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Processes of vibrational-translational relaxation in an ensemble of strongly excited polyatomic molecules are 
investigated. The theory proposed takes into account the contribution made to the V-T relaxation by 
quasiresonant V-V and V-Y' transitions. Relaxation equations for the vibrational energy and for the 
temperature in a nonequilibrium molecular gas are obtained in the short-range-interaction approximation. A 
comparison of the V-T relaxation time with the experimental data shows good agreement. 

PACS numbers: 33.10.G~ 

Vibrational-translational (V- 2') relaxation is usually 5 1. KINETIC EQUATION FOR THE VIBRATIONAL 
described by a model in which i t  i s  assumed that the ENERGY 
main relaxation channel, which determines the relaxa- 
tion rate, is the deactivation (excitation) of the vibra- 
tions of the low-frequency mode of the m ~ l e c u l e . ' ~ ~  
Quanta tio, of this mode a re  exchanged with the kinetic 
degrees of freedom. The quasistationary distribution 
of the vibrational energy in the ensemble of molecules 
is maintained by the faster V-V and V-V1 processes, 
in which quasiresonant transfer of a vibrational quan- 
tum from one molecule to another or  from one mode to 
another takes place in the course of the collision. This 
model is clearly contradictory, since the V-V and 
V-V' processes take place with an energy deficit, and 
therefore ensure by themselves energy exchange be- 
tween the vibrational and kinetic degrees of freedom, 
i.e., they a re  a channel for V-T relaxation. It is ob- 
vious that a t  a low vibrational-excitation level this 
channel cannot be the fundamental one, but when the 
excitation level is increased, i t s  role increases and 
can become decisive. In this paper we attempt to de- 
velop a theory of vibrational-translational relaxation, 
in which account is taken of processes in which the 
summary vibrational energy of the colliding molecules 
changes by an amount much smaller than the vibration- 
a l  quantum, i.e., processes of the V-V' and V-V 
type. . - 

Quasiresonant exchange of vibrational quanta can be 
regarded a s  the diffusion of colliding molecules in the 
space of vibrational energies, with a mean free path 
equal to the deficit of the vibrational energy. There- 
fore a V-T relaxation theory that takes such an ex- 
change into account should in essence be a diffusion 
theory. In fact, we solve below the problem of cal- 
culating the diffusion coefficient that determines the 
rate of the V-T relaxation. It should be noted that this 
coefficient differs both in physical meaning and in 
magnitude from the diffusion coefficient of one mole- 
cule in the space of i ts  vibrational energy, since the 
energy change of one molecule in quasiresonant ex- 
change processes can amount to large quanta, while 
the vibrational energy of the pair of colliding molecule 
can change by a much smaller amount. Only if V-T 
relaxation of molecules in an atmosphere of an atomic 
gas is considered, so  that the principal role i s  played 
by collisions of molecules with atoms and not with one 
another, do these diffusion coefficients coincide. 

A pair of colliding molecules i s  regarded below a s  a 
single system in which there a re  two distinct subsys- 
tems: kinetic (translational and rotational degrees of 
freedom) and vibrational. 

It i s  assumed that the energy distribution in both 
subsystems remains in quasi-equilibrium all the 
time, i.e., the probability of an appreciable change in 
the kinetic energy and hence in the vibrational energy 
of the molecules in the course of the collision i s  
small. The motion in the kinetic subsystem i s  re-  
garded a s  classical, the trajectories in a specific 
collision a re  determined by the initial conditions and 
by the potential energy U,(R) of the interaction, where 
R is a vector in the space of the coordinates that de- 
termine the configuration of the system (the distance r 
between the mass centers of the molecules and the set  
of angular coordinates). 

The vibrational Hamiltonian i s  written in the form 

A 

where H ,  is the sum of the vibrational Hamiltonians of 
the interacting molecules, q i s  a vector with compo- 
nents q,, . . . , q,; q, i s  the normal vibrational coordi- 
nate of one of the molecules, and n i s  the number of 
such coordinates in both molecules. In the last sum, 
the term @a)f ,  ( t )  corresponds to any one of the 
terms a,q, o r  b,,q,q, (this representation has been 
introduced to shorten the intermediate calculations). 
Whenever i t  i s  necessary below to specify this term, 
the index cu in the symbols will be replaced by the in- 
dex h or  by the pair of indices h and k. 

