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It is pointed out that "tunnel" mode locking is possible in lasers with a dispersive medium in the resonator 
because of the tunnel transmission of subpicosecond (femtosecond) light pulses by the dispersing medium 
provided it occupies a characteristic tunnel length along the resonator axis. A theory of tunnel mode locking 
is developed for the Kerr mode-locking nonlinearity. Equations are derived for the dynamics of changes in the 
phases of the generated modes. The locking band is determined for three modes and frequency modulation of 
these modes outside the band is predicted. A locking band is also estimated for an arbitrary number of 
generated modes and this is used to demonstrate the possibility of generating light pulses of duration down to 
3 x 10-l4 sec. 

PACS numbers: 42.55.Bi, 42.60.Da, 42.50. + q 

In an earlier paper' the present author drew attention spreads out completely because of dispersion. The 
to the existence of a "tunnel" length of a dispersive quantity 
medium in which a periodic sequence of light pulses an ydmn-1- 
of subpicosecond o r  femtosecond duration, which ao 
spread out initially into an optical background because 

is usually of the order of (1 - 3)xlO-l7 sec/rad and, 
of the dispersion of the medium, is restored to form consequently, the tunnel length is L,, -0.2 - 0.3 cm 
the original sequence of pulses. Strictly speaking, this 

for calcite (w, ~ 1 0 8 5 . 6  cm-'1, carbon sulfide (w, - 656 
restoration occurs in a medium for which the disper- cm-I), and benzene (w, a991.6 cm-'1, and L,, -2 cm 
sion of the effective refractive index i s  described by for  lithium niobate (w, e l 5 0  cm-'1. 
the dependence 

which is close to the dispersion of liquid and solid in- 
sulators in the vicinity of the point a2n/aw2=0 (which 
lies in the transparency range of these substances, 
usually in the near-infrared range). The tunnel length 
of a dispersive medium is given by 

where w ,  i s  the frequency interval between neighboring 
components of a Fourier expansion of a periodic 
sequence of light pulses under discussion. This length 
corresponds to the condition that the phase delay be- 
tween different frequency components 

amounts to 27r(1- q )  (aa is the phase of the complex 
amplitude of the q-th component). Restoration of a 
periodic sequence of light pulses (after their spreading) 
occurs also at distances B L,,, where B = 2, 3 ,  . . . . 

As shown earlier, 's2 if a dispersive medium with the 
Raman nonlinearity is in an optical resonator and 
occupies an interval 

Ld=BL,d (3 

along its length, an effective parametric interaction 
arises and this locks the various components of the 
stimulated Raman radiation (StRR); this parametric 
interaction may be a s  effective as  that predicted (see 
Ref. 3) on the assumption that the dispersion of the 
medium is absent o r  i s  fully compensated. In this 
situation we can expect tunnel generation of femtosecond 
light pulses (of l V V 4  - 10'15 sec  duration), i . e .  , gen- 
eration in a dispersive medium whose extent along the 
resonator is such that a light pulse of this duration 

A characteristic feature of the tunnel locking of 
StRR components i s  that light pulses formed in this 
way propagate only in the intervals between the mirrors  
and the dispersive medium and spread out into an 
optical background inside the medium, becoming re- 
stored only on emergence from the medium (if B % 2, 
the restoration process occurs also inside the dis- 
persive medium in cross sections separated by the 
interval L,,). This i s  in contrast to the conventional 
mode lockingprocess in which light pulses travel along 
the resonator axis and hardly spread out a s  a result 
of dispersion of the medium. This situation occurs 
in the case of mode locking in lasers  containing satur- 
able absorbers (see, for  example, Ref. 4), locking % 

inside the width of a stimulated Brillouin scattering line 
(observed in Refs. 5 and 6 in a fiber optical reson- 
ator), locking of various stimulated Brillouin scat- 
tering components (predicted, discussed, and confir- 
med experimentally in Refs. 5-13), locking inside the 
width of an StRR line (possible because of "internal" 
parametric interaction of these modes3), and likely 
locking of various StRR components in nondispersive 
media9p'4-1a (due to an "external" parametric interac- 
tion of the corresponding modes). 

