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Nonlinear dissipative spin-dynamics regimes of supertluid 'He-B are investigated in the absence of an external 
magnetic field, using an auxiliary Hamiltonian system in a space of dimensionality 3/2. An analysis of the 
interaction of the Leggett-Takagi dissipative mechanism and of the nonlinearity points to the possibility of a 
nonexponential and nonmonotonic magnetization-relaxation regime. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION axis of the rotation specified by the order parameter: 

Nonlinear spin dynamics in superfluid 3He i s  an im- S,=(S2-~%)1'2, whereS i s  the spinvector.-s he ~ o i s s o n  
brackets for 8, SI I ,  and S, are calculated from the initial portant source of information on the dissipation mech- 
Leggett brackets. In this sense one can speak of a Ham- anism in a superfluid liquid in the P-pairing state.' At 
iltonian system in a phase space of dimensionality 4. the present time, the theoretical explanation of the spin 

relaxation i s  based on the so-called internal mechanism 
proposed by Leggett and Takagi2 (see also the papers by 
F ~ m i n ~ ' ~ "  where an approach i s  developed that takes in- 
to account phenomena connected with spatial inhomo- 
geneity). 

The Leggett-Takagi (LT) theory was used successful- 
ly to study superfluid-liquid configurations that are im- 
portant from the experimental point of view. One of the 
most remarkable examples in this respect i s  the wall- 
pinned ( W P )  mode in the B phase of superfluid 3He,6.7*2 
for which a theoretical analysis within the framework 
of the Leggett-Takagi theory i s  in good agreement with 
experiment.' A general approach to the study of the LT 
equations, based on asymptotic methods of nonlinear 
mechanics, was developed by Fomin for the important 
case of spin dynamics in a strong magnetic field.3*4s8sg 

2. THE LEGGETT-TAKAGI EQUATIONS 

For our purposes it is convenient to write down the LT 
equations as  a Hamiltonian system with dissipation (see 
Ref. 12). The basis for this i s  the Leggett-Takagi ener- 
gy equation,' which i s  of the form 

Here E i s  the Leggett energy, U=U(B) i s  the dipole en- 
ergy, /-L i s  a constant connected with the constant in the 
right-hand side of Eq. (6.4) of Ref. 2 by the formula 

i - k  
p - y = ~ - ~ -  7. 

h 

Thus, the right-hand side of Eq. (1) specifies the dissi- 
pative function in the form F = ($)(dU/d8)'. 

the present paper, on the basis of the LT equations, The Hamiltonian structure of the LT equations i s  spec- 

we study the spin dynamics of the ~ - ~ h ~ ~ ~  of superfluid ified by the coordinates of the spin momentum & (i=l, 2, 

3He for a spatially homogeneous configuration when the 3) and of the order parameter Air (i, j=l, 2,3) a s  the dy- 

external magnetic field i s  turned off. It i s  assumed that namic variables, by Poisson brackets of the form 

turning off the field has set the initial values of the spin (St ,  S,)  -E, ,~S*.  

and of the order parameter. The situation considered 
{S,,  AJm) = E ~ , ~ A ~ ~ ~  {Aim,  Ajn) =O 

covers regimes that are  important from the points of 
view of the theory of superfluid 3He, such a s  the WP and by the Leggett Harniltonian 
rnode6*'O and the driven (D) model0 corresponding to the 

% = ' / , ~ Z ~ - l S Z - ~ H S + U  ( A ) .  
magnetic- ringing regime. 

In the nondissipative case, Maki and Ebisawa obtained 
in quadratures a general solution for the spin dynamics 
of 3He-B in the absence of an external magnetic field and 
have shown that the Hamiltonian system specified by the 
Leggett equations i s  completely integrable." By virtue 
of the presence of dissipation, their method cannot be 
applied to the LT equations. Interest attaches therefore 
to a qualitative description of the aggregate of the solu- 
tions of the LT equations, with which to assess the types 
of nonlinear regimes. 

The study, in this paper, of the aggregate of the solu- 
tions of the LT equations i s  based on the observation that 
the initial Hamiltonian system with dissipation, obtained 
from the LT equations, generates the following system 
for the six dynamic variables (the three coordinates of 
the spin vectors and the three Euler angles for the order 
parameter): the rotation angle B for the order-parame- 
ter  matrix; the projection SII of the spin vector on the 

Here y i s  the gyromagnetic ratio, x i s  the susceptibility, 
and U(A) i s  the dipole energy. For 3He-B we have13: 

U=8gn [ (cos 0+'/ ,)  '-'I,], (4 
A,,=3-'"Ae'vR,,. (5 ) 

Here R ,, i s  the rotation matrix.13 It i s  assumed in the 
present paper that cp=const. 