It i s  assumed that the coefficients a,(t) and h,(t) 
are  specified a s  functions of the time. Their concrete 
connection with the potential u,(R(t)) can be deter- 
mined, e .g., in the following manner. Assume that 
the equipotential surfaces (hypersurfaces) of the in- 
teracting molecules a re  specified by the equation 

(51 is the se t  of the angular coordinates), i.e., when q 
differs from zero the points of this surface a r e  shifted 
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along r by a distance z, This equation deter - 
mines the implicit function U(R,q). Expanding i t  in a 
Taylor series in Ekg,g, and comparing with ( I ) ,  we 
obtain 

The quantities g,(~1) a s  functions of the angle variables 
can tie specified from geometric considerations. 

In the interaction representation we have for the 
density matrix of the vibrational subsystem 

i a=- - [U ( t ) ,  01, Oij= CQ!;]~= ( t )  exp ( i a i i t ) .  
h 

As t -.o, the off-diagonal elements of this matrix a re  
zero. Using for the definition of the off-diagonal ele- 
ments the relation 

we can represent the equation for the diagonal elements 
in the form of a ser ies  in even powers of the perturba- 
tion, with terms containing only diagonal elements. 
Retaining in this ser ies  only the second-order term 
and putting o,, = n(&,)  we obtain 

It i s  assumed that the aforementioned ser ies  converges 
rapidly enough, i.e., the perturbation U ( t )  i s  small 
enough (for a more detailed discussion of this question 
see Ref. 4). We note independently of this the follow- 
ing circumstance. In Eq. (3) the sum over a! and P 
contains terms quadratic a s  well as quartic in q. In 
the harmonic approximation the former describe only 
nonresonant transitions and the latter also resonant o r  
quasiresonant transitions, therefore the contribution of 
such terms in (3) can be comparable. Among the 
fourth-order terms in the perturbation, however, 
which have been left out from (31, there a r e  quasireso- 
nant terms quartic in q which a r e  comparable with or 
even larger than the terms quartic in q retained in (3). 
If we carry out in these (omitted) terms an inter- 
mediate integration with respect to time, their struc- 
ture becomes similar to the structure of the terms of 
the sum (3). Therefore, without writing them out 
separately, we take them into account in the final ex- 
pressions (16). 

If the molecule vibrations a r e  harmonic, the quanti- 
ties ~ j f ) ~ $ ) v a n i s h  when a# 0. It is assumed below that 
in the general case the terms with a+ fl in (3) a re  small 
and can be omitted. 

In accordance with the assumption that the population 
is changed little by a collision, we assume that the 
dependence of the population on T in the right-hand 
side of (3) is insignificant and put n(cj ,  t - T)  =n(cj ,  t). 
We note that this assumption is not connected with the 
low probability of the transitions. It would be incor- 

rec t  if the initial distribution where, e.g., 6-like, o r  
if the system a t  a high level density practically always 
undergoes transitions to neighboring levels in the 
course of the collision. 

Multiplying both halves of (3) by the energy E,  and 
summing over j, we obtain an equation for the total 
vibrational energy &,, of the system. This equation, 
just as (31, contradicts the detailed-balancing princi- 
ple, since i t s  derivation i s  based on the assumption 
that the trajectory of the colliding particles is speci- 
fied, an assumption equilvalent to setting the kinetic 
subsystem energy (mass) equal to infinity. To bring 
the equation for E , , ~  into correspondence with this 
principle, we multiply in this equation the population 
n(&,) by the factor exp(-Rwu/T ),which appears in a 
more consistent quantum-mechanical analysis of both 
substances and i f  an equilibrium distribution in the 
kinetic subsystem is assumed. In the upshot we have 

We introduce next the notation 

In (5') the functions Q;(E,) and Q2,(&,, c Z )  a re  specified 
a t  the points c l=  E, and E, =Eh, while in the remaining 
regions they can be defined arbitrarily. The function 
Fa(&, Piw) has the meaning of a form factor that is 
equal to zero at Piw < - &,, assumes non-negative values 
a t  R w 3 E and i s  normalized to unity. 