We shall develop a theory of a new effect, which i s  
the tunnel locking of modes in lasers .  A parametric 
interaction of the various modes resulting in such 
locking i s  sometimes possible in the active medium of 
the laser  itself (this is analogous to the case pointed out 
by Lamblg and occurring in the conventional locking 
of three modes in lasers  o r  in the mutual locking of 
two modesz0). A strong parametric interaction which 
expands the mode-locking band, i. e .  , the interaction 
which increases the number of the mode-locked com- 
ponents, may be achieved by introducing a saturable 
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absorber into the l a se r  resonator, although the dura- 
tion of a single light pulse i s  then limited to  the charac- 
te r i s t ic  bleaching t ime of the absorber,  exactly a s  in 
the conventional mode locking observed by DeMaria 
(see the theory of HausZ1). Since the tunnel mode 
locking can ensure  much shor ter  duration of light 
pulses,  i t  would be interesting to consider the pos- 
sibility of such locking as a result  of nonlinearity of 
t he  medium with a fas t  response, such a s  the K e r r  
nonlinearity associated with the electron Ker r  effect 
(characterized by a r i s e  t ime of 7, < lV15 s e c ,  i. e .  , 
practically instantaneous). This i s  the possibility 
discussed in the present paper. 

We shall show that if the t e rms  due to the Ker r  non- 
linearity of the investigated medium do not exceed the 
t e rms  associated with the saturation of the active 
medium of the l a se r ,  then for  a given number of N 
generated modes there  a r e  2N-z solutions differing by 
the phase relationships between these modes. The 
question of the actual phase relationships reduces to a 
study of the stability of these solutions. Such a study 
will be made fo r  three  generated modes and the locking 
band will be  determined. F o r  an arb i t ra ry  number N 
of the generated modes an  est imate will be obtained of 
the  width of the locking band which determines per-  
missible deviations of the dispersion of the effective 
refractive index f rom the dependence (I), and i t  will 
be  shown that light pulses of duration down to 3 x  l@14 
s e c  may be  generated. 

INITIAL EQUATIONS 

We shall assume that the width of a luminescence 
line of a laser-active medium i s  sufficiently wide, of 
the kind encountered in dye l a se r s  (when the width 
i s  usually lo3 cm-') o r  in neodymium-glass l a se r s  
(when this width may exceed 300 cm-'). Moreover, 
we shall assume that mode selection takes place in the 
l a se r  resonator s o  that only longitudinal modes s e -  
arated by a sufficiently wide frequency interval w, 
(for example, w, > 3 cm-') a r e  generated and the length 
of the region occupied in the resonator by the disper-  
sive medium sat isf ies the requirement given by Eq. 
(3). If this medium i s  inhomogeneous, the expression 
for  the tunnel length may be  generalized in accordance 
with the above condition for  the phase delay of the 
various frequency components, and the condition (3) 
can be represented in the form 

where L i s  the distance between the resonator mi r ro r s ,  
arc 

L, = -, an,,. y=n.v- . 
ymr'neff, (Q) ' a. (5 ) 

and the effective refractive index n,,,(w) is found from 
the relationship 

where w, a r e  the eigenfrequencies of the resonator 
modes (m, a r e  positive integrals). 

The electr ic  field in the resonator can be described 
by an expansion in t e rms  of its unperturbed modes: 

Here,  q is the s e r i a l  number of a longitudinal mode 
which may be excited in the resonator; E, i s  the coor- 
dinate part  of the electr ic  field of this mode; Y, i s  the 
complex amplitude; A, a r e  possible correct ions to the 
eigenfrequencies in the nonlinear oscillation regime.  

We shall assume that the resonator contains not only 
the active l a s e r  medium but also a transparent  insulator 
whose main contribution to  the  cubic nonlinearity i s  
due to i t s  fast-response K e r r  effect (this insulator may 
be ,  for  example, fused quartz whose Raman nonlin- 
earity i s  approximately a n  o rde r  of magnitude l e s s  than 
Ker r  nonlinearity, and whose Brillouin nonlinearity 
i s  unimportant because of the postulated selection of 
longitudinal modes in the l a s e r  resonator). 

If the frequency interval w, between the neighboring 
components exceeds the homogeneous width 27;' of 
the whole inhomogeneously broadened gain profile of 
the active medium, the equations fo r  the complex 
amplitudes Y, become 

where 

O,,.,..,...=o,+m,. ..-aq.- 
1 

oqr , .  N, = J E (m.)E,' dr, 

pa i s  the frequency half-width of the corresponding 
passive-resonator mode; ji 'K' is the K e r r  nonlinearity 
tensor of the medium in the resonator; E i s  the l inear 
part  of the permittivity of the medium; no is the 
initial difference between the populations of the upper 
and lower levels of the active transition; dab is the 
corresponding matrix element of the transition; 7, 

and T,, a r e  the t ransverse  and longitudinal relaxation 
t imes.  

