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The nuclear widths P'" and shifts AE" of the levels (Jv) of the mesic molecule dtp,  which are due to the 
resonant interaction of d and t in the s-band, are expressed in terms of the cross section for the reaction 
d + t--M + 'He. It is established that the influence of the nuclear resonance 'He* (3/2+) on the spectrum of 
the mesic-molecule states is weak because of the low probability of fmding d and t in the range of the nuclear 
forces in the mesic molecule dtp and to the large inelastic width of the resonance. The obtained nuclear 
widths and shifts agree with the results of a calculation that makes use of the generalid optical potential 
corresponding to the problem of the coupled dt-n 'He channels. 

PAC3 numbers: 36.10.Dr, 33.70.Jg. 33.25. - j 

$1. INTRODUCTION relation (3) i s  based on the possibility of separating the 

In the preceding paper' we calculated the ra tes  X, of long-range (Coulomb) and short-range (nuclear) inter- 
a c t i o n ~ . ~  the nuclear fusion reaction 

from various states (Jv) of the rotational and vibration- 
al  motions of the mesic molecule dtp. The nuclear in- 
teraction of d and t was described by a generalized op- 
tical potential whose structure was established from an 
analysis of the problem of the coupled dt and n4He chan- 
nels: the anti-Hermitian part had a separable form, 
while the Hermitian part was approximated by a local 
potential independent of the energy. An interaction of 
this type provided a good description of the experiment- 
a l  data on the fusion reaction2 

and on elastic scattering3 

near the dt threshold (~,,(dt) < 200 keV). 

We determine in this paper the conditions under which 
Eq. (3) is satisfied in the case  of near-threshold reso- 
nance. On the basis of the known fact that the reaction 
(2a) proceeds via formation of an intermediate nucleus 
"e*, we propose a method for calculating the nuclear 
widths and shifts of the levels of the mesic molecule 
d tp ,  without using the concrete form of the nuclear po- 
tential. To describe the resonance mechanism of reac- 
tions (2), we introduce the bare state " 5 ~ e , "  which ac- 
quires physical mass and width a s  a result of the cou- 
pling with the dt and n4He channels. The distinguishing 
feature of the Hamiltonian of the corresponding problem 
of the coupled channels, namely dt (channel I ) ,  n4He (21, 
and " 5 ~ e "  (3) i s  that the nuclear interaction enters only 
in the form of a dt-"'He" and n * ~ e - " ~ ~ e "  channel cou- 
plings. This Hamiltonian (which contains also the Cou- 
lomb repulsion of d and t)  will be shown to yield for the 
energy dependence of the c ross  section of reaction (2a) 
an isolated-level formula8 that accounts well for the ex- The nuclear level widths rJU of the mesic molecule 
perimental This Hamiltonian which need not be 

d tp ,  obtained by solving the eigenvalue problem for the 
further detailed, makes it possible to obtain an equation total Hamiltonian of the dtp system, agreed within -1 OO/o 
that describes the influence of the nuclear resonance with the values obtained from the known equation4 
'He*($') on the dtp mesic-molecule levels, and by the 

rZ"=Aol Y'"(0) 1'. 

Here 

(3) same token solve the problem of the nuclear widths and 
shifts of the levels of the mesic molecule. 

A. = lim uoi,C,-' 
.+O 

(4) 

i s  the constant of the nuclear reaction (2a), v i s  the rel-  
ative velocity of d and t ,  o,,, is the c ross  section of the 
reaction (2a), C :  is the Gamow factor: 

CO2=2nql(e2"n-I), q=alo (h=c=l ) ,  (5) 

and \ k J v ( ~ )  is the wave function of the relative motion of 
d and t in the d tp  mesic molecule without allowance for 
the nuclear dt interaction." 

On the basis of the available experimental data and 
the reactions (2), we conclude that the presence of a 
nuclear level near the d tp  mesic molecule, and the ra te  
of the nuclear reaction (1) can be calculated with a cer-  
tain accuracy by using Eq. (3). We have investigated 
the possible variation of the spectrum of the mesic- 
molecule states when the nuclear-resonance param- 
e ters  a r e  varied, and considered, in particular, the 
previously investigated1 restructuring of a nuclear level 
of zero  width. 

