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The paper reports experimental and numerical-modeling studies of the mechanism underlying the onset of 
secondary turbulence during the parametric excitation of spin waves. It is shown that the magnetization self- 
oscillations in weak external magnetic pumping fields are periodic and stable against weak perturbations: a 
stable limit cycle exists in phase space. At high pump amplitudes the self-oscillations become irregular, and 
the initially close trajectories in phase space diverge exponentially. It is shown that the system of spin waves 
then turns out to be stable as a whole: the mean characteristics are insensitive to the wave-amplitude 
fluctuations. 

PACS numbers: 75.30.D~ 

INTRODUCTION tems has been attracting grea ter  and grea ter  interest 

It is  well known that a large number of interacting 
spin waves, i.e., parametric spin-wave turbulence, 
can be excited in ferromagnets with the aid of a mi- 
crowave magnetic (pump) field. There a r i s e  in the 
process various physical effects, which have been ex- 
perimentally and theoretically studied in a number of 
papers.' '2 In particular, i t  has been shown that the 
limitation of the amplitude of the parametric spin 
waves (PSW) i s  due to the interaction between the pa i rs  
of spin waves with oppositely directed wave vectors k 
and -k. Frequently, however, the steady s ta te  i s  not 
established, and the magnetization executes complex 
oscillations about some mean value. This phenomenon 
i s  observed in the form of amplitude and frequency 
modalations of the pump power passing through the 
resonator with the sample, o r  in the form of low-fre- 
quency (LF) oscillations of the z component M ,  of the 
magnetization. 

The small oscillations of the spin-wave amplitudes 
and phases about their steady-state values constitute, 
a s  shown in Ref. 3 ,  a new mode of the ferromagnet's 
collective excitations, which i s  reminiscent of second- 

over the past ten years.  The Landau model,6 which is 
based on the "self-consistent-field" idea, relates the 
onset of stochasticity in hydrodynamics to the succes-  
s ive excitation of a large number of collective degrees 
of freedom (e.g., of vortex motions) a s  the Reynolds 
number R increases.  

There  then successively appear in the Fourier  spec- 
trum a t  incommensurable frequencies wl,  wz, . . . , on 
sharp  peaks that merge  a t  R - * into a continuous spec- 
trum. Another mechanism i s  based on the concept of 
"stochastic attractors" (SA), discovered by ~ n o s o v '  
and  male,' and subsequently investigated for  a number 
of model physical systems.' A stochastic at tractor  is 
a region of attraction in the phase space of  a dynamical 
system where there a r e  no stable equilibrium states 
(poles, foci) and stable limit cycles. 

Inside a SA, initially close trajectories diverge 
asymptotically without, however, going out of the re-  
gion of attraction. A s  a result ,  the phase trajectories 
of the system turn out to be complicated, tangled, 
"stochastic," and the Fourier  spectrum turns out to be 
continuous. 

sound waves in a system of magnons. Experimentally, 
Our paper is devoted to the experimental and theo- 

these collective oscillations have been detected in the 
ret ical  (with the aid of a computer) study of the mech- 

resonance absorption of a weak microwave signal4 and anism underlying the development of the secondary tur-  
a radio-frequency field.5 When the experimental condi- 

bulence of parametrically excited spin waves. The 
tions (the external magnetic field, the pump power, the laboratory experiment was performed under standard 
reorientation of the magnetization relative to the c rys -  

conditions: the samples were good-quality single-crys- 
tallographic axes) a r e  changed, the collective oscilla- ta l  spheres of the ferromagnet yttrium iron garnet 
tion frequency may, passing through zero ,  become 