In the absence of the Ker r  nonlinearity, i . e . ,  when 
ji'K'=O, the system (8) predicts independent (nonlocked) 
generation of various modes whos? steady-state in- 
tensities can be denoted by ;, = I Y,Iz. If f 'K '+  0 ,  the 
t e rms  occurring under the summation sign in Eq. (8) 
and dependent on the phases of the generated modes 
determine the parametric interaction of these modes 
which may generally result  in their  locking. We shall 
consider the conditions f o r  an effective parametric 
interaction of such modes (separated by relatively 
large frequency intervals) and the possibility of their  
tunnel locking due to this interaction. 
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CONDITIONS FOR AN EFFECTIVE PARAMETRIC 
INTERACTION 

We can use Eq. (8) t o  show readily that if La 2 L,, 
and if a Fabry-Perot resonator [with modes E, =ga 
(r,)  sink,^] is filled to the edges with a dispersive 
medium (which both exhibits the fast-response Ker r  
nonlinearity and i s  an active l a se r  medium) the sum 
with respect to q', q", and q"' in Eq. (8) reduces to 
the expression 

The remaining t e rms  of the initial sum subject to the 
inequality pa << AW ,,., (where Aw ,,,, = nc/Ln,,, is the 
frequency interval between neighboring longitudinal 
resonator modes) contain t e rms  with rapidly oscil- 
lating (in time) exponential factors and, therefore,  
they will be  omitted. The influence of the K e r r  non- 
linearity reduces, a s  in the slow-response Ker r  ef- 
fect, to corrections to the eigenfrequencies depending 
on the intensities I Yd 12, i .  e .  , the quantities Aa shmld  
be replaced formally a s  follows: 

It thus follows that the parametric t e rms  a r e  negligible. 

We shall now assume that ei ther  the distribution of 
a Ker r  nonlinear medium in the resonator is strongly 
inhomogeneous in the direction of the longitudinal coor- 
dinate o r  that the longitudinal s t ruc ture  of the resona- 
t o r  modes i s  inhomogeneous. Then, the corresponding 
mode overlap intervals in the sum with respect to 
q', q", and q"' in Eq. (8) a r e  generally different f rom 
zero even for  the parametric t e rms  (corresponding 
to the values q ' = q + s ,  q "= t ,  and q U ' = t + s  for  
a rb i t ra ry  values of s and t ) .  The influence of these 
t e rms  i s  significant if 

(in the opposite case  which applies to the remaining 
values of q' , q", and q"' we can again ignore their  
influence). It can be shown by direct  calculations that 
the corresponding condition reduces to the requirement 
that the inequality (4) is satisfied within 

(r i s  the reflection coefficient of the resonator mi r ro r s ) .  
It thus follows that the parametric interaction of various 
modes with one another is effective in the case  of an 
inhomogeneous longitudinal distribution (in the resona- 
t o r )  of a medium exhibiting a strong K e r r  nonlinearity 
(due to the fast-response mechanism of the Ker r  ef- 
fect) when the condition (4) i s  satisfied. 

It i s  assumed above that the dispersion of the effect- 
ive refractive index n,,,(w) i s  described by a depen- 
dence of the type (1). The parametric interaction can 
be effective also in the case  of a smal l  deviation of the 
dispersion of n,,, f rom the dependence (1): 

[this deviation is allowed fo r  by the dependence y(w)]. 

Then, the condition (4) should be generalized a s  fol- 
lows: 

Bnc 
L= 

[ y + m ( a y / a o )  Im,ln,rf ' 

This relationship remains valid also when we make the 
substitutions L-- La, y - y,, and net,- n. It should 
also be noted that under these conditions the parametric 
interaction is generally a s  effective a s  in the absence 
of dispersion of the refractive index of the medium in- 
s ide the resonator. 

TUNNEL MODE LOCKING 

Under these conditions i t  is convenient to select  the 
values of Aa s o  a s  to sat isfy exactly the relationships 

because fo r  this selection we have 1 Aal 5 pa and the 
corresponding exponential factors in the system (8) 
a r e  replaced with unity. The quantities A, satisfying 
these requirements obey the relationships 

The coefficients in the corresponding sum with the 
respect  to s and t in Eq. (8) then become constant. 
Introducing the variables 

1 
wq= YqYq', (D, = - ln -5 

2i Y,. ' 

i .  e .  , introducing the intensity wa oscillations of the 
field corresponding to a resonator mode and the phase 
of i t s  complex amplitude Y,  = I YaI expi@*, and then 
applying Eq.  (8), we can obtain the expressions f o r  
io, and & a .  