That the traditional equation (3) was valid in the case The plan of the article is the following. In Sec. 1 we 
of the dtp system was not obvious beforehand, since consider the resonance mechanism of the reaction (2). 
the cross  section of the reaction (2a) at an energy E The determination of the connection between the nuclear 
< 200 keV was determined by the resonance 5 ~ e *  ($'), widths and shifts of the mesic molecule levels of the 
the position and width of which a r e  substantially influ- d tp  system, on the one hand, and the parameters of the 
enced by the Coulomb interaction of d and t,' whereas resonance 'Her($'), on the other, is the subject of Sec. 
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3. Section 4 contains the results of the numerical cal- 
culation of the nuclear widths and shifts of the mesic- 
molecule levels. In Sec. 5 we consider the restructur- 
ing of the mesic-molecule spectrum for various param- 
eters of the nuclear states. The results  and concluding 
remarks are  given in Sec. 6. 

$2. RESONANCE MECHANISM OF THE REACTION 
d+t+n+4He 

The reaction (2a) has been well investigated experi- 
mentally in the collision-energy range 8 keV< E < 12 
MeV (in the c.m. system of d +t).2 Its characteristic 
feature is  the near-threshold resonance 5~e*($*)  in the 
cross section 0, .(E) at an energy ER = 64 keV, with a 
half-width r /2  = 70 keV and with a cross  section at the 
maximum U , ~ ( E ~ ) =  5 b, which is  close to the unitary 
limit. The entire aggregate of the experimental data 
agrees with the assumption that at energies E < 200 keV 
the reaction goes from the s wave (L =0) in the dt input 
channel through intermediate excitation of the state of 
the 5 ~ e *  nucleus (J";'). The contributions of the re- 
maining states (L =0,  J"=$*, and L a  1) add up to 51% 
in this energy region.$ It i s  known that the cross  sec- 
tion u,,(E) for the reaction (2a) i s  well approximated by 
the Breit-Wigner-Eisenbud isolated-level formula.?*a10 

We consider the problem of three coupled channels 
with Hamiltonian 

Here H, i s  the Coulomb Hamiltonian of the dt channel 
(1 ), Hz is the free Hamiltonian of the n 4 ~ e  channel (21, 
Eo and 10) a r e  the energy and wave function of the state 
" 5 ~ e "  (3) without allowance for the coupling with chan- 
nels 1 and 2. The nuclear interaction in channels 1 and 
2 is  the result of the coupling of these channels with the 
resonance " 5 ~ e . "  

To find the dt-scattering amplitude, it suffices to 
solve the effective single-channel problem with the 
Hamiltonian 

in which the nuclear dt interaction is described by a 
nonlocal and energy-dependent generalized optical po- 
tential V. [G~(E)  = (E - H,)-' is the free Green's function 
of channel 2.1 The amplitude f!' of the s-wave dt scat- 
tering is expressed with the aid of the two-potential 
formula1' in terms of a generalized optical potential and 
of the solution of the scattering problem with the Ham- 
iltonian Hi: 

Here f = (e2" - 1)/2ik is the scattering amplitude, 6 is 
the scattering phase shift, f ( ~ )  is the Jost function, cpE 
i s  the regular solution for the Hamiltonian H, in the s 
wave, m, =m,m,/(m, +m,) and k = (2ml~)1 '2 .  The reg- 
ular solution I cpE) satisfies the boundary condition 

The matrix element in the right-hand side of (8) can 

be easily calculated because of the separable form of 
the operator V. For the S-matrix element correspond- 
ing to dt scattering we obtain 

We consider now S" in the physical region of the dt 
channel: 

(the threshold of the dt channel corresponds to E =O). 
Using the spectral representation of the Green's func- 
tion GI,  we write 

In the resonance region of interest to us (E < 200 k e ~ ) ,  
the quantity I (cpE I V ,  10) l 2  depends little on the energy 
E ,  since the radius R N  of the nuclear interaction is 
small  compared with the characteristic dimension of 
the Coulomb problem with the value of the reciprocal 
momentum of the relative motion of d and t: 

and can therefore be replaced by a constant: 