(YIG), room temperature (T=300 K),  pump frequency purely imaginary, so  that the steady s ta te  becomes un- 
w,=2nx9.4x10' sec", H -H,=20-50 Oe,  s o  that spin 

stable. waves (SW) with k - lo4-lo5 cm" were excited, and no 
The situation i s  reminiscent of the "soft-mode" type significant nonlinear damping occurred. The charac- 

of instability that causes the phase transition in f e r ro -  te r i s t ics  of the primary spin-wave turbulence in this 
electric crystals .  In our  case  another stable s ta te  parameter  region a r e  well described by S theory .2 In 
does not occur far  from the thermodynamic-equilibrium part icular ,  this theory predicts the experimentally ob- 
state,  and the development of the soft-mode instability served  self-oscillations stemming from the instability 
gives r i s e  to magnetization self-oscillations. When the of the collective modes. 
pump power i s  sufficiently higher than the threshold The numerical experiment ($1) on the S-theory equa- 
power, these oscillations have an irregular  charac ter ,  

tions with parameters close to the experimental pararn- and we can speak of a secondary turbulence of the 
e t e r s  showed that, a t  low supercri t ical i t ies ,  the self- parametrically excited spin waves. 
oscillations a r e  str ict ly periodic and stable against 

The question of the "nature of turbulence" and the weak perturbations, while the Fourier  spectrum con- 
causes of the onset of stochasticity in dynamical sys-  s i s t s  of narrow, equidistant lines corresponding to the 
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fundamental oscillation frequency and i t s  multiples, 
i.e., the system moves in phase space along a stable 
limit cycle. 

As the supercriticality increases,  the close trajec- 
tories diverge exponentially, remaining, however, in a 
bounded region of phase space. This leads to the loss 
of the periodicity of the self-oscillations; the narrow 
peaks in the Fourier  spectrum corresponding to the 
fundamental frequency and i ts  overtones begin to broad- 
en smoothly until they merge  into a continuous spec- 
trum a t  fairly high supercriticalities. It is  remarkable 
that, despite the divergence of the close trajectories,  
the system of phase curves possesses "gross  stability": 
weak fluctuations that drastically change specific solu- 
tions have little effect on their  averaged characteristics, 
e.g., on the integrated amplitude of the waves. 

In 02 we present the results  of the laboratory experi- 
ment on the study of magnetization self-modulations. 
It i s  shown that the evolution of the Fourier  spectrum 
of the self-oscillations a s  the amplitude of the exter- 
nal microwave field increases is similar  to the evolu- 
tion observed in the numerical modeling. It is demon- 
strated with the aid of a special technique that, at  
supercriticalities PIP,,, > 2.5 dB, the trajectories of 
the system of parametric spin waves diverge, and that 
the degree of divergence increases with increasing 
supercriticality. 

5 1. NUMERICAL MODELING 

1.1. The steady state and the collective oscillations 

The interaction of the spin waves plays a decisive 
role in the parametric excitation: i t  limits the level of 
wave excitation, and leads to the appearance of collec- 
tive oscillations against i t s  background. 

The S-theory equations with allowance for  the major 
part of this interaction have the form2 

1 anr 
- - +ykna+Im (P,'o,) =O, 
2 at 

I auk - - + [ y k + t ( ~ ~ - 0 ~ / 2 )  lak+iPInh. (1) 
2 at  

Here n, = ( a p t ) ,  ok = (a&,) a r e  correlation functions, 
the brackets denoting averaging over time o r ,  equiva- 
lently, over the random phases of the individual waves; 
the a, a r e  the "slow" wave amplitudes; and y ,  is the 
decrement. The quantities ;, and P, a r e  respectively 
the interaction-renormalized natural wave frequency, 

tJk=okf 2 T-.n,,d1k', (2) 

and pump power, 

Pk=hVk+ jSu.okrd3k', (3 

where Vk is the constant characterizing the coupling 
between the SW and the field of the parallel pump, 

h ( t )  --h exp ( io , t )  , 

and the T,,. and S,,. a r e  nonlinear characterist ics  of the 
ferromagnet. 