Using this notation, we represent Eq. (4) in the 
form 

-- - 
Xexp( -ho /T)  ] d t f  ( t )  f ( t - t ) e o s  0 7 ,  ( 6') 

Y 

The transition from (4) to (6) and (6') implies no physi- 
cal assumptions and is reversible. 

Assuming that the density of the vibrational spectrum 
is very large, we average the quantities Q;(&) and 
F,(&, E '  - & )  defined by the relations (5) and (5') over 
intervals A &  and A & '  that a re  small compared with 
fi/rCo1 but contain a large number of levels. Here and 
elsewhere roo, is the characteristic time of the partial 
interaction. . Without introducing here any new nota- 
tion, we shall assume hereafter that p (&)  i s  the level 
density averaged over the interval (E , E + A E ) ,  while 
Q: ( E )  and F ,  ( E  , E' - E ) a r e  defined by the expressions 
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( 7') 
In accordance with (1) and ('71, the quantities Q: ( E )  
and Q:,(E) coincide with the mean values of the matrix 
elements (q:Ijj and (q:qi)jj. These mean values can be 
determined with sufficient accuracy by using a har-  
monic model of the vibrations, from which i t  follows 
that 

where m, i s  the reduced mass  of the vibrational mode 
A,  v, is the average number of quanta in this mode a t  a 
total molecule-pair vibrational energy equal to E .  

This number can be roughly estimated by assuming 
the energy E to be uniformly distributed over the 
modes. 

In the reasoning that follows we shall take the quan- 
tities p ( & ) ,  Q ~ ( E )  and F,(&, Rw) in (6) and (6') to have 
the corresponding averaged values (7) and (7'). 

52. DISCUSSION OF THE SINGULARITIES OF 
THE VIBRATIONAL SPECTRUM OF POLYATOMIC 
MOLECULES 

The possibility and means of simplifying Eqs. (6) 
and (6') depend substantially on the structure of the 
form factors Fa ( E  , Aw); i t  is therefore necessary to 
discuss this structure in greater detail. 

Using the equality Q:, = Q:Q~ and the definitions (5) 
and (5'1, we can show that 

Since Q ,~(E)  and Q ~ ( E )  a r e  slowly varying functions of 
the energy, the form factor F,, ( c  , R w) practically 
coincides with the convolution of FA(&,  Aw) and 
F,(E,Kw). 

In accordance with (71, (7'1, and (5') the form factor 
F U ( & ,  E'  - E )  is defined in terms of the matrix ele-  
ments (9,);. The values of (q,);, can be obtained if one 
knows the matrix of the transformations qj = c,,lv), 
where qj a r e  the stationary vibrational states of the 
molecules, and ( v )  = I v,, . . . , u,,) a r e  the harmonic- 
approximation states with a definite number v, of 
quanta in the mode A .  Then 

where the symbol v i l X  denotes that the number of 
photons of the mode A in the corresponding state dif - 
f e r s  from that in /v)  by i 1. For the value of (7') at  
a = X we obtain 

It is natural to assume that at a high level of vibra- 
tional excitation z E , i ti W,(E ,) and that the func - 
tions %( c,) and cYE,, A W) a r e  very slowly varying 
functions of the energy c , and not of the specific se t  
of numbers v,, i.e., 

Since the order of the t e rms  in the right-hand side of 
(10) i s  immaterial, we can change from summation 
over v to integration with respect to the energy, 
averaging the terms of the sum over energy intervals 
Ac in which the function c2(&,x)  changes little, but 
which contain many levels c,. This averaging reduces 
to averaging the quantity I (q,),,,, 1 '. As a result we 
obtain for F,(E, Ew) 

