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A theory of the anomalous magnetoresistance in semiconductors and metals is constructed. It is shown that 
when the interaction between the electrons is neglected the quantum corrections to the conductivity lead to 
the appearance of negative magnetoresistance. Allowance for the interaction between the electrons also gives 
rise to an anomalous magnetoresistance whose sign depends on the sign of the electron+lectron interaction 
constant. It is shown that the various scattering mechanisms, such as spin-orbit scattering, intervalley 
transfers in many-valley semiconductors, and transitions between the light- and heavy-hole bands in 
semiconductors of the p-Ge type, have an effect on the magnitude and sign of the magnetoresistance. The 
effect of deformation on the anomalous magnetoresistance is discussed. 

PACS numbers: 72.20.My, 72.20.D~ 

I. INTRODUCTION prediction that the effect of the magnetic field is ap- 

Negative anomalous magnetoresistance (NAM) has preciable even in the region of classically weak fields, 

been experimentally observed in a broad class of where 

semiconductors over a period of more  than twenty o . z - l / p z , < l ,  
years now. The explanation of this  effect with the 

and the positive magnetoresistance is  smal l .  Here aid of Toyozawa's theory1 meets with considerable 
w,  =eH/m*c is the cyclotron frequency, m* is  the difficulties . A new possibility of explaining NAM has 

opened up in connection with the study of the effect of effective electron mass ,  p i s  the Fe rmi  energy, and 
7 is  the electron relaxation t ime in momentum space.  a mangetic field on the quantum corrections to the kine- 

t ic  coefficients. In the three-dimensional caseg 

Anothertype of quantum correction to the conductivity 
a r i s e s  when the interaction between the electrons i s  
taken into account. 3-6 In the present paper we consider 
the anomalous magnetoresistances that a r i s e s  in the 
cases of noninteracting and interacting part icles.  It 
i s  found that the effect changes significantly when we 
go from the two- to the three-dimensional ca se ,  and 
that it also depends on the specific band structure and 
the spin-relaxation mechanisms. The resulting mag- 
netoresistance does not depend on the orientation of 
the magnetic field relative to the current ,  i .  e .  , both 
longitudinal and transverse magnetoresistances exist .  
Some of these questions have already been discussed in 
the literature 

The paper i s  organized a s  follows. In the second 
section we expound the theory of the anomalous mag- 
netoresistance of noninteracting electrons for  the two- 
and three-dimensional cases .  In the two-dimensional 
case2 

In conclusion of the second section, we discuss the 
relaxation t ime of the phase entering into (3) in the 
practically important-for semiconductors-case of 
quasi-elastic scat tering of the electrons by the acoustic 
phonons . 

In the third section we compute the magnetoresis- 
tance due to the interaction between the electrons. 
Allowance for the interaction leads to a magnetoresis- 
tance whose sign is  determined by the sign of the in- 
teraction constant g(T)  at  smal l  total-momentum 
values: the magnetoresistance is negative in the 
case of attraction and positive in the case  of repul- 
sion In the three-dimensional case  

WeH 

where G (If) = l /R,(H) is the conductivity of a square 1.90, z w l ,  
f i lm in a magnetic field H, D i s  the electron-diffusion c p (  ) -  
coefficient, and T,, is the inelastic-collision-induced- 

a - [ -gi ( ~ ) x z ~ z s o . 3 3 x ' ,  r < 1 .  

relaxation time of the phase of the wave function. In the two-dimensional case  
In the presence of magnetic impurities, we must add to 
the ri the reciprocal spin-flip-scattering t ime 7;'; e' 2DeH A G ~ ( H ) =  - g ( ~ )  =qa (=) 

{ 
2'124, S K I ,  

fi ( 5 )  =In ~ + g ( ~ l ~ + l / z )  = 
l u x  xW1. 

(2 
l u x ,  xW1, 

Here *(y) i s  the logarithmic derivative of the gamma b ( x ) s {  1 ( 3 ~ x 2 / 4 a 0 . 3 0 z 2 .  z < i .  

function. where g(y) is the Riemann zeta function. Figure 1 

A remarkable property of the expression (1) is i ts  shows the plots of the functions cp2(a) and cp,(cu). 
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FIG. 1. Plots of the functions cp2(ff)  and p3(ff). The inset shows 
the plots of the functions cp2 and q 3  for small values of f f .  

Notice that in the three-dimensional case  the ab- 
solute value of the magnetoconductivity fo r  a non- 
interacting electron gas does not depend on the param- 
e ters  of the material  in strong magnetic fields, and 
has a universal value. 

When the interaction i s  taken into account, the mag- 
netoconductivity in strong fields depends only on the 
value of the electron-electron interaction constant. 
Fur ther ,  the high-field asymptotic form is attained in 
stronger fields in this case  than in the case  of non- 
interacting electrons, namely, in fields for  which 

In conclusion of the third section, we discuss the so- 
called Maki-Thompson corrections to magnetocon- 
ductivity. Their sign does not depend on the sign of 
the interaction constant, and the field dependence i s  
the s ame  a s  the field dependence fo r  noninteracting 
electrons. 