We can also neglect the energy dependence of the ma- 
trix element (0 I V;G,(E + iO)V2 1 O), since the distance Ei2 
=17.6 MeV between the dt and n4He thresholds is  large 
compared with the considered energy region: 

Denoting 
Es=Eo+Aa, 

( 2 m  1"' g f  I f  ( e )  I ~ ! ; ) ~ ' ~ d e  
A, ( E )  =Re(Ol V,+G,(E+iO) V,IO) = -2- R , 

O (1 3b) 

we rewrite the matrix element stl in the following form: 

S , , = e z i ~ - E 6 - A ,  ( E )  +iri,12-ikgl f ( E )  I-' 
E-E6-A, ( E )  +iri,12+ikgI f ( E )  I-' ' 

The phase shift 6 and the Jost function f ( ~ )  correspond 
here to Coulomb s-wave scattering: 

8=arg r ( i + i q ) ,  I f  ( E )  1-'==Coa(E). (15) 

The cross  section of the reaction (2a) with unpolariz- 
ed particles is given by 

= 
4ngri , l f  ( E )  I-' 

3 k [  (E-E,-A, (E)')'+ (r inl2+kglf  ( E )  I - ? ' ]  ' 

Here J=; is the angular momentum of the ' ~ e *  reso- 
nance, Sd = 1 and St =$ a r e  the spins of d and t. We 
have thus obtained an isolated-level equation similar to 
the Breit-Wigner-Eisenbud formula known from R-ma- 
tr ix theory (see, e.g., Ref. 7). The position of the reso- 
nance i s  determined by the energy of the bare state E, 
and by the shift A, and A2 due to the channel couplings 
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FIG. 1. Energy dependence of the shift Al(E) due to the coup 
ling of the bare state " 5 ~ e "  with the d P  channel (solid curve). 
The dashed curve shows the shift Al (E) . 

1-3 and 2-3. In the energy dependence of the elastic 
width 

we took into account the proximity of the threshold and 
the presence of Coulomb repulsion of d and t .  

In calculation of the function A,(E) (Fig. 1) we use the 
circumstance that the energy region E that makes the 
main contribution to the integral (13b) is determined by 
the action radius of the nuclear forces: 0 < E < E o -  1/ 
r n , ~ ; .  In other words, the form factor ~ ( c )  i s  of the 
order of unity at E S E O  and decreases rapidly with in- 
creasing energy at E < E O .  In the region E << c O  the re- 
sults a r e  independent of the details of the nuclear inter- 
action that couples channel 1 with 3 and 2 with 3, and of 
the structure of the bare state '"He," i.e., of the actual 
form factor. We have used the following form factor 

The parameters Es, ri ,, and g were determined at a 
fixed value of E Q  by obtaining a best fit of the theoretic- 
ally calculated reaction and scattering cross  sections to 
experiment. We have analyzed the data on reaction (2a) 
in the energy interval E =12-200 keV (Ref. 2) jointly 
with the data on the dt elastic scattering through an an- 
gle e=n/2 in the c.m.s. in the energy interval E =30 
-200 keV, assuming that the nuclear interaction of d and 
t  is significant only in the state with L = 0 and J =;. At 
EO = 0.5 MeV, the best agreement with experiment i s  
reached at the following values of the parameters: 

(X2 =10 for 24 experimental points and three param- 
eters). 

The theoretical dependence of the cross  section o,, 
and the energy E i s  shown in Fig. 2, which gives also 
the experimental data.' Figure 3 shows the results of 
the calculation of the energy dependence of the rat io S of 
the differential c ross  section for dt scattering through 
an angle B = ~ / 2  to the differential c ross  section for 
Coulomb scattering through the same angle (experi- 
mental data from the paper by ~ a l a s h k o ~ ) :  

G i n  9 b 

r 

FIG. 2. Cross s e c t i o ~  oh ( E )  for the reaction d + t - x  + ' ~ e .  
The theoretical curve was calculated from Eq. (16) with the 
parameters (17). The experimental points are from Ref. 2 
(dark from Ref. 2a and light from Ref. 2b). 