The quantities c,, and the energy c j  a r e  determined as 
the j-th solution of the system of equations of the s t a -  
tionary perturbation theory: 

where U,, is the matrix element of the anharmonicity 
energy in the vibrational Hamiltonian of the molecule. 
In the general case this system cannot be solved. But 
the structure of the functions c2(&,, & - E,) can be 
roughly estimated by analyzing simplified model prob- 
lems that have been considered in the literature in 
connection with the study of intramolecular energy re -  
distribution. Using the results  of Ref. 6, we can ob- 
tain for the function c2(c YO, E - cvo) 

The equality in (12) i s  satisfied if the interval A &  i s  
large enough (of the order  of the vibrational quantum). 

It follows from (11) and (12) that the form factors 
F ~ ( E ,  Aw) can be roughly represented as Lorentz func- 
tions of Aw with center a t  i Ew,(E) and with half-width 
double the value of (12) and independent of the index A. 
We note that this half-width coincides with the recipro- 
cal stationarity time of the harmonic states Iv), which 
was calculated in Ref. 7. 

53. DIFFUSION COEFFICIENT IN  THE SPACE OF 
THE VIBRATIONAL ENERGIES OF THE 
INTERACTING MOLEDULES 

It is relatively easy to simplify expression (6') for 
two particular frequency dependences of the form fac- 
tor F a ( & ,  Aw), which can be realized a t  high vibration- 
al energies. 

A. Let the function Fa(c ,Aw) vary very little with 
changing Rw in the A/rC,, scale,  and let  i t  be different 
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from zero a t  the point Rw = 0, i.e., 6,7,01 >> 1. We 
integrate in (6') twice by parts with respect to 7, a s -  
suming in this case that the population changes little 
in one collision, so  that i t  can be regarded a s  constant 
in the subsequent integration with respect to the time t. 
Besides the terms that vanish identically, we can leave 
out also the term proportional to fa ( t ) j ,  (t), inasmuch 
a s  in the subsequent integration with respect to the 
time t i t  makes a zer? contribuLion.. In the remaining 
tern1 we replace fa(t) fa(t) by -f,(t) f,(t), since this 
does not change the result of the subsequent integration 
with respect to t. Approximate integration of the ob- 
tained expression leads to the result 

An additional analysis carried out using the model 
dependence fa (t) - ~osh-~(t/r,,,  ) shows that the ap - 
proximation (13a) results in a small e r r o r  if 

B. As follows from the subsequent estimates, from 
among all the terms Wx, in (6'), the largest contribu- 
tion to the rate of energy transfer can be made by the 
terms with w, = a,. They can also greatly exceed the 
value of WA. In the case w, = w,, the form factor 
F,,(c,Rw) i s  a Lorentz function with center a t  zero. 
At 6a7c01 >> 1 we can use the approximation (13a). If 
the inverse condition << 1 i s  satisfied, the quan- 
tity W,, ( E  , t )  can be obtained by integrating with re-  
spect to w directly in (6'), since the main contribution 
to the integral i s  made in this case by the region 6,, 
c< w << T/E. Putting F,, ( E ,  tiw) - 6,,/xtiwZ, we obtain 

To check on the validity of the approximations (13a) 
and (13b) we have calculated the integral 

1 bi7= ( e ,  t )  dt 
-- 

with W,(c , t )  specified in the exact form (6') or  in the 
approximate form (13a) and (13b), using the model 
relation fa ( t )  - ~ o ~ h - ~ ( t / ~ , , ,  1. The integration of (6') 
with respect to 7 and t is in this case elementary, and 
the subsequent integration with respect to energy was 
carried out numerically. Comparison shows that a t  
6,reO1 = 1 an integral calculated in this manner is 
overestimated by 2.5 times in the approximation (13b) 
and by 2 . 7  times in the approximation (13a). With in- 
creasing (decreasing) value of the accuracy of 
Eqs. [(13b) (13a)I increases rapidly. 

