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The conditions for the appearance of a spontaneous current in a crystal are investigated. It is shown that there 
is no uniform current under equilibrium conditions. In the two-band model unstable to dielectric pairing, with 
allowed dipolar interband transitions, an expression is obtained for an inhomogeneous spontaneous current 
and satisfies the transversality condition. The current arises in proportion to the symmetric imaginary and 
antisymmetric real order parameters. The current-state structure in the region of the phase soliton is obtained. 
It turns out that the magnetic moment of this state is strictly zero. 

PACS numbers: 72.10.Bg 

INTRODUCTION 

The magnetic properties of solids a r e  determined by 
the spin o r  by the orbit degrees of freedom. The 
characteristic scale of the loops of the current  con- 
nected with the orbital motion i s  usually of the order  
of the atomic scale. In principle, however, macro- 
scopic current structures can occur. A model descrip- 
tion of these structures was proposed in Refs. 1 and 2 
in the form of a phase transition into a state with a 
spontaneous current. The possibility of a current  state 
with a large-size inhomogeneity was discussed in Ref. 
3 in connection with the published reports4 of the ano- 
malous diamagnetism of CuC1. 

The excitonic insulator model proposed in Ref. 5 was 
used in Refs. 1 and 2 to describe a phase transition in- 
to the current state. This model made it possible previous- 
ly to obtainvarious phase transitions: structural  t rans- 
formations, metal-insulator  transition^,^ and transitions 
into a ferroelectric, '  antiferromagnetic,' and ferro- 
magnetics phase. This variety of physical properties 
that appear in the excitonic-insulator model of the 
phase transitions i s  that the electron-hole system has a 
large number of "degrees of freedom. >' Firs t  i s  the 
spin degree of freedom due to the fact that different 
particles a re  paired in the exciton condensate, namely 
electron with a hole (and not an electron with an elec- 
tron a s  in the BCS theory). As a result ,  the spin and 
coordinate structures of the order  parameters a r e  not 
linked, and this leads, for  example, to the possible 
appearance of a charge density wave (CDW) o r  a spin 
density wave (SDW) with a coordinate structure of the 
order parameter unchanged. 

Second, since the wave functions of the particles in 
the electron and hole bands can have different sym- 
metry,  there exists a "symmetryn degree of freedom. 
The relative symmetry of these bands specifies the 
form of the single-particle operators for which the in- 
terband matrix elements differ from zero. There- 
fore, if an order parameter connected with the Bose 
condensation of the excitons appears in the system, the 
mean values of the physical quantities determined by 
these operators turn out to differ from zero, i. e . ,  
corresponding physical properties appear. It must  al- 
s o  be noted that the relative phase difference of the in- 
terband matrix elements and of the order  parameter 
determines which of the possible mean values appears. 

F o r  example, i f  the extrema of the electron and hole 
bands do not coincide in momentum space when a singlet 
order  parameter i s  produced then, a s  noted by Hal- 
perin and Rice,'' a charge-density wave appears in the 
system i f  the parameter is rea l ,  and a current-density 
wave if the parameter is imaginary. 

More curious i s  the situation when the band extrema 
coincide and dipolar transitions a re  allowed between 
them. Then, a t  a rea l  order  parameter,  ferroelectr ic 
properties appear,'s7 and in the case of an imaginary 
one, owing to  the relation v,, = iwl,dl, (v,, and dl, a r e  
the interband matrix elements of the velocity and of the 
coordinate, w,, i s  the frequency of the interband tran- 
sitions in the inrestructured phase), there should ap- 
parently be observed a uniform current.' This 
would be in fact the case if the self-consistency equa- 
tions were not to impose a str ict ly defined coordinate 
dependence of the order parameter.  This dependence 
turns out to be such that the uniform current  van is he^,^ 
but the existence of inhomogeneous currents remains 
possible in the presence of a spatially inhomogeneous 
imaginary order  parameter. This question will be 
studied in more  detail in 461 and 2 of the present a r t i -  
cle. The question of the onset of ferroelectr ic proper- 
t ies will also be discussed there with greater  r igor 
than before. In 43 is considered the Landau functional 
corresponding to transitions into a state with spon- 
taneous current, and the structure of the current state 
is obtained. 

5 1. DETERMINATION OF THE CURRENT OPERATOR 

There a r e  three known methods" of determining the 
form of the current  operator ]": from the equation of 
motion for the coordinate operator i 

; = i [ ~ ,  ;I, (1) 

in t e rms  of the continuity equation for  the charge-den- 
sity operator eC(r) :  

a e i ( r ) / a t = i [ R ,  &(r) ] --div;, (2) 

and a s  the variation of _the Hamiltonian fi with respect 
to the vector potential A: 

j=-csa1sli. (3) 

F o r  the usual gauge-invariant local Hamiltonian with 
an interaction that depends only on the difference of the 
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coordinates, and for a quadratic form of the kinetic- 
energy operator, al l  three methods lead to the same 
result: 

where e is the particle charge, m is i t s  mass ,  
^pi = -iVi i s  the momentum of the i-th particle. How- 
ever, if approximate methods a r e  used in the calcula- 
tion, such a s  the Hartree-Fock equations o r  inclusion 
of only a finite number of bands in the crystal, certain 
caution must be exercised, even though formula (4) un- 
doubtedly remains in force. 