3. HAMILTONIAN SYSTEM IN DIMENSIONALITY 312 
The roration matrix R , ,  can be parametrized by the 

rotation angle 0 and by the unit vector ci of the rotation 
axis in accordance with the equations 

Rtj=cos 0&,+ (1-cos 0 )  c,cj-sin 0 ~ ~ j ~ c , , ,  

c,=- ( 2  sin ~ ) - ' E , ~ , R , ~ ,  cos 8='/, [Tr R-11 . 
(6 ) 

The quantities SII and S, are  then given by 

sII=S,ci,  S,= (SZ-SI?)  '". (7 

Summation over repeated indices i s  implied throughout. 
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It can be verified by direct calculation that the follow- 
ing equations hold for the Poisson brackets: 

{S,, 0) --ci, {a, cj1-0, 
{St, cj) ='12(~l~j-6u) ctg (012) +'I2e,j,c,. 

It  follows from these equations that for Sll, SL, and 8 the 
followitg relations hold for the Poisson brackets: 

is,, el=-i, {s, el=-2~,, {s', s,]=-s,' ctg(012). (8 ) 

It should be mted that the Leggett Hamiltonian i s  a func- 
tion of only SII, S,, and 8. It can thus be stated that SII,  
S,, and 8 form a system with a phase space of dimen- 
sionality and with a Poisson structure specified by 
Eqs. (8). 

It i s  important in what follows that the quantity 

B=S, sin (012) (9) 

has zero Poisson brackets with all SII,  S,, 8 and i s  thus 
an integral of the motion in the nondissipative regime 
described by the Leggett equations. The integral B was 
indicated in Ref. 11. In the case when the value 8 =n i s  
permitted, as  in the D-mode regime, i t  has the mean- 
ing of the minimum of S,. 

The equations of motion for the Hamiltonian system 
specified by (3), (8), and by the dissipative function F 
= ())(d~/dO)' a re  of the form 

d i 0 - S,== yk-'S,S, ctg -Z-, 
dt 

The Leggett configuration corresponds to S=O i s  de- 
scribed by the equations 

which can be written as a single second-order equation. 

The W-mode regime corresponds in the nondissipa- 
tive approximation to the condition S 11 =0, so that7 

It  should be mted that the perturbations due to the dissi- 
pations deform the curve (11) from the plane SII =O. 

The line 8=n, Sll=O (S, i s  arbitrary) consists of un- 
stable equilibrium points that are saddle points at S, 
< S,, = 6 y " ~ g , ,  i.e., prior to the intersection of the 
curve specified by Eqs. (11) for the WP mode with the 
line 8= n, Sll=O, and are unstable foci at SL> S, ,. 

In the case when the dissipation i s  small, the configu- 
ration of the integral curves-of the solutions of the sys- 
tem (10)-can be obtained by using the two integrals of 
the conservative system, E (energy) and B, the behavior 
of the particular solutions corresponding to the WP mode 
and to the axis 8=n, Sll=O, and the circumstance that, 
with the exception of the immediate vicinity of the points 
8=0, 2n and SII =S, = O  the considered configuration tends 

FIG. 1. Phase portrait of Leggett configuration. The thick 
lines show the separatrices. Depending on the relation between 
the quantities gD and 1, they can be wound jointly an integer 
number of times around a pair of foci corresponding to the an- 
gles 0 = arccos(-1/4) and 2i7 -arccos(-1/4). 

to the Leggett configuration (the phase portrait i s  shown 
in Fig. I). The final picture of the behavior of the solu- 
tions i s  shown in Fig. 2. 

4. THE D MODE 

The phase picture constructed in the preceding section 
can be considerably refined in the case of the D- mode 
regime corresponding to rotation of the magnetization. 
In this case the magnetization of the system i s  large, so 
that Px"S>>62,. Here 62, i s  the Leggett frequency of the 
linear NMR in 'He-B. It i s  convenient to introduce the 
characteristic frequency 

where S,,,, i s  the largest value of S, during one period 
of the oscillations. It should be noted that S,,,,,,, and 
consequently also wo, varies slowly with time by virtue 
of the dissipation. In the D-mode regime we have wo 
= 62,. 