The theory of the magnetoresistance of noninteracting 
particles i s  applicable when E >> Ti/? >> K/T, (E is the 
characteristic electron energy), and therefore it can 
easily be generalized to the case  of nondegenerate 
stat is t ics .  At the s ame  t ime,  the theory of the mag- 
netoresistance of interacting electrons is  valid for  
E >> A/7 >> T,  and is therefore applicable only to a de- 
generate electron gas .  In the nondegenerate case  the 
dominant contribution to the anomalous magnetoresistance 
in the region of magnetic fields H - h c / 4 D e ~ ,  i s  ap- 
parently made by those considered effects which a r i s e  
when the interaction is neglected. 

If the diffusion coefficient i s  anosotropic, then AG 
and Ao a r e  tensors ,  s o  that 

( l a )  

where D: = D , ( ~ , , c o s ~ 8  +Dlsin28), 8 is the angle between 
the axis of the ellipsoid and the magnetic field, Di, 
is the diffusion coefficient tensor,  and D. = [ d e t ~ ,  j ] l l d ,  

s o  that, f o r  example, ~ 2 ~ )  = ( 0 1 1 ~ ~ ) L 1 3 .  The expres- 
sions for  AG,,,,(H) and ha,,,@) similarly change when 
the anisotropy is taken into account. 

In a number of semiconductors, such a s  Ge, Si ,  
and Te,  the conduction bands consists of several  non- 
equivalent valleys. The diffusion coefficient in each 

of the valleys is  anisotropic. Therefore,  in strong 
magnetic fields, in which the intervalley transfer  pro- 
cesses  can be neglected (4eD,,,1H7v/c >> 1 ,  \ i s  the 
intervalley transition time), the magnetoconductivity is  
given by the sum of the individual valleys' contributions 
each of which i s  given by the expressions ( l a )  and (3a). 
In this case  the magnetoconductivity does not depend on 
the mutual orientation of the current  and the field, but 
depends on the orientation of the magnetic field with 
respect to the crystallographic axes .g*10 

In weak fields fo r  which 4eD,,,1H7v/c << 1, the mag- 
netoconductivity does not depend on the orientation 
of the magnetic field with respect to the crystal  axes, 
and is given by the expressions (1) and (31, where the 
diffusion coefficient D is connected with the total 
conductivity by the Einstein relation. 

When the anisotropy in the coefficient of diffusion in 
a valley is  sufficiently strong,  there exists a region 
of intermediate magnetic fields 

where the magnetoconductivity i s  anisotropic, but the 
degree of anisotropy depends on the magnetic field. 

The fifth section is devoted to the study of the effect 
of the spin-orbit interaction on the anomalous mag- 
netoresistance. It i s  shown in Ref. 7 that allowance 
for  the spin-orbit interaction in electron scattering 
by an impurity leads to a change in the sign of the mag- 
netoresistance, i .  e . , the magnetoresistance becomes 
positive in the case  of noninteracting electrons, con- 
tinuing to depend anomalously on the magnetic field 
(PMR). As the magnetic field intensity is increased, 
the magnetoresistance becomes negative again as soon 
a s  the condition 

where rS0 is the spin-orbit scat tering time, is ful- 
filled. 

Similar effects should be observed in ordinary scat-  
tering when allowance is made for  the spin-orbit 
splitting of the band s ta tes ,  a s  obtained in, fo r  example, 
the noncentrosymmetric cubic semiconductors (i. e .  , 
in compounds of the type A"'B"). Since the spin- 
orbit scattering time in these compounds increases 
with increasing concentration, l1 the magnetoresistance 
changes i ts  sign again when the condition (6) i s  ful- 
filled in the given magnetic field. Allowance for  the 
complex structure of the valence band also leads to 
a change in the sign of the magnetoresistance in weak 
fields (PMR). The valence bands with p = 0 split up 
on being deformed, and a s  the deformation increases,  
the anomalous PMR decreases  in magnitude, and when 
the splitting of the bands becomes of the order of the 
Fe rmi  energy, the magnetoresistance changes i t s  
sign. The piezomagnetoresistance in p-Ge has been 
experimentally observed to have precisely this 
character .  l2 Allowance fo r  those spin-orbit effects 
in  the magnetoresistance which a r e  due to the inter- 
electron interaction leads only to a change in the mag- 
nitude of the effect, leaving i ts  s ign unchanged. 
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In the sixth section we study the magnetoresistance 
in thin layers o r  in MDS structures. 