Figure 4a shows the Argand diagram for the dt scat- 
tering amplitude. We have also calculated the n4He 
scattering amplitude (the corresponding Argand diagram 
is shown in Fig. 4b) and verified that our calculation a- 
grees well with the result of a phase-shift analysis of 
the n4He scattering in the region of the ' ~ e *  (%,I reso- 
nance given in the paper of Hoop and ~ a r s c h a l l . ' ~  As 
expected, the reduction of the experimental data in the 
resonance region turned out to be insensitive to the val- 
ue of E Q  and to the form factor F(E). We have therefore 
confined ourselves to the use of one set  of parameters 
(1 7). 

83. EIGENVALUES OF THE HAMlLTONlAN OF THE 
dtp SYSTEM WITH ALLOWANCE FOR THE NUCLEAR 
INTERACTION 

We calculate now the eigenvalues of the total Hamil- 
tonian of the dtp  system 

Here H ~ ~ S  the Coulomb Hamiltonian of the dtp system 
(its spectrum was obtained in Ref. 131, and V i s  the nu- 

0 3~7 I01 150 ZOO 
E ,  keV 

FIG. 3. Energy dependence of at 0 = n/2 for dt scattering. 
The experimental points are from Ref. 3.  The theoretical 
curve was calculated from Eq. (18) with the parameters (17). 
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FIG. 4. Argand diagrams [a) for dt scattering kf" = (s" -I)/ 
2i ; b) for  n 4 ~ e  scattering, kzfZ2 = (sZ2- 1)/2i 1 in the region of 
the resonance 5~e*(3/2+) .  The numbers on the curves denote 
the c.m.s. energy (keV) of collisions, reckoned from the dt 
threshold. 

clear dt interaction whose form we have established in 
82: 

V = L ( E )  JE)<EJ,  \e)=v,lo), 
h(E) =(E-E,-(OI Vz+G,(E) Vzl 0))-'. 

(1 9) 

Using the separable form of the interaction V, we e- 
liminate from the eigenvalue problem of the Hamilton- 
ian H 

the unknown eigenfunction I To this end, we pro- 
ject Eq. (20) on the vector (( I : 

For the Green's function 

we use the spectral representation 

Here I *"") a r e  the eigenfunctions of the discrete spec- 
trum of the Hamiltonian H ~ ,  corresponding to the eigen- 
values E"', and ~ , h l  i s  the contribution of the continuous 
spectrum. 

To find the matrix elements ( 1  \E") and ( 5  IG'I () we 
must know the wave functions (r, R I  * I v )  and the Green's 
function G ~ E ,  r ,  R, r', R') for internuclear distances R 
and R' of the order of the effective radius R, of the nu- 
clear forces, which a r e  small compared with the char- 
acteristic dimension of the mesic molecule (here r is 
the coordinate of the p meson relative to the center of 
the charges of the nuclei). The asymptotic form of the 
wave function of the three-particle system with Coulomb 
interaction a s  R-  0 was obtained by Vinitskii et aZ.l4 in 
the adiabatic representation of the three-body p r ~ b l e m ! ~  

As R-  0, the coordinates of the muon and of the rela- 
tive motion of the nuclei separate: 

Here +,(r) i s  the wave function of the mesic atom in a 
state with quantum numbers j = ( ~ l m )  for a nucleus with 
mass m, +m, and charge Z =2. The functions X p ( ~ )  
describe the relative motion of d and t. 

We represent the matrix element (r, 5 1 \kJ1 in the 
form 

A nonzero contribution to the sum (24) is made only by 
the terms with j = (AUO) and L = 0, since the operator 
( [)([ 1 is a projector on a state with zero  orbital angular 
momentum of the relative motion of d and t .  We write 
down the coefficients bpdeo, using the results of Vinit- 
ski: et a1 .I4: 

Here I &") a r e  the s-wave regular solutions of the sys- 
tem of E ~ s . ' ~  that describes the relative motion of the 
nuclei in their adiabatic representation of the three- 
body problem: (R ) (Pp)lR.o = 1, and B? is a normaliza- 
tion coefficient calculated in a preceding paper (Ref. 
1 L 2 )  

We write the matrix element (r, ( 1  5'') in the form 

where g:',Y a r e  unknown coefficients. 