At not very large excesses over the threshold hVth, 
'Yk,m,y, the ground steady state possesses axial sym- 

metry about the direction of the magnetization M, (Mo 
is parallel t o  the crystallographic axis  (loo)), and the 
waves a r e  disposed in the k, = 0 plane, with 

where wko =wJ2 and No i s  the integrated amplitude: 

It is well known that there  exist against the back- 
ground of the ground state (4) collective oscillations 
with frequencies 

which correspond to the various modes of the azimuthal- 
angle motion: 

The m = 2 ,  Im S2> 0 mode turns out to be unstable in 
the parameter region chosen by us.' Fo r  the numeri- 
cal  modeling, let us choose the following simple model, 
which corresponds to this situation, and, a s  will be 
seen below, reproduces the main properties of the self- 
oscillations. Let us consider the system of SW filling 
two beams k, and k2 in k space. In the initial s tate 
(i.e., before the pump is switched on) the wave distri- 
bution in the beams i s ,  generally speaking, arbi trary.  
Let us, for  definiteness, assume that n,, = o,, =no,  n2, 
- -ozk=O. The quantity no  can be treated a s  the ther-  
mal-noise level in the SW system. The region of modu- 
lus "motion" contained on each beam 

60 equally spaced points. Increases in Awk and the 
number of points in this interval did not change the 
result.  

It follows from the symmetry properties that Sij=Sfi ,  
T i j  = Tji = T&. We shall ,  for simplicity, assume that 
the S i j  and Ti, a r e  real ;  then only four of them a r e  in- 
dependent: 

The system of equations (1)-(5) has three steady-state 
solutions [see (4)]: 

Let  us require that the f i r s t  solution be stable with r e -  
spect to the m = 0  (i.e.,  against a change in the sum of 
the amplitudes for the beams) the unstable against the 
induction of a difference in the amplitudes for the 
beams,  which simulates the higher (m * 0) modes. Let  
us also require that the steady-state solutions lumped 
in one beam be stable against the excitation of oscilla- 
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tions in this beam. It follows from these requirements 
that3 

The specific numerical values were  chosen a s  fol- 
lows: 

For  this choice of no, the regions of motion in k space 
where the waves grow in intensity from the noise level 
a r e  not too "prolonged" in comparison with the other 
regions of the motion. 

1.2. Procedure of the numerical experiment 

The numerical simulation of the turbulence amounts 
to the study of the behavior of the system over time 
periods much longer than the characterist ic  periods of 
the motion. Therefore, the numerical solution requires 
the use of highly stable difference schemes that do not 
lead to the accumulation of computational e r r o r s  over 
long time intervals. We used one of the variants  of the 
Adams-Bashforth and Adams-Moulton predictor-cor- 
rector  schemes.1° In the absence of self-oscillations, 
this method guarantees the approach to the steady- 
state solution (4)  and a constancy of the solution to 
within hundredths of a percent for t-(300-500h'1. 

We encountered in the numerical simulation of the 
self-oscillations additional difficulties connected with 
the rapid divergence of the trajectories n, ,,(t) (i = 1,2)  
that a r e  close in their  initial values. F o r  example, 
the two integral N(t) curves for which the n,, values a t  
the moment of time t = to  differed by an amount of the 
order  of no,  diverged completely over three self-oscil- 
lation periods when the excess hV -y = +. The magni- 
tude of the "confidence interval" in which the diver- 
gence of the trajectories is due to the e r r o r  in the dif- 
ference approximation then grew logarithmically with 
decreasing computational s tep.  Thus,  for the super-  
criticality hV - y  = +, a one-percent loss in accuracy 
i s  attained roughly by t = 32y-1 (ten characterist ic  se l f -  
oscillation periods). This behavior remains when the 
predictor-corrector scheme is replaced by the  Runge- 
Kutta method. 

Generally speaking, the instability of the solutions 
(1) makes i t  impossible t o  study the details of the  be- 
havior of the system over time periods longer than the 
confidence interval. We can,  however, conjecture that 
the se t  of integral curves of the system (1) possesses 
coarse stability, i.e., weak fluctuations that drastical- 
ly change a specific trajectory nih(t) have little effect 
on the averaged characterist ics  of the solutions. The 
numerical experiments corroborate this  hypothesis- 
we specifically studied the effect of random low-ampli- 
tude "impulses" on the mean amplitude and the spec- 
trum of the power (the Fourier  transform of the auto- 
correlation function). 