Introducing the dimensionless variables 

?=Oat, Sj,=~o-*y'~-lSs, 
S,=oa-1y2~-1S,, 

FIG. 2. Phase portrait of the system of Eqs. (10). The thick 
lines show the IP mode and the unstable equilibrium positions 
corresponding to 0 =  T .  The separatrix surface forms an in- 
finitely-sheeted winding around a trident made up of the lines 
of the W P  mode and part of the axis 0 = T .  0 < 0 < Bg = 6y2 x-lgD. 

Tn the upper part of the figure, the dashed lines mark the at- 
tractor. The two solid lines (one inside and one outside the at- 
tractor) a r e  typical representitives of the system trajectories 
in the region of large magnetization. 
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we can reduce Eqs. (10) to the form 

The quantity (pgD)-' has the meaning of the characteris- 
tic relaxation time. For 3He-B it  i s  of the order of 1 
msec:O Recognizing that a, - lo4-10' and that wo in the 
D-mode regime i s  lo7-10' and higher, we can assume 
that 

Thus, the dissipative and nonlinear terms in Eqs. (12) 
turn out to be small and can be treated by perturbation 
theory. 

As the basic solution of the unperturbed system, 
which i s  obtained by discarding the dissipative and lin- 
ear terms generated by the dipole energy, we choose 

e T' B 
cos - = A  sin $, $=$@+ - - 2 2~ (1-AZ)" " 

e,=const, S,,=const, $,=const. 

Here 8, i s  the minimum value of the angle 0 during one 
period. The choice of the functions (13) i s  dictated by 
the following considerations. In the absence of dissipa- 
tion we have the conservation law derived in Ref. 11: 

If the magnetization i s  large, then we neglect the term 
U(0) in (14) and assume it  equal to zero. The resultant 
conservation law can be integrated exactly. The answer 
takes the form (13). As an important consequence we 
have that J ,  i s  a fast variable. We employ an averaging 
method. To this end we consider the energy integral and 
the integral (9). It follows from Eqs. (10) that 

In accordance with (13), we substituted in the right-hand 
side the expressions 

cos (012) =A sin 10, A=cos (80 /2 ) ,  

where A has the meaning of the slowly varying amplitude, 
and z) i s  the fast variable over which the averaging i s  
carried out. The values of E and B averaged over the 
period should satisfy the equations 

After integration with respect to J,, Eqs. (15) take the 
form 

dE dB - = -'12pgDZAZF ( A ) ,  - = -SI,pgoAzB (1-2.4'). 
dt at 

(16) 
F ( A )  =-35Aa+70A'-42.75Az+9. 

From (16) we can obtain aiso an equation for A. We 
note for this purpose that E i s  expressed in terms of A 

and B in accord with the formula 
1 B2 E= - Y'X-' - 
2 I-AZ 

+ U ( A ) .  

It follows therefore from Eqs. (16) that 

As will be seen from what follows, the second term in 
(17) can be neglected. Combining Eqs. (16) and (17) 
(with the second term discarded) we obtain the following 
equations for A and B: 

dA 
-= 

dt '/,pgDA (1-A') (1-2Ay +'12y2~-'pgDzAB-' (1-A') " ( A ) ,  

dB 
-= -S/,pgp4zB(1-2A'). 

(18) 

dt 

To determine the orders of magnitude of the quantities, 
we use the dimensionless variables T = wot and b 
=y2X-1w;1B. Equations (18) take the form 

If 1 - 2A2 is large compared with (C~,U,')~, then the sec- 
ond term in the right-hand side of (19) can be neglected, 
since pgD wi1<< (aL w,)~. On the contrary, as A - 2-lh 
the principal term of the asymptotic relation i s  deter- 
mined by the second term in (19). The discarded second 
term in (17) would yield terms of order 

(1-2A8) (Q,oo-') ' (pg~oo-') ,  

therefore both a s  A - 2-lh and at 1 - 2.4' >>(aL oil)a its 
contribution i s  negligible. 