It i s  known from the numerical solutioni3 of the eigen- 
value problem of the Coulomb Hamiltonian of the dtp 
system that I B ~ I ~  exceeds at N = J + l  the sum of the 
spurs of the moduli of all the remaining coefficients 
B? by approximately an order of magnitude. In other 
words, a s  R-- 0 the muon in the dtp mesic molecules, 
has an overwhelming probability of being in one of the 
following states: jo = lsu at J = O ,  jo =2po at J=1, and 
jo = 3do at J =2. This property is preserved also when 
allowance is  made for the dt nuclear interaction,' and 
we confine ourselves therefore to one t e rm with N =J 
+1 in the sum (25). It suffices then to take into account 
in G: the contribution of the indicated preferred config- 
uration jo: 

<I, RIGemlr', R') 

 ere f M(~) and (pF(~) a r e  the Jost function and the regu- 
l a r  solution for the s-wave scattering t p  +d ,  mf is the 
reduced mass of the tp + d  system, and the energy E i s  
reckoned from the tp  +d  threshold. 

Substituting (24)- (26) in (21) and recognizing that at 
<< E* 

we arrive at the eigenvalue equation3' 
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The calculated nuclear level widths of the d t p  mesic 
molecule refer  to the case when the total spin of the nu- 
clei d and t  is I=+ to the cross  section of the reaction 
(2a) does not exceed 1% in the region next to the thresh- 
old,9 the rate of the nuclear fusion reaction (1) from 
molecular states with total nuclear spin I=$ exceeds by 
two orders the rate of the reaction (1) from states with 
I=$. This circumstance must be kept in mind in calcu- 
lations of the kinetics of mesic-molecule processes 
with allowance for the hyperfine structure of the dtp  
mesic-molecule levels. 

g(2m1')'" " I j" ( e )  I-2F'(e) s"de I B ' " ' ~ ~  
A,"(E)  = E-e + (28) 

"'t" 

As shown in Fig. 1,  the function A ~ ( E )  differs insignifi- 
cantly from the function A,(E) in the case J = O  (the dif- 
ference is even smaller at J 2 1). 

Equation (27) describes the influence of the nuclear 
resonance in the dt system on the levels of the dtp  mes- 
ic molecule. In the case of weak coupling of the nuclear 
and mesic-molecule levels, when the condition 

One can expect for the mesic-molecule states with J 
= 1 ,  where an important role is played by the wave- 
function component corresponding to the p-wave of the 
relative motion of d and t ( ~ e f .  I ) ,  Lhat a noticeable 
contribution to the level widths will be made by the p- 
wave nuclear interaction of d and t .  To take this effect 
into account we must determine the p-wave amplitude of 
the dt scattering from experimental data. 

is  satisfied, the solution of (27) corresponding to the 
mesic-molecule state is close to the pure Coulomb sol- 
ution: 

The values of I?"" obtained in the present paper agree 
within 10-20% with the results  of the preceding paper,' 
and within -10% with the result of the classical formula 
(3). An equation similar to (3) and relating the width of 
the dtp mesic-molecule levels with the nuclear-reaction 
constant A. (4) i s  obtained from (33) by using expression 
(16) for the cross  section of the reaction (2a): 

glBJ"12/2m, 
E=EJ"+ 

E'" - [Es+A,"(EJ") ]+ i r i , / 2  ' 

84. RESULTS OF NUMERICAL CALCULATIONS OF 
THE WIDTHS AND SHIFTS OF THE MESIC-MOLECULE 
LEVELS 

Using the values of the resonant parameters Es , r, ,, 
and g determined in $2, and the coefficients (B"" l 2  ob- 
tained by numerical solution of the eigenvalue problem 
for the Coulomb Hamiltonian of the dtp system, we have 
verified that the condition (31) for weak coupling of the 
levels i s  satisfied. In this case the nuclear widths rJv 
and shifts AE"" of the mesic-molecule levels (Jv) a r e  
given by 

Here 

i s  a coefficient that characterizes the deviation from 
the classical factorization relation (3). We recall that 

The calculated widths and shifts of the levels of the 
dtp mesic molecule a r e  listed in Table I. The accuracy 
of the results, which i s  governed by the uncertainty with 
which the resonance parameters were determined from 
experiment, i s  5%. According to our estimates, the 
contribution of the non-adiabatic corrections, which we 
have neglected in the derivation of (271, does not exceed 
10% for states w i t h J = l  and 1% for states withJ=O. 