We shall assume that the coefficients of the param- 
e ter ic  t e rms  in Eq. (8) a r e  considerably smal ler  than 
the  corresponding coefficients due to the nonlinearity 
of the active medium of the l a s e r  (manifested a s  the 
cubic nonlinearity in  the initial s tage of saturation of 
the active transition). This assumption is usually , 

valid if r,,w,>> 1.  In the expressions fo r  iu, we need 
consider only the zeroth approximation with respect 
to the sma l l  parameter  mentioned above and this gives 
a closed sys tem of equations describing relaxation of 
the intensities wp to their  steady-state values 4 (when 
the excess above the lasing threshold is a factor  of 
two, the correspondi?g relaxation t imes become 1/2 ha). 
The expressions fo r  *a following f rom Eq. (8) a r e  

where 
6, (a , )  E,Z ( r )  dm*. d r  

A q ( w q ) =  1 
l+aq(ma.)E,Z(r) w,  ' 

0 
p,., = eJ 2'" ( a q )  :E,'E,+.E,E,;. dr. 

2Nq 

Using the sma l l  parameter ,  we find that the charac- 
te r i s t ic  sca le  of the change in t ime of the quantities 
@, + Aat in the case  1 Aa - ~rn[A, (w, )] 1 << p, i s  much 
g rea t e r  than the characterist ic  scale of relaxation of 
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the intensities w, to their steady-state values 6,. 
Therefore,  in the system (14) we can make the sub- 
stitution w, -- 4 and these equations become a closed 
sys tem but describe the dynamics of changes in the 
phases of the generated modes. In such a system the 
quantities A, a r e  due to deviation of the dispersion of 
t he  effective refractive index from a dependence of the 
(1) type, the t e rms  I~[A,(w,)] a r e  associated with the 
corrections to the eigenfrequencies dependent on the 
intensities of the generated modes resulting from the 
laser transition in the active medium [they a r e  ignored 
in the definition of n,,,(w)], the t e rms  in the sum with 
respect  to s and t f o r  which the argument of the cosine 
vanishes govern the Ker r  corrections (dependent on 
the mode intensities) t o  the eigenfrequencies of these 
modes, and the other t e rms  describe the parametric 
interaction of the modes with one another. 

Equations of the (14) type and all the results  obtained 
remain valid a lso  when condition 7,,w, >> 1 is satisfeid 
and this condition is generally much l e s s  stringent 
than the above condition rlw, >> 1. In the more  general 
ca se  (T,,w, >> 1)  discussed here  we must b e a r  in mind 
that the system of equations fo r  the intensities 4 (in 
the absence of the parametric mode interaction when 
i ' K ' = ~ )  i s  more complex than Eq. (8) and, for  brevity, 
we shall not give it here.  

If all the modes under discussion have practically 
the same t ransverse  field distributions and if they 
a r e  located in the vicinity of the center of the l a s e r  
transition line, then the corrections (dependent on 
the mode intensities) to the eigenfrequencies a r e  usually 
practically the same.  If, moreover,  the dispersion 
of the effective refractive index n,,,(w) i s  sufficiently 
close to Eq. (I) ,  then-as can be shown with the aid 
of Eq. (14)-the steady-state phases of these modes 
@, E *, a r e  related by 

where Mq=O fo r  q=O o r  -1 and M, a r e  a rb i t ra ry  
integers for  the other values of q (the phases @, and 
C, a r e  arbitrary).  

The relationship (16) denotes locking of the modes 
under discussion. Since ll/l, can be any integer, there 
a r e  2N-2 steady-state regimes (N i s  the number of the 
generated modes) corresponding to the s ame  (in the 
zeroth approximation with respect to the parameter  
indicated above) s e t  of intensities of the generated 
modes < and to different relationships between the 
phases of their  complex amplitudes. We can find 
those of the relationships of the (16) type which occur 
in practice by an appropriate analysis of the stability 
with the aid of expressions of the (14) type. This 
analysis is given below fo r  the case  of three  generated 
modes and this i s  done considering nonzero values of 

a s  well a s  the corrections (dependent on the inten- 
si t ies  of the generated modes) to the eigenfrequencies. 

If three  modes (q = -1, 0,  1) a r e  generated, then 
introduction of a variable cp = @, + @-, - 20, and applica- 
tion of the expressions in Eq. (14) gives the following 
equation fo r  cp: 

-= dcp a+aeos cp, 
dt (17) 

where 

(the quantities A, depend on the steady-state values of . 
ES,, ) . 