11. THE MAGNETORESISTANCE OF NONlNTERACTlNG 
ELECTRONS 

As has been shown,13 the main quantum contribution 
to the conductivity ar ises  when the "fan" diagrams 
(Fig. 2) a re  taken into account. These diagrams des- 
cribe the interference that ar ises  during multiple 
back scattering. The amplitude of this interference 
[the "cooperon" C ( x ,  i)] is  given by the sum of the 
ladder diagrams for small total-momentum values. 
It is precisely this amplitude that i s  sensitive to weak 
magnetic fields, a sensitivity which determines the 
anomalous magnetoresistance. The correction to the 
conductivity has the following form (ti = 1 ): 

where C ( r ,  r'; w) satisfies the equation2 

w being the external-field frequency. 

The coherence of the electronic wave functions is 
destroyed over a time period of the order of the in- 
elastic-collision-induced-relaxation time of the phase 
of the electron wave function, which i s  the cause of the 
appearance of the r,' term in Eq. (8). In metals a t  
low temperatures each inelastic-scattering event changes 
the energy by an amount of the order of T. Under 
these conditions, T, coincides with T,, the energy re- 
laxation time. 

It must be noted that the time 7, significantly de- 
pends on the mean free path. In the three-dimensional 
case the interelectron-collision-induced energy re- 
laxation time ~ ~ - ~ ~ 1 ~ p - ~ r ~ / ~  (Refs. 5 and 16); in the 
quasi-two-dimensional case r,' - c  /p7pFa (a is  the 
sample thickness). In semiconductors the collisions 
with the acoustic phonons a re  quasielastic, and there- 
fore 7, and 7, differ greatly from each other. In fact, 
the time 7, is the period of time over which the phase 
changes by an amount of the order of unity, i .  e . ,  for 
which 

In an electron-phonon collision, because of the quasi- 
elastic nature of the collision, the energy of the elec- 
tron changes by an amount 

where E is  the characteristic electron energy, equal 

FIG. 2. The dominant quantum correction to the conductivity 
of noninteracting electrons. 

to T in the nondegenerate case and to p in the case of 
a degenerate electron gas, v is the characteristic 
electron velocity, and s i s  the velocity of sound. Then 
the change in the energy over the time period 7, is ,  
in order of magnitude, equal to 

where 7;; i s  the electron-phonon collision rate. Sub- 
stituting (10) into (9), we obtain 

and therefore T,,<< v, << 7,. 

It should be noted that the expression (11) is valid 
if 

T ~ A A E - T , A ~ E < I .  (1 l a )  
v 

In the opposite case the phase changes by an amount 
of the order of unity over a time period of the order 
of T~ , , ,  i . e . ,  

T ~ = T = A  for ~ = ~ A e > l .  (lib) 

The criterion ( l l a )  differs significantly from the 
standard quasi-elasticity condition A& <<Z, T. 

The solution to Eq. (8) can be written in the form 

$",= (r) (r') C ( r ,  r'; O) = C -io+DQ2+4DeXc-' ( n t t I 2 )  +1/~. * (12) 
n,= 

where the *,,(I-) a r e  the normalized wave functions of 
a particle with charge 2e and mass (20)-' in a mag- 
netic field. The sample will be quasi-two-dimensional 
if i ts  thickness a <(DT,) ' /~=L,  (Refs. 14 and 15). 
In this case the term D@ in (12) should be dropped. 
The substitution of (12) into (7) leads to the expressions 
(1) for the quasi-two-dimensional, and (3) for the 
three-dimensional, case. The function f3(x) then 
has the form9 

fa(.) = 5(2[ (n+x+i)"-  ( n - ~ ) " ] - ( n + ' / ~ + x ) - ' ~ ) .  (13) 
n-o 

Ill. THE MAGNETORESISTANCE FOR AN 
INTERACTING ELECTRON GAS 

The quantum corrections to the conductivity that a re  
due to the effects of the interelectron interaction have 
been discussed by a number of There a r e  
two types of corrections: 1. The corrections that 
ar ise  when the interaction in the particle-hole chan- 
nel, i . e . , the interaction involving small momentum 
transfers, i s  taken into consideration. These cor- 
rections begin to depend essentially on the magnetic 
field only in the region of classically strong magnetic 
fields, i . e . ,  in the region where we?-1. 2. The 
corrections due to the interaction in the particle- 
particle channel (the Cooper channel). These cor- 
rections, a s  we shall now show, depend essentially 
on the magnetic field even in the region of classically 
weak mangetic fields, namely, in the region where 
W,T - T / p  << 1. Therefore, we can, in investigating 
the magnetoresistance, limit ourselves to the consider- 
ation of only the interaction in the Cooper channel. If 
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FIG. 3. The corrections to the conductivity that arise when 
the interaction between the electrons is taken into considera- 
tion. 