The additional factor q was due to that fact that we a r e  
considering mesic-molecule states with a definite nu- 
clear spin I=$. The resonance parameters obtained in 
$2 correspond to a reaction constant 

The proximity of the coefficient y to unity can be ex- 
plained in the following fashion. According to our cal- 
culations the energy dependence of the cross  section of 
the reaction 

TABLE I. Nuclear widths rJU and shifts AE" of the levels 
( J v )  of the dtp mesic molecule. Rate of nuclear fusion reac- 
tion h p  = r Jv /Fi. 

179 tp+d+nt'He+p- 

1.2.10'2 
(1.0. 10'2) 

at 5 keV < E < 200 keV has a resonant ~ h a r a c t e r . ~ '  The 
t.o.iol2 resonance in the t p  + d  system i s  shifted from the reso- 

(o.80.10'2) 
1.0.108 nance in the dt system by an amount 6ER = -4 keV for 

(1.1.1P) 
3 9.107 the states with J = 0 (6ER < 4 keV for J+ 0) (see also 
(4.2.10': 
i . 0 . 1 ~  Fig. 1). Since the shift 6ER is small compared with the 

(1 1.10~) resonance energy ER =64 keV and with the half-width 
The quantities in the parentheses are the results of Ref. r / 2 =  70 keV, the factorization relation (3) is satisfied 

with good accuracy. 
Note. 
1.  
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$5.  MUTUAL INFLUENCE OF THE NUCLEAR AND 
MESIC-MOLECULE LEVELS 

In 83 we derived Eq. (271, which describes the mutual 
influence of  the molecular and nuclear levels in the dtp 
system. It i s  of  interest to investigate this equation for 
arbitrary Es  in the range from -- to +a. The solu- 
tions obtained will describe the spectrum of the dtp 
system at different values of  the energy o f  the nuclear 
resonance 5 ~ e *  and at a given intensity of  the coupling 
with the channels dt and n 4 ~ e  (g and Fin are fixed). As  
will be made clear presently, the nontrivial phenomena 
take place only in the case when Eq. (27) has closely ly- 
ing roots. W e  can then use for the function A ~ ( E )  the 
approximation 

and Eq. (27) takes the form 

Es+ALx(0) - Fin 
E, = 

g , g=- 
I - d  ' l -d  ' I - d  

I f  the coupling between the levels i s  weak (@I BJ' 1 2/ 

m,(.E& +rjn/4)<< 1 )  one of the roots of  ~ q .  (39) corre- 
sponds to nuclear resonance with energy ER: 

The other solution corresponds to  the mesic-molecule 
level: 

In the general case the roots of Eq. (39) 

can behave in three different ways with changing ER, 
depending on the value o f  P = 82 I B " 1 2/mlrin.  

1 .  I f  (3 > 1 ,  then in the limit as iR - f -  the solutions 
E* take the form 

E++{ 
E'"', E p + m  E(", En++- 
~ ( r ) ,  J J ~ + - ~  , .--{ E("Q, E,.+-OD ' 

The solution E-, which corresponds as iR - +m to  the 
nuclear level E ' ~ '  approaches with decreasing ER that 
region of the complex energy E plane in which the mes- 
ic-molecule level E ' ~ '  i s  located, and occupies this 
place as gR - -- (see  Fig. 5a). In turn, the solution E* 
corresponding as ER4 +- t o  th'e mesic-molecule level, 
i s  transformed into a nuclear level as ER- -a. This  
case, in which the character o f  the levels changes when 
the level energies corresponding to  interactions with 
different ef fective radius of  the forces come together 
(the mesic moleculer level turns into a nuclear level 
and vice versa) i s  known in the literature as the spec- 
t rum restructuring phen~menon.'"~ 

The restructuring o f  the spectrum of the dtp mesic 
molecule in the absence of  absorption (r,, = 0 ,  (3 = m )  

was considered earlier.' It was shown that the prob- 
ability of landing in the restructuring region, where the 
solutions I? di f fers  substantially f rom ECm' and E"', i s  
extremely small because d and t  in the dtp mesic mole- 

FIG. 5. 

cule have a low probability of  being in the effective r 
range of  the nuclear forces. The mesic-molecule state 
wave function localized at large distances goes over 
continuously, in the course of  the restructuring, into a 
nuclear-state wave function localized at short distances. 
In the restructuring region, the system stays at short 
and at long distances with equal probabilities. 

