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A new method is proposed for describing the effects of the asymmetry in those electronic properties of a 
molecule which are induced by the isotopic asymmetry of the nuclear core when this core consists of different 
isotopes of the same chemical element. Whereas in the traditional approach the computations of the 
corrections to the adiabatic wave function of the molecule are laborious, in the new approach the isotopic 
asymmetry of the electronic properties fits into the framework of the adiabatic approximation. For this 
purpose use is made of the fact that the accuracy of the adiabatic approximation depends on the specific 
choice of the dynamic variables describing the "fast" and "slow" subsystems in the molecule. It is shown that 
in the case of diatomic isotopically asymmetric molecules the coordinates can be chosen such that all the 
asymmetry effects will be included in the potential energy. As a result, the adiabatic approximation can be 
used, and this simplifies greatly the theory of the isotopic asymmetry of the electronic properties. The new 
approach is illustrated with the molecules HD and HD+. In the case of HD the mean value of the component 
of the dipole moment along the l i e  joining the nuclei and the dipole moments determining the intensities of 
the rotational and vibrational-rotational transitions are computed. In the case of the one-electron molecule 
HD+ a connection is established between the isotopic asymmetry effects and the physical characteristics (the 
electric polarizability, the quadruple moment, the diamagnetic susceptibility, and the change that occurs in 
the nuclear magnetic screening in an electric field) of the homonuclear molecular ion H:. The displacement of 
the center of the electron cloud from the center of the nuclear core in HD+ is computed. 

A special place is occupied in the theory of mole- approximation the effects of the isotopic asymmetry 
cules by molecules whose nuclei a re  made up of dif- in the electronic properties of molecules that a re  not 
ferent isotopes of the same chemical element. As was strictly homonuclear. This simplifies the theory ap- 
pointed out by wick,' such molecules, e.g., HD, a re  preciably, and broadens the region of i t s  practical ap- 
not strictly homonuclear: the difference between the plicability without lowering the level of accuracy. 
nuclear masses leads to a situation in which the dy - 
namics of the electron interaction with the various nu- 
clei a re  different. The asymmetry in the nuclear 
masses produces an asymmetry in the electronic 
properties: a molecule that is not strictly homonu- 
clear possesses a nonzero electric dipole moment and, 
as a result, a rotational and a vibrational-rotational 
spectrum, the possibility of the observation of which 
was predicted by Wick1 and independently by ~ i n z b u r g . ~  
This prediction was experimentally confirmed by 
HerzbergS and other authors. The f i rs t  theoretical 
estimations of the dipole moment and the intensities 
of the vibrational-rotational transition: for HD were 
carried out by Shirokov,' WU," and Fain. l1 The 
publication of new experimental data and the develop- 
ment of the computational capabilities of the theory in 
the past decade have brought about an upsurge in in- 
terest in the properties of molecules that a re  not 
strictly homonuclear. In particular, calculations of 
the dipole moment and the intensities of the vibration- 
a l - r o t a t i ~ n a l ' ~ - ~ ~  and forbidden electronica0 transitions 
have been carried out for the HD molecule. 

In all the above-cited theoretical papers the isotopic 
asymmetry of the electronic properties of HD is inter- 
preted as a nonadiabatic effect stemming from those 
terms in the molecule's kinetic-energy operator which 
a re  antisymmetric under interchange of the nuclei. 

We proceed from the fact that the accuracy of the 
adiabatic approximation in the description of the iso- 
topic-asymmetry effects significantly depends on the 
choice of the coordinates describing the "fast" and 
slow" subsystems. For the special coordinates 

chosen below, the isotopic asymmetry effects a re  de- 
scribed by the potential-energy operator up to terms 
of the order of x4 inclusively, where x is the Born- 
Oppenheimer parameter, and the isotopic asymmetry 
of the kinetic-energy operator is of the order of us 
(instead of the n4 for the normally used relative coor- 
dinates). Since ~ ~ - 1 0 - ~ - 1 0 - ~ ,  the effects of the iso- 
topic asymmetry of the electronic properties of mole- 
cules that a re  not strictly homonuclear can be com- 
puted with the chosen-subsystem coordinates within the 
framework of the adiabatic approximation without any 
allowance for the difficult-to-compute nonadiabatic 
corrections. The relative computational e r r o r s  here 
a re  x3s 0.5%. 