;iRr"\ 1 .  

\ ' I ,  

D '\ , , '., 
t, t, t, 'jt" tJ t, 50 zyt  

FIG. 1. Dependence of the integrated SW amplitudes in the 
beams 1 and 2 on the time for hV =2Y.  

1.3. Dicussion of the results of the modeling 

Let us,  to begin with, describe how the motion in k 
space occurs at  low supercriticalities, i.e., a th  V -y< 3y 
[ ~ i g .  1 shows the dependences Nl,,,,(t) and Fig. 2 de- 
picts the wave distribution n, at  severa l  successive 
moments of time]. At f i r s t ,  the packets n,, (i = 1 ,2 )  
have the Guassian form with the peaks a t  the points 
wk=w$2 and grow with the increment h v - y .  As soon 
a s  Nl -N, -No, instability with respect to the difference 
N l  -N2 between the amplitudes begins to develop: N2 
grows more  and more  slowly, and then decreases ( t  
= t 2 ) .  The appearance of the difference N1 - N2 causes 
the packets to shift in opposite directions from the 
point wk= w d 2  right up to t = t3, at  which time N2 << N1 
-No and the center of the packet is at  the location w ,  
- w d 2  --~T,N!. This  state is, however, unstable 
against the production of waves in the other beam, the 
increment v being maximal when wk - w d 2  = ~ T ~ N ! :  

Over the "waiting time" 

the packet grows to amplitudes of the order  of N!, and 
the difference NI -N2 decreases,  which causes the 

FIG. 2. Distribution of the SW in space in the beam 1 (contin- 
uous curve) and in the beam 2 (dashed curve) for hV = 27: 
a) t = t 3 ,  b) t= t4 ,  C) t= t5 ,  d) t = t 6 .  
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packets to move back to the center wk - w d 2  and their 
amplitudes Nz > N1 to decrease sharply and nonuniform- 
ly. The second packet, having "survived," continues i t s  
motion in the direction of the steady s ta te  on one beam. 
The picture at  t = t ,  is the s ame  as the picture a t  t= t , ,  
except that the packets have exchanged places. Every- 
thing i s  then repeated. The characteristic swing of the 
motion of the packets in k space is determined by the 
supercriticality and the quantities T1 and S1: 

In order to verify that the motion of the packets nik in 
k space is strictly periodic at  low supercriticalities, 
i.e., that the system (1) approaches the stable limit 
cycle corresponding to the periodic oscillations of the 
total spin-wave amplitude N =Nl +N2 about No, we 
performed the following numerical experiment. 

Over a time period T much shorter  than the self- 
oscillation period T ,  the oik values changed by an 
amount o!,L2fik (whose amplitude and phase were fixed 
by the random-number generator with a standard devi- 
ation equal to 

The step of the difference scheme was chosen such that 
the e r r o r  in the integration over each segment of length 
T did not exceed 2-3% of [ ~ ( f ~ , ) o ~ , ] ~ ' ~ .  This method of 
introducing fluctuations in the case  of short  T is equiva- 
lent to the action of a random force fik(oik)l with the 
correlator 

which leads (when hV = 0 and no = 0) to mean occupa- 
tion numbers of the order of no&. Thus, the weakness 
of the fluctuations corresponds to E << 1. 

The system ( I )  was integrated for two different f i k  

sequences (realizations) with E =  lo-' and E= lo-'. We 
found that the nik(t) t rajectories in phase space a r e  
strictly periodic and stable against weak perturbations. 
Thus, for hV - y  =y the N, ,,(t) dependences obtained 
for different E. and f i k  values did not differ by more than 
5% over the entire integration interval ( t ~  40 T). The 
Fourier spectrum of the autocorrelation function ) N , I ~  
consisted of a ser ies  of equally-spaced narrow peaks 
corresponding to the fundamental frequency of the self-  
oscillations and i ts  multiples (Fig. 3a). 