Thus, the D mode admits of the presence of two spin 
relaxation regimes. For values 0, far enough from n/2, 
namely such that the estimate 1 c o s ~ ~ ~ ~  (a, w,")' holds, 
the magnetization remains unchanged, since the depen- 
dence of S,  and SII on 0 and 0, i s  given by the equations 

'30 e e S,=S sin -sin-' - S -S sin-' - sin2 - -sin' 
2 2 ' " -  2 " 2 

for which it follows directly that $1 +Sf =Sa=const and 
e eo 

S, ,,,=s sin 2, SI, --S cos - . 
2 2 

(20) 

The time dependence of 0,= O0(t) then takes the form 

eo=arctg exp (Sl'pgDt), O<eo<n/2, 

e.=z-arctg exp('l,pgDt), n/2<e0<n. 
(21) 

The system stays in the region described by Eqs. (20) 
and (21) for several time intervals (/&,)'I, i.e., for 
several measures. It then lands in a region where the 
second term of Eq. (19) i s  decisive. At 0,< a/2 the 
threshold curve is given by the condition that the right- 
hand side of (19) vanish, and can be described by the 
function 

For 0, > n/2, the threshold curve i s  specified by the 
equality OO=n/2. It separates the region where Slmin in- 
creasesfrom the region where it decreases (see Fig. 3), 
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FIG. 3. Phase protrait of the D-mode regime on the plane B 
= S,,, A =  cos(Bo/2). The thick line represents the threshold 
curves, and the dashed line the separatrix between the regime 
of the monotonic increase and the regime of the monotonic in- 
crease of B.  

which shows a plot of B=S,,,i, against A=cos(0,/2). 
After passing through the threshold curve (22), the sys- 
tem passes during each period near the lines SII =0, 0 
= n/4, 3n/2 in the space of the variables SII ,  4, 0, and 
the relaxation i s  determined by the second term of Eq. 
(19). 

On the whole, the trajectory of the system that enter- 
ed in the indicated regime falls into an attractor located 
near the surface 

S,?-S,' cos 0-0, 

which corresponds to the condition 8,=n/2. From the 
form of the second term of (19) it follows that the effec- 
tive dimensionless parameter that determines the relax- 
ation i s  not ~ g , / w , ,  but the much smaller number 

5. CONCLUSION 

The relaxation of the spin vector of superfluid 3He-B 
from the initial state with large magnetization to a state 
of complete equilibrium goes in succession through sev- 
eral essentially different stages. 

1. During the first stage of the relaxation, which lasts 
for several milliseconds, the modulus of the spin vector 
remains practically unchanged, and its transverse part 
S, increases if 8, < n/2, o r  decreases if 0, > n/2, i.e., 
the dynamics of the magnetization i s  not monotonic o r  
exponential. In the phase space of the variables SII,  S,, 
8 the trajectory of the system tends to reach an attrac- 
tor characterized by the fact that the amplitude 8, of the 
angle 0 tends to n/2. Observation of this relaxation re- 
gime may be made difficult by its short time intervals 
(if it i s  recognized that the relaxation time of quantum 
interferometers i s  of the order of 2.5 msec) and by the 
need for a rapid turning off of strong magnetic fields (of 
the order of 100 G). It should be noted, however, that 
nonmonotinicity of spin relaxation was successfully ob- 
served for 'H~-A.'O 

2. The next stage of the relaxation sets in when the 
trajectory of the system in phase space SII , S, , 6 lands 
in the attractor W specified by the condition 0, =n/2. In 
this case, in the complete phase space of the variables 
of the spin and of the order parameter S,, Ai, (i, j=1,2, 
3), the system i s  also in a certain attractor q. If Wl 
i s  a strange attractor, i.e., the motion of the trajector- 
ies in it i s  random (this can possibly take place if the 
system buildup i s  caused by an alternating external mag- 
netic field), then one can expect the spin relaxation to be 
turbulent, and in particular, to be spatially inhomogene- 
ous. A similar phenomenon (orientational turbulence in 
the space of the order parameter) i s  known in the phys- 
ics of liquid crystals.14 The study of similar regimes 
in superfluid 'He i s  an interesting problem. It is  not 
connected with the presence of vortices of the super- 
fluid velocity and in this respect i s  not similar to the 
turbulence in superfluid 4He. It i s  worth noting here 
also that within the context of the present paper the spa- 
tial inhomogeneity of the spin relaxation, previously in- 
dicated by Fomin: and the possible existence of non- 
monotonic and non-exponential regimes are mutually re- 
lated phenomena. 

3. An interesting regime sets in the transition region, 
when the system goes off the attractor in the phase 
space SII,  S,, 0 and lands in the region of the W P  
mode. This region i s  easiest to investigate experimen- 
tally, since it is  characterized by relatively low values of 
the magnetization. One can also expect here an inhomo- 
geneous and mnmonotonic behavior of the relaxation be- 
cause of the more complicated motioli of the system tra- 
jectories in the SII ,  S,, 8 space. 

The author takes pleasure in thanking L. P. Pitaev- 
skfi, I. A. Fomin, and G. E. Volovik for numerous help- 
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