Let us elucidate the foregoing in the particular case 
of a diatomic n-electron molecule AB whose nuclei 
have the same charge qA =q, =q,  but different masses 
MA + M,. The Hamiltonian of the molecule depends, 
after the separation of the motion of the center of 
mass, on 3(n + 1) relative coordinates, i.e., on n + 1 
three-dimensional vectors determining the relative 
disposition of the n electrons and the two nuclei and 

Here we propose a new approach that allows us to the orientation of this disposition in space. Let us 
take into account within the framework of the adiabatic choose the relative coordinates in the following form: 
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Here R,, R,, and rj , , ,  respectively denote the radius 
vectors of the nucleus A, the nucleus B, and the j-th 
electron in the laboratory system ( j  = 1,2,3,  . . . , n). 
We use the atomic system of units in which I e I = kf = m 
= 1, so that the nuclear masses MA and M, a re  mea- 
sured in units of the electron mass. For the sake of 
brevity we use the notation: M i  =MA + n/2, Mj, = M, 
+n/2. In the coordinates ( I ) ,  the energy operator for 
the molecule has the following form: 

Here we have introduced the following notation for the 
particle-mass-dependent coefficients: 

Let us introduce the Born-Oppenheimer parameter 
= (p1/3)114.  It can be seen from (3) that piL -1, 
while p- , pi1, pi1, and p;' a re  of the order of x 4 .  

It i s  important to note that in the Hamiltonian (2) the 
kinetic energy of the motion in the f coordinate (which, 
a s  x -  0, i s  the analog of the relative coordinate R, 
-RA of the nuclei) is strictly separated from the kine- 
tic energy of the motion in the pj coordinates (which 
are  the analogs of the electron coordinates). At the 
same time, the kinetic energy operator expressed in 
terms of the traditional relative coordinates contains 
in the electronic and nuclear coordinates a cross term 
that leads to the nonadiabatic mixing of the adiabatic 
states of opposite parity and to the appearance of a 
corresponding contribution to the isotopic asymmetry 
of the electronic properties (see, for example, Refs. 
1, 10, 12-20). The absence of a similar term in our 
kinetic-energy operator allows us to take account of 
the isotopic asymmetry within the framework of the 
adiabatic approximation. 

Let us carry out the adiabatic approximation for the 
eigenfunctions of the operator (2), assuming 5 to be the 
coordinate of the slow subsystem and the set  pj to be 
the coordinates of the fast subsystem. In this approxi- 
mation the wave function of the molecule has the form 

where the adiabatic wave functions of the fast, 
(p(pI, E), and slow, ~ ( t ) ,  subsystems a re  determined 
from the equations 

The deviation of the obtained adiabatic wave function 
from the exact eigenfunction of the energy operator is 
due primarily to the nonrigorous allowance for the 
operator - A,/2&. The resulting e r r o r  in the a l -  
lowance for the isotopic asymmetry effects is deter-  
mined by the asymmetry of the indicated operator with 
respect to interchange of the nuclei A and B. It can 
easily be verified with the aid of the formula (1) that 
the interchange of RA and R, transforms the operator 
A, into the operator A, +O(x4) .  Therefore, the con- 
tribution of the operator -A,/2p3 to the isotopic asym- 
metry of the electronic properties i s  of the order of 
O(n8)  and can be neglected, s o  that we need to take 
into account only the isotopic asymmetry of the poten- 
tial energy in (2), an asymmetry which is of the order 
of 0 (n4) .  The contribution of the nonadiabatic cor - 
rections stems primarily from the terms of the form 
-x(F;)A,cp(p, 0 / 2 p 3  and -(v, ~ ( p ,  t ) ,  Vcx(0)/p3,  which 
were dropped from Eqs. (5) and (61, and gives r ise  to 
a computational e r r o r  of the order of 0 ( n 7 ) .  There- 
fore, the adiabatic approximation indeed adequately 
takes account of the isotopic asymmetry effects. 

Let us  separate in the potential energy in Eq. (5) 
the terms that a r e  even and odd under inversion of the 
vector 5 :  

Expanding the potential-energy operator in a ser ies  in 
the multipoles (in doing so  we assume that the mean 
value of the ratio n 1 p 1 /2 p, 1 F; I - n4) ,  we obtain 

Here we have introduced the following notation: 

It is evident from (2) that r j ,  and rj, represent to 
within terms of the order x 4  the radius vectors of the 
j-th electrons relative to the nuclei A and B,  while 
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r,, i s  exactly equal to the difference between the ra -  
dius vectors of the i-th and j-th electrons. 

The fast -subsystem wave function cp, which i s  de- 
termined by Eq. (51, can also be represented in the 
form of a sum of functions, cp, + cp,, the first  of which 
preserves, while the second changes, i t s  sign when the 
vector ( is inverted. In accordance with the structure 
of the potential energy, cp, - x0 and cp, - x4. 