the  ba re  interaction does not depend on the resultant 
momentum, then, a s  shown in the Appendix, only the 
diagrams shown in Fig.  3 a r e  important. I t  can in the 
process be verified that the contributions corresponding 
to the diagrams 3b and 3e a r e  respectively equal to 
minus one half the contribution made by the diagrams 
3a and 3d, and that the contribution of the diagram 
3a differs in sign f rom,  and is two t imes grea ter  than, 
the contribution of 3d. Therefore, t he  s u m  of the 
diagrams 3a,  3b, 3d, and 3e is equal to one fourth the 
contribution of 3a.  All these contributions to the 
anomalous magnetoconductivity s tem from the magne- 
tic-field-dependent interelectron-interaction-induced 
corrections t o  the density of s ta tes .  The diagram 
3c and 3f describe the so-called Maki-Thompson 
corrections, which a r e  well known in the theory of 
fluctuational superconductivity, l6 and whose mag- 
netic-field dependence in the two-dimensional 
case  was investigated ear l ie r .  

The effective interaction r(w,) i s  determined by the 
equation depicted in Fig. 4: 

where v =m*pF/n2 i s  the density of electron states a t  
the Fermi  level, 

X i s  the dimensionless bare  interaction constant, q i s  
the cutoff parameter ,  equal to p in the case  of mutual 
repulsion of the electrons and to  W ,  in the case of 
phonon-mediated attraction, w, is the Debye frequency, 
and lnr  = C = 0.577. If r i s  treated a s  a constant, then 
only the diagrams 3a ,  3b, 3d, and 3e need to be taken 
into consideration. The contribution of the diagrams 
3c and 3f can in this case  be neglected. 

FIG. 4. Equation determining the electron-electron vertex 
part in the case of low total momentum and low total energy 
Wn. 

Computing the contribution of the diagram 3a  with 
the  aid of the rules of the temperature technique after  
performing the analytic continuation in the Matsubara- 
frequency space, we obtain the following expression 
fo r  the magnetic-field-induced correction to the con- 
ductivity in the three-dimensional case: 

Formally, each of the t e rms  in (15) when integrated 
over w diverges a t  the upper l imit .  In the Ao,., dif- 
ference,  the diverging parts  cancel each other. Using 
the relation 

we can represent  the expression (15) in the form 

- t'"& xt 
Q ( x ) =  ($)'"J-[i-1. s h Z t  shxt  

The asymptotic expressions obtainable from (17) 
and (18) for  Ao,.,(H) have the form (4a). As can be 
seen f rom Eq. (13), the electron-electron interaction 
depends on the magnetic field. In weak fields, this 
dependence can be neglected, since the corrections 
that a r i s e  when i t  is taken into consideration a r e  small  
compared to (17), being smal ler  by a factor of the 
order  of the parameter  g(T) << 1. In strong magnetic 
fields, allowance for  the dependence r(H) in (14) leads 
to a situation in which the interaction constant 

1 cq g - ' ( H ) = - + l n -  X DeH 

enters  into (17). It can be seen from the expressions 
(17), (181, and (19) that, a s  the magnetic-field in- 
tensity increases,  the conductivity decreases  in the 
case of mutual repulsion of the electrons and increases 
in the case  of mutual attraction. Therefore, the study 
of this effect can yield information about the sign and 
magnitude of the effective electron-electron interac- 
tion constant for  smal l  total momenta. 

The Maki-Thompson corrections corresponding to the 
diagrams 3c and 3f lead to the following expressions 
fo r  the magnetoresistance: 

A o H r ( H )  =-p ( T )  A o ( H ) ,  AGMT ( H )  =-P ( T )  AG ( H ) ,  

where AG(H) and Aa(H) a r e  given by the expressions 
( I ) ,  (31, and (13). The quantity @ ( T )  does not depend 
on the dimensionality, and is computed in Ref. 8.  
The sign of the Maki-Thompson correction does not 
depend on the sign of the interaction constant g(T).  
The function @(T) has the following asymptotic forms8: 

414 Sov. Phys. JETP 54(2), Aug. 1981 Al'tshuler eta/. 414 



and has been tabulated by one of the  p resen t  au thors .  

Notice that these  correct ions a r e  s m a l l  when DeH/cT 
>> 1 . 