All this indicates that the system (1) indeed approach- 
e s  a stable limit cycle a t  low supercriticalities. A 
similar  method of "scrambling" the se t  of t rajectories 
of the system (1) was used at  higher supercriticalities. 
We found that, starting from (hV -7) - 3 y ,  the trajec- 
tories a r e  exponentially unstable against weak pertur- 
bations (Fig. 4), and that the mean increment of the 
divergence increases almost linearly with hV. The 
mean amplitude in this case  remains finite and close 
to No. It can be shown that there is formed in the vici- 
nity of the limit cycle a narrow "layer" filled with ex- 
ponentially unstable trajectories. 

It is quite significant that the mean values of the 
wave amplitude and the shape of the spectrum I N ,  1 

FIG. 3. Power spectrum N, of the integrated SW amplitude as 
a function of the pump power: a) kV = 2y .  b) hV = 3.3Y. c) hV 
=3.6y, and d) hV= W (numerical experiment). 

turned out to be practically independent of the form of 
the specific realization of fik(t). For  example, for 
hV-y =4y and &=0.1,  the quantity (N) changed by only 
1% when the realization was changed, whereas the 
trajectories diverged fully over a time period five 
t imes shorter  than the averaging time. 

Let us now consider how the behavior of the trajec-  
tories in the "small"  affects the behavior of the inte- 
grated spin-wave amplitude (see  Fig. 3).  The numeri- 
ca l  experiment showed that i t  becomes more  and more  
complicated a s  the supercriticality increases.  Speci- 
fically, the amplitudes of the nonresonance noise 
Fourier  harmonics begin to grow, while the sharp  
peaks corresponding to the frequencies 9= wO, 51 
= 2wo, etc. ,  smoothly broaden and deform until they 
merge into a broad packet a t  hV -y = + (see Fig. 3). 

FIG. 4. Integrated-SW-amplitude difference for initially close 
trajectories as  a function of the time (numerical experiment). 
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The behavior of N(t) in time is interpreted a s  being 
random, stochastic. 

The study of the system's motion in k space leads to 
the following qualitative understanding of the causes of 
the loss of the  stability of the motion along the limit 
cycle. A s  the estimates show, the buildup increment of 
the oscillations r =hV -y , while the decrement 6 =(h2v2 
- y z ) l l z  . At small  supercriticalities 6 > y , and the weak 
perturbations have time to die down when the packet i s  
t ransferred to the other beam, i.e., the oscillation- 
buildup process each time begins al l  over again. At 
high supercriticalities these t imes a r e  comparable, 
complete damping of the perturbations does not occur,  
and the motion becomes "tangled," which leads to the 
loss of periodicity. 

52. THE LABORATORY EXPERIMENT 

2.1. Experimental procedure 

Figure 5 shows a block diagram of the experimental 
setup. A signal from the magnetron pump generator 
was fedviaa  number of wave-guide elements to a cavity 
resonator, which contained the fer r i te ,  and was located 
in a constant magnetic field H .  The magnetron could 
operate in both the continuous and pulsed regimes,  and 
i ts  frequency was equal to 9.4 GHz. The cavity reso- 
nator was a section of a rectangular 3-cm-band wave- 
guide, at one end of which was located a magnetic 
diaphragm coupling it to the pump circuit and at  the 
other, near a metallic wall, the fer r i te  sphere under 
investigation. The resonator was matched with the 
wave guide in such a way that there was no reflection 
from it in the subcritical region. 

There ar i ses  beyond the threshold for parametric ex- 
citation reflected radiation, which was fed to the r e -  
cording circuit through a directional coupler. 