The electric dipole moment of the molecule is given 
by the operator 

and does not depend on the choice of the origin, pro- 
vided the molecule i s  neutral (when n =  29). The com- 
ponent of the dipole-moment operator along the line 
joining the nuclei i s  equal to 

Averaging i,, over the wave function of the fast sub- 
system, we obtain the dipole moment of the molecule 
along the line joining the nuclei: 

The symbol ( ), denotes integration over the coordi- 
nates of the fast subsystem. We can, without altering 
the order of magnitude of the e r r o r  (us), replace the 
function cp, in the right side of (13) by the function 
satisfying the equation 

where H, i s  the energy operator for a homonuclear 
molecule with fixed nuclei: 

Similarly, the function cp, can be replaced by the solu- 
tion of the first-order perturbation theory equation: 

Let us introduce a function cp, that describes the po- 
larization of the electron shell of the homonuclear 
molecule with fixed nuclei in a uniform field: 

Replacing in (13) cp, by cp, and cp, by cp,, and using the 
identity 

which follows from Eqs. (16) and (171, we obtain for 
the mean value of the dipole moment component along 
the A-B line the expression 

Here R denotes the internuclear distance: R = 1 R, - RA I 
= t +0(n4). It can be seen from (19) that the dipole 
momen: along the A-B line is proportional to the quan- 
tity = M i 1  - M;', which characterizes the mass 
asymmetry of the nuclear core, and which can be ex- 
pressed in terms of the matrix elements of the opera- 
tors computed with the unperturbed adiabatic electron- 
ic  wave function @, of the homonuclear molecule and 
the correction function cp, describing the polarization 
of the electron shell of the homonuclear molecule in a 
uniform longitudinal electric field. Let us emphasize 
that in our approach the #axis" of the molecule is 
oriented along the vector 6. It follows from (1) that 

Hence i t  is clear that the direction of the vector 
R, -RA does not coincide with the direction of the vec- 
tor 5 .  In our procedure for the adiabatic separation 
of the variables, R, -R, i s  not the coordinate of the 
slow subsystem, but i s  a Umixture* of the fast coor- 
dinates p, and the slow coordinate c. Therefore, the 
quantity D,,(R) cannot be regarded a s  the dipole moment 
component along the axis of the molecule. 

Let us now turn to the electric dipole moment re -  
sponsible for the dipole rotational and vibrational- 
rotational transitions in a not-strictly homonuclear, 
isotopically -asymmetric molecule. For our method 
of adiabatic separation of the variables, the orientation 
of the molecule in space i s  determined by the direction 
of the vector 5 ,  the coordinate of the slow subsystem, 
and not by the direction of the vector R, -RA; for the 
latter, a s  can be seen from (20), i s  a Umixture" of the 
coordinates of the fast and slow subsystems. Ac- 
cordingly, we can make the molecule wave function (4) 
more specific by introducing the vibrational wave 
function f,,(t) and the spherical harmonic describing 
the rotational state: 

The angles 6 and @ in (21) determine the orientation of 
the vector 5 in the laboratory system. Let us con- 
struct the matrix element of the neutral-molecule 
dipole -moment operator 

- n na 
D--(R.+R.)-~~,.~=--~-(~+~)~~~ 2 

I-I 8@0 1-1 
(22) 
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for the transition vJM-v'JIM' between vibrational- 
rotational levels of one and the same electronic state. 
Integrating the expression over p, and [, a s  well a s  
over the angles 0 and @, we obtain 

P-M' 
+ 8 i r . ~ - 1 [  (21+1) (Zl.+l) I " * ) ~ E ~ ~ E ~ . . ( E ) & ( P ) D ( ~ ) + O ( ~ ~ ) .  

Here the function 

is the mean value of the component of the dipole mo- 
ment operator (22) along the direction of the vector 6 
a s  computed with the wave function cp through the in- 
tegration over the coordinates of the fast subsystem. 
It follows from symmetry considerations that the vec- 
tor's mean value (D), i s  oriented along 6 .  By perform- 
ing transformations similar to those carried out in the 
derivation of the formula (191, we can reduce (24) to 
the form 

Knowledge of the function D(<) allows us to compute 
using the formula (23), the matrix elements of the vi- 
brational-rotational and purely rotational transitions 
for a not-strictly homonuclear, isotopically -asymme- 
tric diatomic molecule. Here we should emphasize 
the significant difference between the functions D(<) 
and D,,(<), (19): the first  function gives the probabili - 
ties of the transitions that a re  allowed owing to the 
isotopic asymmetry, while the second indicates the 
extent to which the mean value of the sum of the com- 
ponents of the electron radius vectors along the inter- 
nuclear axis deviates from the geometric center of the 
nuclear core. Let us note in this connection that in 
Kolos and Wolniewicz's f irst  papers14*16*17 a quantity 
corresponding to our Dl,, (19), was assumed to be r e -  
sponsible for the dipole moment of the vibrational- 
rotational transition in the HD molecule, and only 
later15*17-19 were the so-called transverse corrections 
DL to the dipole moment, corrections which in the 
final analysis lead to the correct  theoretical function 
D, computed. In these papers all the computations 
were carried out in Utraditional" relative coordinates 
of the form 

in terms of which the isotopic-asymmetry effects a re  
essentially nonadiabatic, and necessitate laborious 
computations of the perturbation of the adiabatic 
states by an operator containing a cross  product of 
derivatives with respect to R and r,. 

