o ) ,  
which a r e  noticeable near the shock fronts, introduce 
into the obtained expression corrections that a r e  small 
in the Reynolds number. 

Using (10)  and making the change of variable xo=x  
- ut under the integral sign, we represent the arbitrary 
moment of the field u in the form 

Differentiating ( l l ) ,  we obtain a recurrence r-elation 
which allows us to express the higher moments in terms 
of the lower: 

Averaging ( 1 )  and using (12)  at  n =  1, we obtain for the 
mean velocity, a closed equation which i s  the Burgers 
equation with turbulent viscosity: 

The mean velocity can also be represented in the 
form 

Comparing (14)  with (2), i t  is easy to see that (u) actu- 
ally satisfies the Burgers equation with v  = v, and with 
the initial condition 

u=uc(~o) [ I + u ~ ' ( z ~ )  ~nlcpol. 

The weak dependence of v ,  on t need not be taken into 
account in the solution. 
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3. DIFFERENT STAGES OF EVOLUTION OF THE 
CHARACTERISTICS OF THE VELOCITY 

In view of the fact that the mean velocity satisfies 
the Burgers equation it must, in i ts  evolution, go 
through the same stages a s  an individual realization. 
However, by virtue of the difference between the char- 
acteristic times, a l l  the stages of the evolution of the 
mean velocity can be fitted into the region of the inter- 
mediate asymptote. We consider each of the stages in 
more detail. 

1. The stage of a simple wave: r,  << t  << r,.  Here the 
expression (10)  has one saddle point and can be repre- 
sented in the form 

where ii satisfies the relation u,(x - iit) =i i .  

Equation ( 9 )  takes the form 

(tr.)'" [2n7, ( r c + t ) ~ o ]  - Ih exp {-'/@at) =I, (16)  

whence we get the following for the principal term of 
90: 

90% In- . ( :" ) 
At this stage the average velocity is determined by the 
regular signal, which almost does not interact with the 
noise and has the form of the simple wave. The noise 
component is transformed into fine-scale sawtooth 
waves, the characteristic scale of which is determined 
by the distance between the overshoots of the noise ac- 
tion: 1,  - ( t vT ) l t 2 .  An increase in the scale with in- 
crease in t  takes place a s  a result of the motion of the 
discontinuities, thanks to which the sawteeth, which a r e  
connected with ordering centers with smaller values 
(-s), are  absorbed by the neighbors. The energy of the 
noise waves falls off because of dissipation a t  the dis- 
continuities, and we have for the dispersion of the velo- 
city fluctuations a t  the given point 

i. e . ,  the noise component turns out to be modulated by 
the signal. 

2)  The stage of the sawtooth wave: r, << t  << 1 ~ / 1 , a , .  
During this stage Eq. (10)  has many saddle points, and 
the argument x, = x  - ut approaches independently of x,  
the points of the minima of s, where 

From ( 9 ) ,  we get in this stage 

whence i t  follows that the inequality cp, >> 1  can be satis-  
fied only a t  r, >> r,, and in this case cp, = [ h ( r , / r ,  ) ] l t 2 .  

With account of what has been pointed out, (10)  takes 
the form 

The sum (17)  shows that a t  each point a value of the 
velocity close to one of the values in the regular simple 
wave can be realized with a definite probability. At 
most of the points, one of the terms of the sum is domi- 
nant. The average velocity a t  these points duplicates 
the sawtooth wave formed by the regular signal. In the 
vicinity of fronts, one of the two dominant values of the 
velocity is realized with a definite probability. These 
a r e  the causes of the fluctuations of the location of the 
boundary between sawteeth, which lead to the statistical 
broadening of the shock front. The scale of the front 
width is defined a s  A - tu,/l,, where 6 - ( a ,  1, /(p,)' is the 
variance of the fluctuations of the action. On the other 
hand, the viscosity and the front width a r e  connected by 
a relation which agrees with the expression obtained 
above for the turbulent viscosity: v  - ~ l , / t .  