IV. THE MAGNETORESISTANCE IN  MANY-VALLEY 
SEMICONDUCTORS 

In the absence of umklapp p r o c e s s e s ,  the contribu- 
tions of the various valleys in  many-valley semicon- 
ductors  a r e  additive. In  this  c a s e  the number of 
par t ic les  in  each valley i s  conserved,  and the d i s t r i -  
bution of the  particle-density fluctuation in each valley 
is described by the  diffusion equation. In t h e  p resence  
of umklapp p r o c e s s e s ,  only the total densi ty  i s  con- 
se rved ,  and only the  fluctuations in  this  quantity a r e  
described by  the diffusion equation. The symmetr ic  
fluctuations in the  valley-occupation numbers ,  on the 
o ther  hand, relax over  t i m e  periods of the o r d e r  of the 
intervalley t ransi t ion t i m e s  $, which can b e  much 
longer than the intravalley relaxation t i m e s .  A s i m i l a r  
situation obtains f o r  the phase fluctuations, which a r e  
described by the cooperon: only the symmetric-in the 
indices of the equivalent valleys-cooperon is p r e -  
se rved  by the  diffusion pole (- i w  +DQ')-'; the remaining 
components d ie  down o v e r  t i m e  periods of the o r d e r  of 
T ,  when >> 7 .  Thus,  of the  n independent cooperons 
only one remains  a t  t imes  much g r e a t e r  than 7,  (the 
quantity D  in it  i s  equal to  the m a s s  diffusion coef - 
ficient) . 

As a resu l t ,  if 7 ,  << -re, then the expression f o r  the 
magnetoconductivity of noninteracting e lec t rons  has the 
f o r m  

when 4D ,, ,eHTv/c << 1. In the opposite limiting c a s e ,  
i .  e .  , f o r  4 0  ,,,, eHr , / c  >> 1,  

where ~ o t ; ( H )  i s  given by the expression (3a), and t o  
each t e r m  in (20a) corresponds a n  angle between the  
direction of the magnetic field and the axes  of the ellip- 
s o i d .  I t  should b e  noted that the en t i re  anisotropy of 
t h e  magnetoconductivity is due to the  anisotropy of the 
effective m a s s e s  (cf. Ref .  10). 

A s  shown above, the interaction gives r i s e  to  two 
contributions t o  the magnetoconductivty: the d iagrams  
3 a ,  3b,  3d, and 3e. In the many-valley c a s e  w e  should 
distinguish between the electron-electron interact ion 
constants corresponding to the coupling of both the dia- 
gonal-with respec t  to the valley induces-and the 
off-diagonal e lements  of the density mat r ix .  In the 
c a s e  of the Coulomb interaction the off-diagonal con- 
s tants  a r e  smal l  compared to the diagonal constants ,  
and, if we neglect them,  then the d iagrams  3a and 3b 
have an ex t ra  fac tor  of 2n , (because of the p resence  
of the electronic loop) in comparison with the d iagrams  
3d and 3e .  

The effect of the anisotropy, which always obtains 
in many-valley semiconductors ,  of the coefficient 
of diffusion in one valley i s  to  make  only the consider- 
ation of the interaction between the e lec t rons  per -  
taining t o  the equivalent (i . e . , the identically or ien-  
ted)  ellipsoids necessary. ')  If the number of equi- 
valent val leys is n, (for  Ge, n, = 1 and f o r  Si, n, = 2), 
and if the umklapp p r o c e s s e s  can be  neglected, then 
the d iagrams  3 a  and 3 b  have only 2n1 as a n  ex t ra  fac-  
t o r ,  and there fore  f o r  T T ,  << 1 and 4 D e H ~ , / c  << 1 

F o r  4 D , , , , e H ~ ~ / c  :> 1 o r  TT,  >> 1 

where the summation is over  the  nonequivalent ellip- 
so ids  and 

These  asse r t ions  a r e  valid with regard  t o  the  contri- 
bution of the Maki-Thompson d i a g r a m s  (Figs. 3c and 
3f). 

The off-diagonal constants cannot b e  taken into con- 
s idera t ion  generally: each  type of many-valley semi-  
conductor r e q u i r e s  a special  t reatment .  

V. EFFECT OF THE SPIN-ORBIT INTERACTION ON 
THE MAGNETORESISTANCE 

The spin-orbit interaction h a s  a s t rong  effect on the 
magnetoresis tance,  and can  even change i t s  s ign.  
In noncentrosymmetr ic  cubic c rys ta l s  the effective 
Hamiltonian of the electrons in the conduction band 
has  the  form'' 

If S ~ ( P ) T  << 1 ,  then t h e r e  occur  o v e r  a period of t i m e  of 
the  o r d e r  of T a l a r g e  number of e las t i c  collisions, 
which, because of the  spin-orbit interaction, lead t o  
spin relaxation. The effective t ime  of this relaxation 
i s  equal to1' 

A s  a resu l t ,  the cooperon a s s u m e s  the following 
form7*'@: 

T h e  expression (24) can b e  interpreted in  the  fol- 
lowing s imple  manner'': the cooperon can b e  represen-  
ted in the f o r m  of a s u m  of c o r r e l a t o r s  of the singlet 
A, and t r iplet  A wave functions of two part ic les:  

In the absence of spin-orbit interaction, each of the 
c o r r e l a t o r s  has  the  s a m e  f o r m  as the second t e r m  in 
(24). The spin-orbit interaction gives rise to spin 
relaxation, and, in consequence, the  c o r r e l a t o r  (A'A) 
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acquires  1/7,, in the denominator. Therefore,  f o r  
T,,>> 7" >> 7 the correct ion to the conductivity of non- 
interacting electrons i s  negative, as is the magnetore- 
s is tance,  while f o r  T, >> T,, the increase  of 7, causes  
this  negative correct ion to decrease ,  and ultimately 
makes it  negative. 