2. I f  (3 < 1 , then the limiting values o f  the solutions 
take the form 

With changing iR, the solution E* carries out finite mo- 
tion in the complex plane near E""' (Fig. 5b), and the 
solution E- passes outside the region E = E'"'. Thus,  at 
arbitrary zR the corresponding wave function of  the rel- 
ative motion of d and t  i s  localized at the characteristic 
mesic-molecule distances. The absence o f  spectrum 
restructuring in this case i s  due to  the presence o f  in- 
tense absorption (strong coupling with the open channel: 
rin> ggI BJV1 2 /ml ) .  Using the calculated values o f  Fin 
and g [ E ~ .  (17)] ,  and o f  BI' (Table I ) ,  we obtain for all 
the d t ~  mesic-molecule levels a value (3 2.6 x lo"<< 1 ,  
and consequently, no matter what the value o f  iR, re- 
structuring of the mesic-molecule spectrum i s  exclud- 
ed. The reasons for this were already noted above: the 
low probability of  finding d and t  in the effective range 
o f  action of  the nuclear forces for the mesic-molecule 
states of  the dtp system, and the  large inelastic width 
I?,, o f  the nuclear resonance. 

The result means that the theoretical predictions of 
the nuclear widths and level shif ts  o f  the dtp mesic 
molecule are "stable," despite the possibility of  varying 
the parameters E s ,  g ,  and Fin within the limits admit- 
ted by the errors in the experimental data on reaction 
(2a) and on the scattering (2b). 

3. The case (3 = 1 i s  intermediate. At E R  =EJV we 
have degeneracy: E* = E- (Fig. 5c). 

56. CONCLUSION 

W e  have calculated the nuclear widths rJV and shifts 
AEI' o f  the levels (JV) of the mesic molecule d t p ,  due 
t o  resonant interaction of d and t in the s-wave with spin 
I =$. It was established that the influence of the nuclear 
resonance on the mesic-molecule states i s  weak be- 
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cause of the low probability of finding d and t  in the ef- 
fective range of the nuclear forces in the dtp mesic 
molecule and to the large inelastic width of the reso- 
nance, and that the spectrum of the dtk molecule i s  
stable to variations of the nuclear-interaction param- 
e ters  within the limits allowed by the available experi- 
mental data. 

It was shown that the position of the nuclear resonance 
in the dtp system coincides with the position of the dt 
resonance, with accuracy of the order of the average 
energy of the interaction of the muon in the dtp system. 
Since the muon, which is bound to d and t  by electro- 
magnetic forces, has a low probability of being located 
in the region of the d and t  nuclear interaction, the shift 
of the nuclear resonance is also small, and a restruc- 
turing of the spectrum of the mesic-molecule levels i s  
excluded. Under these conditions, the ccupling of the 
nuclear widths with the reaction constant (4) i s  describ- 
ed with good accuracy by the classical factorization for- 
mula (3). 

The results agree well with the widths rJv calculated 
by using a generalized optical potentiali corresponding 
to the model of the coupled channels dt and n 4 ~ e .  

The authors thank S. I. ~ i n i t s k i i ,  L. N. Somov, and 
M. P. Faifman for help, and S. S. ~ e r s h t e i n ,  L. I. 
Ponomarev, V. A. Sergeev, and I. S. Shapiro for fruit- 
ful discussions. 

Equation (3) was used e a r ~ i e r ~ ~ ~ o n l y  to calculate the nuclear 
widths of the ground state ( J  = 0, v = 0) of the dtp  mesic 
molecules. 

') The coefficient B$" was designated in Ref. 1 by B ~ J Y .  
3)An eigenvalue equation can be written also for the case of an  

arbitrary number of t e rms  in the sums (24) and (25): it i s  
the condition that the resultant system of l inear homogene- 
ous equations have a solution with respect to the coefficients 
&". 
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