The 4 of the resonator was ~ 5 0 0 ,  the oscillation 
mode was the H,,, mode, and the microwave-magnetic- 
field vector was parallel to the constant field H. The 
recording circuit consisted of a quadratic detector, a 
spectrum analyzer, and a storage oscilloscope, on 
whose screen we could observe the frequency and tem- 
poral characteristics of the radiation reflected from 
the ferr i te ,  radiation which characterized the imaginary 
part ~ " ( t )  of the nonlinear susceptibility. The object 
of the investigation was spheres prepared from good- 
quality YIG single crystals  of diameter 2.2 mm.  The 
ferromagnetic-resonance line width 2 M o  ~0 .2 -0 .3  Oe 

FIG. 5. Block diagram of the experimental setup: M) magnet- 
ron, SW) switch, A) attenuator, DC) directional coupler, 
0) oscilloscope, SA) spectrum analyzer. 

and 2AH, ~ 0 . 1 5  Oe for  k = lo4 cm-'. The spheres were 
oriented by their easy axis: H I (  [ I l l ] ;  intense self- 
oscillations were then observed. 

2.2. Experimental results 

The main measurements were  performed in a field 
of intensity H =H, + 2 0  Oe,  when k - lo4 cm-'. The self- 
oscillations (SO) appeared when the excess over the 
parametric-excitation threshold (supercriticality) was 
equal to 1.8 dB. At low supercri t ical i t ies  they have a 
periodic character  with frequency no = 130 kHz. We can 
see  on the screen  of the spectrum analyzer a t  a= Q, 
one narrow line whose width, A Q S  3 x  10" Q,, is deter- 
mined by the frequency resolution of the spectrum 
analyzer. As the pump power i s  increased,  compo- 
nents appear a t  the multiple frequencies and at  half- 
frequency. At supercriticalities PIP,,, ~ 2 . 5  dB the 
self-oscillation spectrum rapidly broadens to A Q / ~  
- lo-'. 

The Fourier  spectrum i s  an integrated characteris-  
tic characterizing the spin-wave system a s  a whole. 
Information about the behavior in the smal l  is provided 
by the following experiment. Let us go over from the 
continuous to the pulsed parametric-excitation regime. 
The duration (and spacing) of the pulses i s  of the o r -  
der  of 400-500 msec ,  s o  that the SW have time to out- 
grow the thermal noise by severa l  o rde r s  of magnitude. 
Then for  the various pulses, because of fluctuations, 
the wave system s t a r t s  each time with different initial 
conditions. 

The ~ " ( t )  trajectory obtained in one pulse was record- 
ed on the screen  of an oscillograph with a memory and 
copied on tracing paper. Then the picture was rubbed 
off, and the next t rajectories were recorded in the 
s ame  way on the s ame  tracing paper. As a result ,  
there i s  generated a s t r i p  of ~ " ( t )  t races  by which the 
stability of the PSW system against changes in the 
initial data can be judged (Fig. 6). At supercriticali- 
t ies  PIP, ,  < 2.5 d B ,  the successive X" (t) curves r e -  
peat themselves. At PIP,,, z 2.5 d B ,  when a rapid 
broadening of the Fourier  spectrum of the self-oscilla- 
tions occurs,  the ~ " ( t )  curves for  the various pulses 
begin to diverge. Initially, the divergence of the close 
trajectories shows up only after  long t imes (see Fig. 6). 
Then, a s  the supercriticality is increased,  the "dis- 
persal  time" becomes comparable to the self-modula- 
tion period T-(3-5)%', and the successive ~ " ( t )  cur-  
ves  form a broad band (Fig. 6c). 

FIG. 6 .  Divergence of the trajectories in the natural experi- 
ment: a) P/P,, =2 .6  dB, b) P / P m , = 2 . 9  dB, c) ~ / ~ , , = 3 . 4  d B  
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53. DISCUSSION OF THE RESULTS 

The main measurements were performed in the 
parameter region where strong nonlinear damping due 
to  the three-magnon processes does not occur. Then 
the nonlinear behavior of the PSW should be described 
by the simple S-theory equations. In particular, the 
theory predicts that, in YIG spheres located in H 
11 [ I l l ] ,  S0(2T, +So) < 0 at  room temperature, and, 
consequently, intense self-oscillations of the mode with 
the azimuthal number m = O  should be excited. The 
threshold for the excitation of the self-oscillations 
should then coincide with the parametric-excitation 
threshold. In the experiment they differ by 1.8 dB, 
which is probably due to the presence of weak nonlin- 
e a r  damping due, for example, to the four-wave pro- 
cesses.  