If 7 0  2 1, then T,, - 7. Under these conditions, i t  is 
not necessary  a t  a l l  to wr i te  down the f i r s t  t e r m  in the 
formula (241, and we need to consider only the second 
t e r m  with its sign and coefficient. We should then 
expect a positive correct ion to the  conductivity and a 
PMR in the en t i re  t empera ture  range.  

A s imi la r  effect occurs  in the computation of Au,, (H). 
But s ince i t  is the square  of the Cooper pole that e n t e r s  
into the expression (15), allowance f o r  the  spin-orbit 
scat ter ing does not change the sign of Au,, (H), but 
decreases  i t s  magnitude by  a fac tor  of four .  In the 
two-dimensional c a s e ,  the magnetoresistance is s imi -  
l a r ly  affected by the spin-orbit scat ter ing of the  im-  
puri t ies .  This  effect is considered in Ref. 7 .  

In the cubic c rys ta l s  the valence band with p = O  i s  
fourfold degenerate ,  and the Hamiltonian of the holes 
in the spher ica l  approximation can be written in the 
f o r m  

where  m ,  and m, a r e  respectively the m a s s e s  of the 
heavy and light holes J is the operator  corresponding 
to the 3/2 sp in .  The cooperon can be expanded in t e r m s  
of the s t a t e s  character ized by the total spin of the p a i r  
of par t ic les  : 

where I is the total spin of the pa i r  of par t ic les  and 
A(') is the wave function of a pa i r  of par t ic les  with 
total spin I. If the light- and heavy-hole m a s s e s  coin- 
cide,  then each of the cor re la to rs  has the  f o r m  of a 
diffusion pole. If,  on the other  hand, m,  # m, , then 
the scat ter ing on the impuri t ies  causes  t ransi t ions 
between the various branches of the s p e c t r u m .  A s  a 
resul t ,  a l l  the higher spin multipoles rapidly relax,  
and only the l a s t  t e r m  in the expression (27) remains .  
Thus, the magnetoresis tance fo noninteracting elec- 
t rons in the p-type cubic c rys ta l s  should be positive, 
and i t s  magnitude should b e  four  t imes  s m a l l e r  than 
the magnetoresistance in a s imple  band. Therefore ,  
under conditions of a uniaxial deformation that  spl i ts  
the fourfold degenerate  band into two twofold degenerate  
one, the magnetoresis tance becomes negative and in- 
c r e a s e s  in magnitude by a fac tor  of four  when the 
deformation-induced band splitting goes above p .  

I t  should be noted that allowance f o r  the cubic aniso- 
tropy does not change the  resu l t  obtained, s ince the co- 
efficient t i n  the las t  t e r m  in (27) is due only t o  the 
multiplicity of the hold s t a t e s  wi thp= 0. 

As a resu l t  of the t ransi t ions between the various 
spec t ra l  b ranches ,  AUint (H) d e c r e a s e s  in  magnitude 

by  a fac tor  of 16 as compared to the  expression (3) f o r  
the c a s e  of a s imple  band without changing s ign .  
Therefore ,  Auint (H) is much g r e a t e r  i n  a deformed 
crystal-in limit of l a r g e  deformations, 16 t imes  
greater-than in a n  undeformed crystal .  

Le t  u s  emphasize that i t  is the m a s s  hole-ddiffusion 
coefficient, which is connected with the electr ical  
conductivity by  the  Einstein relation 

where  v is the total density of hole s t a t e s  a t  the  F e r m i  
level ,  that  en te rs  into the express ions  (3) and (4). 

VI. THE MAGNETORESISTANCE IN THE TWO- 
DIMENSIONAL CASE 

We have thus f a r  been discussing the magnetoresis-  
tance in  the three-dimensional c a s e .  In o r d e r  that the 
sample  might b e  considered t o  b e  three-dimensional,  
i t s  dimensions should b e  g r e a t e r  than L p  = ( L ) T ~ ) ~ I ~  
f o r  the effects occuring in the  absence of interaction14 
and L, = (D/T)lJ2 f o r  the effects due  t o  the interaction 
between the e lec t rons .  If,  on the other  hand, i t s  
thickness is l e s s  than these  charac te r i s t i c  lengths, 
then the sample  behaves like a two-dimensional object,  
even though a may b e  macroscopic.  