Our approach, which is based on the adiabatic ap- 
proximation with the use of the specially chosen rela- 
tive coordinates (I) ,  is appreciably simpler: i t  allows 

us to clearly distinguish between the physical manings 
of the functions Dl, and D, and provides simple recipes 
for their computation with the formulas (19) and (25). 
Here the formula (25) for the transition dipole moment 
D is even simpler than the formula (19) for the quantity 
Dl,. In the nonadiabatic theory,15'lg this same quantity 
D for,  say, the HD molecule i s  computed as a sum of 
nonadiabatic contributions from the excited C, states 
(these contributions give Dl,) and &-state contributions, 
which give the correction for the "transverse* dipole 
moment DL. Determining DL, and comparing the for- 
mulas (19) and (251, we obtain the following expres- 
sion for the contribution of the transverse dipole mo- 
ment to the transition dipole moment: 

It can be seen from this that the computation of DL 
reduces simply to the computation of the mathematical 
expectation of the operator 

in the unperturbed electronic wave function of the 
homonuclear molecule. 

Let us now illustrate our theory by applying i t  to 
the HD molecule. In Table I we present the results 
of the computations, performed by us with the for- 
mulas (19) and (25), of the dipole moments Dl, and D 
for the HD molecule a s  functions of the internuclear 
distance R. As the unperturbed wave function, we 
used a refined Weinbaum functionz1; the correction 
function v s  was determined with the aid of a ten-pa- 
rameter linear variational procedure. A comparison 
of our adiabatic calculations with the most exact pub- 
lished many -parameter calculations performed within 
the framework of the nonadiabatic approachla indicates 
a fairly good agreement; the discrepancy i s  primarily 
due to the rather approximate character of the Wein- 
baum function: i t  does not take account of the corre1a'- 
tion of the electrons in the direction perpendicular to 
the axis of the molecule, and only partially takes ac- 
count of the correlation in the longitudinal direction. 

In conclusion, let us note that for n = q  = 1 the for- 
mula (19) can be used to compute the displacement 6,, 
of the center of the electron cloud from the center of 
the nulcear core of the one-electron HD+ molecule. 
After simple transformations, we obtain for this dis-  
placement the expression 

TABLE I. Dependence of the transition dipole moment D and 
the dipole moment Dl ,  along the line joining the nuclei on the 
internuclear distance - R in -- the HD molecule (in a.u.). 
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The  right-hand s ide  contains observable physical 
charac te r i s t i cs  of the molecular  ion Hi: a,, is the 
t ransverse  polarizability; Q, the electronic contribu- 
tion to the quadrupole moment; b, the mean diamag- 
net ic  p a r t  of the susceptibility; do,,/dE, the derivat ive 
of the diamagnetic-screening constant f o r  the nucleus 
A with respec t  to the longitudinal-electric-field inten- 
s i ty;  and y, the fine s t r u c t u r e  constant. The resu l t s  
of the computations of the displacement of the center 
of the electron cloud along the H-D line, performed 
f o r  HD* with the u s e  of the fo rmula  (27) and Sherstyuk 
and Yakovleva'sa8* 23 accura te  theoret ical  values f o r  
the physical charac te r i s t i cs  of H;, are presented in 
Table II. 

TABLE 11. Displacement of the center of the electron cloud 
of the molecular ion HD' relative to the center of the nuclear 
core along the H-D line (in a.u.). 

The authors  express the i r  gratitude to A. I. Sherstyuk 
and N.S. Yakovleva f o r  making available to u s  the d e -  

tailed r e s u l t s  of the i r  calculations of the  p roper t i es  
of the molecular  ion Hi. 
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20 
2.2 
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26 
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3.585 2.8 
3.699 3.0 
3.980 3.2 
4.345 3.4 
4.852 3.6 
5.681 3.8 
6.289 4.0 
7.222 42 
8.378 4.4 
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9.778 4.6 
11.47 4.8 
13.53 5.0 
16.02 5.2 
19.04 5.4 
22.7i 5.6 
27.18 5.8 
32.63 8.0 
39 26 