It should be said that the accurate simulation on a 
computer of the isotropic-in p-self-oscillations (i.e., 
with m =0) is difficult; for these self-oscillations 
cause the PSW to leave the Ok=n/2 plane. Consequent- 
ly, the problem turns out to be two-dimensional (8, 
and ( k  1 ), and the required number of equations is too 
large. It is simpler  to simulate the self-oscillations 
generated during the instability of the anisotropic 
modes (e.g., the modes with m = 2), when the escape 
from the 8,=n/2 plane is negligible. Since only the 
azimuthal harmonics with m =+2 and m = 0 a r e  nonzero 
in the matrix elements T(p  - (o') and S((o - (o') for iso- 
tropic ferromagnets, we can take only these modes into 
consideration in the numerical modeling. This is equi- 
valent to the two-beam model used by us in 81. Taking 
account of the fact that the self-oscillations in our 
laboratory experiment were due to the instability of 
the mode with m = 0 ,  we performed check numerical 
experiments for the case  in which the mode with m = 0 
is unstable. They show that the qualitative properties 
of the self-oscillations in this case  a r e  the same a s  in 
the m =2 case. 

Naturally, the simple model used in the numerical 
modeling describes only the main properties of the 
self -oscillations, and cannot, of course,  lay any 
claim to a quantitative description of the specific ex- 
perimental situation in YIG. More important i s  the 
qualitative agreement between the results  of the lab- 
oratory experiment and those of the numerical model- 
ing performed with the S-theory equations, an agree- 
ment at  the "conceptual" level. Specifically, in both 
cases  the self-oscillations a r e  periodic a t  low super-  
criticalities. The image of this motion in phase space 
i s  a stable limit cycle. Indeed, the trajectories in both 
the laboratory and numerical experiments turned out 
to be stable against smal l  changes in the initial condi- 
tions. We have also shown that in both cases  the tran- 
sition to stochastic self-oscillations does not occur 
through the addition of new modes of motion at  incom- 
mensurable frequencies, but is accompanied by the 
broadening of already existing spectral  lines with 
multiple frequencies, and i s  due to the loss of the s ta -  
bility of the trajectories,  which leads to their disper-  

FIG. 7. Distribution in k space of the SW in the beam 1 (con- 
tinuous curve) and in the beam 2 (dashed curve) for hV = 9. 

sal .  This indicates that the onset of the secondary tur -  
bulence of parametric spin waves occurs in accordance 
with the ideas about stochastic at tractors.  The most 
important property of the model of Landau-turbulence 
generation, namely, the increase of the number of the 
effective degrees of freedom participating in the mo- 
tion with increasing supercriticality, i s  then preserved. 
This i s  manifested in the fact that at high supercri t i -  
calities the distribution n, (Fig. 7) is i r regular ,  and 
has the form of a "picket fence" consisting of -hVlr 
peaks. 

At low supercriticalities the n, distributions in the 
beams a r e  localized packets, and the phase space con- 
tains a stable limit cycle. We can attempt to go over to 
a system of hydrodynamic-type equations with a smal l  
number of variables. As these variables,  we can 
naturally choose the f irst  moments of the distributions 
n, and ok (the total amplitude, the center of gravity, 
and the width of a packet). The detailed investigation 
showed, however, that such a description i s  unsatis- 
factory even at  very low supercriticalities, since the 
period, the mode, and even the very existence of the 
self-oscillations depend on how the chain of moments 
a r e  uncoupled. We found tliat even a numerical un- 
coupling parameter does not exist ,  s o  that higher mo- 
ments should be taken into consideration. 
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