The computations of the magnetoconductivities G(H) 
and G,,,(H) of a square  f i lm differ  f r o m  the correspon- 
ding computations in the three-dimensional c a s e  in 
that  t h e r e  is no integration over  Q,.  As a resu l t ,  we 
obtain f o r  G ( H )  the expressions (1) and (2) and f o r  
G,nt(H) the expression 

The asymptotic expressions f o r  (/.,(a) a r e  given by the 
fo rmulas  (5a). 

In the two-dimensional c a s e  the  magnetoresis tance 
in classical ly  weak f ie lds  due only t o  the magnetic- 
field component perpendicular to  the  plane of the 
sample .  In those c a s e s  in  which the  f i lm i s  thick, 
i .  e .  , in  the absence of dimensional quantization (the 
quasi-two-dimensional case) ,  a l l  the effects of the spin 
orbi t  interaction and the many-valley charac te r  of the 
semiconductor a r e  s i m i l a r  t o  the effects in the th ree-  
dimensional c a s e .  

In the truly two-dimensional c a s e ,  which is realized 
in ,  f o r  example, metal-dielectric-semiconductor 
(MDS) s t r u c t u r e s ,  the  effects of t h e  spin-orbit in te r -  
action mus t  be  reconsidered.  L e t  us  f i r s t  consider  
the spin-orbit sca t te r ing  on the impuri t ies .  Let the 
z axis  b e  directed along the normal  to  the sur face .  
Then the scat ter ing amplitude contains only the t e r m  

Computing the cooperon CUB,, by a method s i m i l a r  t o  
the one used in Ref. 7 ,  we obtain 
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The expression for G(H) contains the quantity 

which does not become infinite a s  o- 0, Q- 0. There- 
fore,  for DeH/c<< 1 /<,,, 7. >> do the magnetoresistance 
for noninteracting electrons i s  equal to zero. 

The situation changes when we consider G,,(H). The 
contributions of the diagrams a)-c) in Fig. 3 arepro-  
portional to 

Therefore, allowance for the spin-orbit scattering 
decreases these contributions by a factor of two. On 
the other hand, the corrections due to the diagrams c) ,  
d) ,  and f)  in Fig. 3 a r e  proportional to 

and a s  a result, when T : ~  i s  taken into account, the 
corrections due to the diagrams 3c, 3d, and 3f do not 
contribute to the magnetoconductivity in sufficiently 
weak fields. 

When the spin-orbit scattering is  neglected, the con- 
tributions of the diagrams 3c and 3d a r e  two times 
smaller than the contributions of the diagrams 3a and 
3b, and have the opposite sign. As a result, the spin- 
orbit scattering does not affect the magnitude of 
Gint(H). 

This phenomenon can be explained a s  follows. The 
electron-impurity interaction, (29), does not change 
the direction of the electron spin. Therefore, the 
cooperons with spin components parallel and anti- 
parallel to the normal to the sample surface can be 
considered separately. It turns out that the pole at 
w = 0 and Q = 0 is preserved only in the cooperon with 
anti-parallel spins. This means that only the contribution 
of the diagrams 3a-3c to the magnetoconductivity 
G, , , (H)  remains. 

The D'yakonov-Perel' spin-relaxation mechanism 
affects the magnetoconductivity differently. Let, for 
simplicity, the fourfold axis [loo] be perpendicular 
to the plane of the film. Then we can only have 7fo 

=7i0  (the situation does not qualitatively change if the 
z axis does not coincide with the [loo] axis). In this 
cas e7 

Therefore, because of this spin-relaxation mechanism, 
the magnetoresistance in the absence of interaction 
changes its sign and becomes positive, being equal in 
magnitude to one half the expression (1). At the same 
time AG,,(H) simply decreases by a factor of four 
in comparison with (5). 

In inversion layers of the p type, the magnetoresis- 
tance also depends logarithmically on H, and two s i -  
tuations a r e  possible for the coefficient of the logarithm. 
If the band splitting due to the dimensional quantization 
in the inversion layer is greater than the Fermi 

TABLE I. 

energy, then the magnitude and sign of the coefficient 
a r e  the same a s  for the case of a simple band o r  in 
deformed three-dimensional semiconductors of the 
p type. But if the dimensional splitting i s  small, 
then the situation i s  exactly the same a s  in three- 
dimensional p-type samples when the deformation 
is slight. 

1. Simple band without-orbit effects 

2. IImpurity spin-orbit scattering (weak fields) 

3. n-GaAs 
4. p-Ge 
5. p-Ge deformed 

VII. CONCLUSION 

Thus, the sign and magnitude of the magnetoconduc- 
tivity and the characters of the temperature and field 
dependences a r e  determined by many factors: the 
band structure of the semiconductor, the spin- and 
intervalley -relaxation mechanisms, and the effective 
dimensionality of the sample. The total magnetocon- 
ductivity for the three-dimensional case is a sum of 
two contributions 

1 

-*/, 

- 2  

-'A 
i 

a ( H )  -a (0) = [cs -c :" '~  (T) ] AO ( H )  +$' AU,,,, ( H )  , (30) 

The coefficients c, and cp t  for the two-dimensional 
case can be similarly defined. The expressions for 
h o w )  and Aa,,,(H), a s  well a s  for Ati(H) and AG,,,@) 
for the two-dimensional case,  a r e  given by the for- 
mulas (11, ( la) ,  (3), (3a), (41, and (5). 