Equation (17) gives the following steady-state values 
of cp=q: 

Q=* arc cos ( a l a )  . (19) 

We can s e e  that one of these solutions i s  unstable, 
whereas the other is stable.  This solution exists  if 

l a l < l a l *  (20) 
which determines the locking band of the investigated 
modes. In part icular ,  if these modes a r e  located 
near the center  of the gain profile of the active medium 
and if the i r  intensities a r e  practically the s ame ,  the 
relationship (20) does in fact  determine the permissible 
deviation of the dispersion of the effective refractive 
index f rom a dependence of the (1) type. It should be 
noted that in the case  of a significant deviation of the 
dispersion of the effective refractive index from a 
dependence of the (1) type the process of mode locking 
i s  generally possible also in a certain range of pumping 
rates above the threshold. According to Eq. ( I ) ,  this 
i s  possible because of the mutual compensation of the 
t e rms  in the expression fo r  a. 

If the inequality (20) i s  not obeyed, the properties of 
the solution change drastically. Then, i .  e .  , in the 
case  when 2 >a2, we find f rom Eq. (17) that 

a+a cos[%+t (a2-a')"] 
cos cp=- 

a+a cos[$+t (aZ-a')'"] ' 

where J, i s  an arb i t ra ry  constant. 

Using Eq. (14), we can also obtain the relationships 

b-l=pl (w"-,+2w"0+2w"-1) +pr?Zo (w",/w"-,) " cos cp, 

60=p, (w"0+2w"-1+2*,) +2pr (w"- ,~*) 'J*  COS cp, 

@,=PI (12;1+2w"o+2w"-,) +p,w"o(w"-tlw",)'" cos cp, 
(22) 

which determine the frequency modulation of the modes 
in question outside their  locking band. We can s e e  that 
the modulation period is 

T=2n/ (az-a') '" 

and the total intervals of the frequency deviations a r e ,  
respectively, 

2p,w"o(w",lw"-r)'12, 4p,(w"-,%,)'", 2p,w"o(w"-,iw"I)". 

If an arb i t ra ry  number N of the modes is generated, 
we can show that, if-for example-the locking nonlin- 
eari ty of the  medium i s  of the s ame  o rde r  of magnitude 
a s  the nonlinearity associated with the saturation of 
the  l a s e r  medium, the permissible deviation of the dis-  
persion of the effective refractive index from a depen- 
dence of the (1) type in locking of N modes when the 
excess above the threshold is a factor  of 2 can be 
found f rom the condition 
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where r is the reflection coefficient of the laser reson-  
a t o r  m i r r o r s .  F o r  example,  if L, - L,,, y, - 10-l7 set/ 
rad,  w, -10 cm-I, N -30, and r -0.6,  i t  follows f r o m  
Eq. (23) that ayd/aw s 1CS4 sec2/rad2,  which is fully 
attainable in t ransparen t  insulators  in  the  in f ra red  
par t  of the spec t rum [in the  case under  discussion 
when n - 1 . 5 ,  we find f r o m  Eq. (2) that  L,, -2 x los cm;  
this  length can b e  provided b y  the use  of,  f o r  example, 
a f iber  optical resonator] .  

In the visible p a r t  of the  spec t rum the quantiity 
ayd/aw is usually -1P3 sec2/rad2,  but if a f iber -  
optics waveguide is used,  th i s  can  be reduced great ly.  
If w, -30 cm", N -10, and the o ther  p a r a m e t e r s  are 
as before,  the inequality (23) yields the condition 
ay,/aw i 4 ~ 1 0 - ~ ~  sec2/rad2 (in th i s  case we have L,, 
- 2 x  102 c m ;  th i s  length can  be  real ized a l so  without 
the use  of a n  optical f iber) .  If w, - 100 cm-' and N - 10,  
the inequality (23) g ives  ay,/aw s sec2/rad2 (in 
this  c a s e  L,, i s  only -20 cm) .  The interval  between 
the pulses  generated as a resu l t  of mode locking is 
usually governed by the relationship T = 2s/w, and in 
the examples given above it amounts to  3x10-12, lo-'', 
and 3 x 10-l3 sec ,  respectively. T h e  duration of a 
single pulse i s  est imated t o  b e  T - T/N and i n  the f i r s t  
two examples it amounts to  10-lssec, whereas  in  the  
third example it is 3x  10-l4 sec. 

Pulses  of this  duration c a n  b e  detected by a method 
suggested e a r l i e r .  22*23 
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