The average velocity in the range 0  < x  < 1, is described 
by the expression 

whence we have for the variance of the velocity fluctua- 
tions 

The first  term (18)  is connected with the fluctuations of 
the position of the center of the random sawtooth, 
which has the scale 1,  - 1 ,  in this stage, about the point 
x=ml , .  The second term describes the noise modula- 
tion of the position of the boundary between sawteeth. 
The fluctuations associated with this term a r e  concen- 
trated near the points (m + $ ) I ,  and form a sequence of 
random pulses with characteristic length vT t / l c .  

3) the stage of degeneracy: t  2 $/1 ,  a , .  In this stage 
i t  is convenient to s tar t  out from the expression (14)  
and use for B ( x )  the spectral representation 

Equation ( 9 )  has the following form for this case: 

1 (mt)" A,  -+E -- e x p { - ~ ~ ]  =I, 
rn ) ( 2 n ~ ~ ~ ) ~ ~ ~  l c  

whence we have for the principal term cp,: 

The mean velocity can be calculated with the help of 
(14)  and (19) .  In the case t a  l z / l n a n  we need take into 
account only a single term each in the numerator and 
denominator of the resultant expression. It is seen 
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from the formula that the mean velocity decreases ex- 
ponentially with increase in t ,  while i ts  spatial distribu- 
tion is identical with the fundamental of the regular 
wave. In this stage, the basic energy is connected with 
random, large-scale sawteeth. F o r  the variance of the 
velocity fluctuations we have from (12) o t =  v,/t for  the 
scale I , ,  - (v,t)lt2. 

In the degeneracy stage, the turbulent viscosity can 
be connected with the characteristic scale a t  which 
the mixing of the initial pattern (with a diffusion inter- 
val of sor ts )  takes place. It follows from the exact 
solution of the Burgers equation that this scale is con- 
nected with the viscosity by the relation A -(vt)lt2. On 
the other hand, the spatial scale of the teeth in the 
given stage is connected with the turbulent velocity by 
the same relation, 1, - (v,t)lt2. 

4. CONCLUSION 

Inthe considered problem, the interaction of the regu- 
l a r  signal with the noise leads to an additional damping 
of the mean field, which can be taken into account by the 
introduction of turbulent viscosity in the Burgers equa- 
tion. Physically, the turbulent viscosity can be con- 
nected with the statistical broadening of the shock front 
in the sawtooth wave stage, and with the statistical 
scale of mixing of the initial patterns in the stage of 
degeneracy of the mean velocity. The analysis that has 
been carried out shows that the noise and the signal 
interact parametrically, so  that, independently of the 
amplitude of the noise, the fluctuations of the velocity 
reach high values primarily in the vicinity of the shock 
fronts of the regular signal. This explains why the at- 
tempts a t  application of the mean field approximation to 
the Burgers equation do not lead to success.  l3 

In the analysis of the interaction of signal and noise 
in the region of the intermediate asymptote, we can 
distinguish the following cases: 

1) The time of toppling of the noise i s  smaller  than the 
that of the signal: rn << T,. The mean velocity in this 
case is determined by the regular wave while the tur-  
bulent viscosity determines the time of transfer  of i ts  
energy to the large-scale noise. The evolution of the 
mean velocity also depends on the rat io a,l,/a, I ,  which 
determines the value of the turbulent Reynolds number. 
At large values of this parameter,  the mean velocity 
passes through al l  three of the stages of evolution de- 
scribed above, while a t  small  values, the middle stage 
does not a r i se .  The limits of applicability of the inter- 
mediate asymptote follow in this case from the inequal- 
ities 

2) The time of toppling of the noise is greater  than 
that of the signal: T,<< rn. Only the third stage of 
evolution of the mean velocity lands in the region of the 
intermediate asymptote, and this region i s  itself de- 
termined by the inequalities 

In this case  the mean velocity depends on some effec- 
'tive initial distribution uc(xo)u~(xo)r , /~o ,  which indicates 
that the noise wave plays in some sense the role of a 
pump and t ransfers  i ts  energy to the signal. However, 
during the stage considered, the damping of the regular 
wave because of the turbulent viscosity turns out to be 
more  noticeably, s o  that no amplification ar i ses .  The 
preceding regions of the intermediate asymptote of the 
evolution stage have been considered by other meth- 
ods. 1 1 5 9 9  
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