The quantity Wa (c, t )  written in the form (13a) or  
(13b) does not depend on the prior history of the 
process and is determined only by the instantaneous 
values of the parameters a t  the instant of time t. 
Therefore the averaging procedure, which consists of 
integrating W,(&,t) with respect to the collision time, 
averaging over the initial values of the parameters 
(velocities, distances, orientations), and multiplica- 
tion by the collision frequency in the ensemble of 

molecules, is equivalent to averaging W,(E , t )  over a11 
the parameters that determine the value of this quantity 
a t  a given instant of time (i.e., over the configuration 
of the system) and multiplying i t  by the number of 
molecular pairs in the system. Using (6) and (13) we 
obtain for the rate of change of the vibrational energy 
per  molecule in real time, which we shall designate 
in contrast to (4) by dc,,,/dt: 

where the diffusion coefficients D m ( & ,  T) are  for the 
cases A and B respectively 

Hers N is the number of molecules per unit volume. 
By fi a n d E  in (14a) and (14b) a re  meant the results 
of averaging of the corresponding functions over the 
thermodynamic ensemble. This averaging does not 
call for knowledge of the concrete f,(t) dependence and 
is carried out in the following manner. The function 
f,(t) can be represented as a complicated function of 
the time f,(t) = cp(~( t ) ) ,  therefore the following rela- 
tions a re  valid: 

Here rj and vj a re  the j -th coordinate and j -th compo- 
nent of the velocity in R space, vf i s  the mean squared 
velocity vj, and dV is a volume element in R space. 

We next replace the index a, depending on i ts  con- 
crete meaning, in the symbols for all the quantities 
by the index X o r  by the pair  of indices X and p. In , 

accordance with (1) we have cp,=a,. If we take into 
account in the expression for 2,, only the terms that 
a re  left in (3), we must identity cp,, with b,, . How- 
ever, with allowance for the remarks made after the 
derivation of (3), we must write 

where w, is the resonant frequency of the vibrational 
mode cp,, . The second term in the expression for cp,, 
was obtained under the assumption that the quantity 
F, (c  , E W )  far from R w = Rw, is negligibly small; if 
this assumption is incorrect and F, ( c ,  Rw) differs 
substantially zero near E w = 0, then the quartic terms 
in the summary diffusion coefficient (14a) o r  (14b) need 
not be considered a t  all. 

Expressions (14a) and (14b) were obtained for the 
case of a single-component system, but can be easily 
generalized also for a multicomponent system by a 
simple replacement of N / 2  by the corresponding 
number of interacting pairs,  with allowance for the 
vibrational specific heat of each of the components. 
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$4. BOLTZMANN VIBRATIONAL DISTRIBUTION 

If the vibrational distribution n ( & )  is of the Boltzmann 
type, then Eq. (14) takes the form 

- - 
The quantities): and f 2, are  determined as before by 
expressions (2) and (16), and G(T,) a re  determined by 
expressions (8) in which 

and the form factor 9,(Tb, Ew) i s  expression in the fol- 
lowing manner: 

It can be roughly assumed that the form factor 
YA,(T,, Aw) is also a convolution of <(T,, Ew) and 
9, (T,, A w); in particular 

It can also be assumed that in the kw region close to 
* f i  w, we have 

v,+l Vh 
S h  (Tk, tto) - F*'~' (T*, f o )  + -SF' (T*, - f o ) ,  (20) 

2vi+1 2v&+i 

where v, i s  defined in (181, and T ( o ) ( ~ , , ~ w )  i s  the 
form of the Q branch of the o, band in the absorption 
spectrum of the molecules a t  the temperature T,. 
Naturally, a t  high temperatures this branch i s  not r e -  
solved relative to the P and R branches, but the rota- 
tional broadening can be taken into account if the rota- 
tional constants of the molecule a re  known. Unfor- 
tunately, information on the shape of the absorption 
band can be obtained only in a limiied region near the 
band center. This, however, may be sufficient for an 
estimate of the integral (191, especially a t  w, = w, . 