1 

I/, 

I '  
'/IS 
1 

In Table I we have collected the values of the coef- 
ficients c, and cjnt for the various cases in the limit 
of weak magnetic fields. According to the established 
tradition of experiment, the data a r e  represented in 
graphs a s  dependences of [p(H) - p(~)]/p(o) on the 
magnetic field. It should be noted that, for the purpose 
of a comparison with the present theory, it is con- 
venient to plot u(H) - u(0) vs.  H"' in the three-dimen- 
sional G (H) - G(0) vs . 1nH in the two-dimensional 
case,  since it i s  precisely in such plots that the asym- 
ptotic dependences a r e  representedby straight lines with 
universal slopes. In the anisotropic case, as well 
a s  in the case of the many-valley semiconductors 
these slopes depend on the ratio of the components of 
the  diffusion tensor in one ellipsoid, as well as on 
the angle between the direction of the magnetic field 
and the crystal axes. 

The theory expounded in the present paper has two 
characteristic magnetic-field scales: 

1 

Ha=Ac/4eDz,, H,. ,=ncT/2eD. 

In the case TT. >> 1 ,  H,, <<Hi,,. Therefore, the field 
dependences of the magnetoconductivity a r e  given by 
the formula (30), in which Aoht(H) assumes its asy- 

1 
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FIG. 5. 

mptotic fo rm a t  H >>Hi,, while AU(H) does s o  a t  H 
>>Ho. The graphs of such a function have two points 
of inf lect ionat  H -Ho and H -Hi,. Moreover ,  the 
various intervalley- and spin-relaxation mechanisms 
produce new magnetic-field s c a l e s ,  and therefore t h e  
dependence u(H) may have severa l  points of inflection. 
A detailed study of these  dependences can provide in- 
formation about the relaxation-time s c a l e s .  It  is 
apparently convenient t o  s e t  up such experiments  in 
the longitudinal geometry,  in which the classical  
magnetoresistance is equal to  ze ro .  If T and T-,' do 
not differ  great ly f r o m  each other ,  then the magne- 
toconducitivty curve may have only one point of inflec- 
tion. Such a situation is possible in  the  c a s e  of quasi- 
e last ic  scat ter ing.  When the momentum relaxation 
occurs  on account of the quasielastic scat ter ing by the 
acoust ic  phonons, the diffusion coefficient depends on the 
temperature,  and th i s  leads to  a n  additional t empera ture  
dependence of the quantities H, and Hint. 

The authors  a r e  grateful to  I .  B. Levinson, G. E . 
Pikus ,  T .  Polyanskaya, and I .S.  Shlimak f o r  useful 
discussions,  a s  well as t o  G. B. Yakhve f o r  formulating 
a number of problems considered in the paper .  

APPENDIX 

All the d iagrams  that should b e  considered in the  
study of the effect of t h e  electron-electron interaction 
on t h e  conductivity can b e  obtained by inser t ing in a l l  
possible ways two cur ren t  ver t ices  in the d iagrams  
shown in F igs .  5 a  and 5b. 

The contribution of each of the d iagrams  in Fig.  4 
can  b e  wri t ten in the f o r m  

where the Li, a r e  the elements  of the d iagram in Fig.  5 
depicted in  Fig.  6a.  I t  tu rns  out that the s u m  of the 
d iagrams  in which the sign of the  energy does not change 
a t  the cur ren t  ver t i ces  vanishes if the  b a r e  interaction 
does not depend on the total momentum Q. 

Indeed, the s u m  of the  d iagrams  in F ig .  6b is equal 
in this c a s e  to  aCi/aQa, while the s u m  of the d iagrams  
in Fig.  6c can be  represented in the f o r m  a2gi/aQaaQ,. 
Therefore,  the total contribution t o  the conductivity 

FIG. 6. 

f r o m  the d iagrams  in which the electron energy does 
not change i ts  s ign a t  a cur ren t  ver tex  has the f o r m  

Thus, w e  need to consider  only those d iagrams  in 
which the  retarded Green function is changed into the 
advanced function, and vice v e r s a ,  a t  a cur ren t  v e r -  
tex.  If we a l so  take into account the  fact  that  the 
cooperon is made up of a retarded and an advanced 
Green function, then only the d iagrams  in F igs .  3a-3c 
and F igs .  3d-3f, which a r i s e  f r o m  the d iagrams  5a 
and 5b upon the  inser t ion in them of the  cur ren t  
ver t i ces .  remain.  
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