If the maxima of Y=(T,, Aw) a re  far from the point 
Ew = 0, then the condition for the applicability of (14a) 
is satisfied a t  high vibrational temperatures. In this 
case the function D,(T,) i s  monotonic with increasing 
vibrational temperature. If T, > Rw,, E o, , then 

At w, = w,, the function D,,(T,) is nonmonotonic. So 
long a s  ~(T,)T,,, <1,  i t  follows from (14b) and (18) that 

i .e ., the quantity 4, increases rapidly with increasing 
vibpational temperature. After the half -width 6(T,) 
exceeds 7,:, , the function 4, takes a different form 
[see (14a)l 

i.e., i t  becomes very weak and not necessarily mono- 
tonic. Qualitatively such a dependence of the relaxa- 
tion rate on the vibrational temperature agrees well 
with that observed in experiment. l2 

The dependence of the quantities D,(T,, T) on the 
temperature T of the kinetic degrees of freedom i s  
given by expressions. (15). Without analyzing this de- 
pendence in detail, we indicate only that i t  i s  deter- 
mined by the form of the potential U,(R) and is dif - 
ferent for different a. At o, = w, , this dependence 
can be different in different temperature regions. In 
particular, for an exponential potential U,(R) 
=A exp(-?-/yo) we can obtain D, - TZ; i f  (14a) is valid, 
then D,, - T2 + &p, and i f  (14b) i s  valid, then D,, 
-T + pZT3, where Bl and 4, are  constants). 

$5. COMPARISON WITH THE EXPERIMENTAL 
DATA 

To check the results, we have numerically estimated 
the rate of the vibrational relaxation for the SF, mole- 
cules. Defining the instantaneous rate of vibrational 
relaxation a s  

we have in accordance with (17) 

where c, and +are  the specific heats of the vibrational 
and kinetic degrees of freedom. 

According to estimates, the main contribution to the 
total relaxation rate i f  made by the quantities 7;; cor- 
responding to the frequencies y, = w, = 360 cm-' of the 
vibrations of the threefold degenerate deformation 
mode v, with symmetry F,,. In the estimates, the po- 
tential U,(R) was chosen in the form of a spherically 
symmetrical Lennard-Jones potential with parameters 
& = 200 K and r, = 5.5 The coefficients g,(S2) [see 
Eqs. (2)] were chosen in the form of the lowest-order 
spherical harmonics of the cubic se t  with symmetry 
F,,. The normalization coefficient was chosen such 
that the maximum value g, (a) was equal to unity (i .e . , 
it was assumed that the equipotential-surface deforma- 
tion due to the vibrations takes place in such a way that 
the maximum displacement of the points of this surface 
is equal to the displacement of the fluorine atom from 
the equilibrium position). 

The form factors 3 , , (~ , ,Ew) were defined a s  con- 
volutions of the form factors %(T,, W W )  and 
K(T,,Aw). The latter were assumed to have a Lo- 
rentz shape with half-width 6(T,), which was assumed 
equal to the half-width 6,(T,) of the w, absorption band 
of the SF, molecule a s  measured in Refs. 10 and 11, 
after subtracting the rotational broadening (according 
to the result obtained in Sec. 2, the half-width 6,(T,) 
is independent of the number h at  high temperatures). 
The spectrum half -widths is 6,(T,) = 6 cm" at T, = 750 
K and 6,(T,) = 9 cm-l a t  T, = 900 K.  The diffusion coef - 
ficients Di,(T,, T) were calculated from (l4b). Esti- 
mates show that 6,7,,, amounts to 0.2-0.4 for T =T, 
=750 K and 0.4-0.8 for T=300 K and T,=900 K. The 
integration over the angles in (15) was exact, and over 
the distance i t  was performed by the saddle-point 
method. 
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The foregoing calculations yielded f o r  the t ime  r,, 
values 15 psec-Tor r  and 60 p s e c - T o r r  at T zT, 
= 750 K and a t  T = 300 K and T,= 900 K, respect ively.  
The measured12 relaxation t i m e s  at these tempera tures  
are approximately 10 and 40 p s e c - T o r r ,  i.e., the cal-  
culation resu l t s  a g r e e  well enough with the experimen- 
t a l  ones. 
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