If, for example, a two-band model of the crystal  is 
investigated, then i t s  Hamiltonian Go for noninteracting 
electron i s  patently gauge-invariant in the Luttinger- 
Kohn basis (see, e. g . ,  Ref. 12): 

Here &, and zz a r e  the spectra of the f i r s t  and second 
bands, P = icp,, 1 V I pi,) i s  the interband matrix element 
of the momentum operator, and cp,, = ui(r)  exp(ik . r) a r e  
the wave functions of the Kohn-Luttinger basis, in which 
the Bloch factors ui(r)  do not depend on the quasimo- 
mentum k. 

The matrix element P differs from zero  only when the 
functions u, and u, a r e  of unlike parity. In this case, 
however, i t  might seem that the interband matrix ele- 
ment of the coordinate should also differ from zero, 
if this element is calculated from the formula 
d=(cp,,(rl pi,,,). This, however, is not so ,  and in the 
Kohn-Luttinger representation the coordinate opera- 
tor  ? i s  always diagonal in the band indices. '' Indeed, 
the current operator for the Hamiltonian fi0 takes in 
accord with the definition (3) the form 

It is easy to verify by direct calculation that to recon- 
cile this definition of the current with i t s  definition by 
the equation of motion (1) for the coordinate operator, 
the latter must be regarded a s  diagonal: 

Moreover, if it  is assumed that the matrix f has off- 
diagonal elements in the Kohn-Luttinger representation, 
the usual commutation relation between the momentum 
and coordinate operators i s  also violated, and the cur- 
rent  operator turns out to be non-Hermitian. A simi- 
l a r  difficulty ar i ses  also when the current  is determined 
with the aid of the continuity equation (2) unless one 
postulates beforehand that the local-density operator 
A(r) is diagonal in the band indices. 

Thus, the gauge-invariant procedure (3) for deter- 
mining the current  operator, a s  applied to the Hamil- 
tonian (5), makes i t  possible to determine correctly the 

forms of the coordinate and density operators. In ad- 
dition, the Kohn-Luttinger basis turns out to be more  
convenient than the Bloch diagonal representation if ac- 
count must be taken of interelectron interaction ef- 
fects. In this basis (owing to the diagonality of the den- 
sity operator), the interaction operator is simplest in 
form. It depends only on the coordinate difference and 
does not contain interband-scatter$g processes. This 
is precisely why the Hamiltonian H ,  (5), _supplemented 
by an interband interaction Hamiltonian Hi,, of the den- 
sity-density type: 

[Gi(r) a r e  the electron annihilation operators in the i-th 
band a t  the point r in the Kohn-Luttinger basis] will be 
used here to describe the current  states.  It is con- 
venient to assume for simplicity that the electron dis-  
persion laws a r e  isotropic in both bands and a r e  de- 
scribed by effective masses  m* that a r e  equal in abso- 
lute value, i . e . ,  E = E ~ = - E ~ = ~ ~ / ~ ~ * - c ~  (zF>O). The 
matrix element P will be assumed small  enough 
(m-l l  plk, <&,). This allows us  to describe the transi- 
tion into the current state a s  a transition into the ex- 
citonic-insulator phase in a semimetal.' This transi- 
tion is described in standard fashion by introducing a 
nondiagonal Green's function G,, = -i(T$;+2) that de- 
pends on the anomalous mean value of A(rl, r,) deter- 
mined from the self-consistency equation: 

The Green's function G12 itself is determined here from 
the solution of a system of Hartree-Fock equations with 
a nonlocal potential (9) 

In the spatially homogeneous case,  the order parame- 
t e r  A(rl, r,) depends only on the difference between the 
coordinates. Then, changing to the momentum repre- 
sentation, we easily obtain from (9) and (10) 

A  ( k )  -m-'Pk 
G,,=G2,' = 

[ e Z  ( k )  + l m- 'Pk-A(k)  l Z ]  a '  

d3k' A ( k ' )  -m-'Pk' 
A  ( k )  = ~ ( k - k ' )  

(2n)  [ e Z ( k ' )  +lm-'Pk'-A ( k ' )  1'1'" 

The uniform spontaneous current obtained in Ref. 1 is 
cancelled out in the spatially homogeneous case in the 
following manner. Taking into account the momentum- 
representation definition of the current  operator (6), 
namely, 

we can obtain from (10) an expression for the average 
interband component (connected with P )  of the current  
density: 
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PA (k) +PeA' (I<) 
j,z+j.l = PG,,+C.C. = - m 

L [eZ(k)+lm-'Pk-A(k)  IZ]" ' 
(13) 

Noticing that the interband matrix element of the mo- 
mentum P i s  pure imaginary, P = -P*, i t  follows from 
(14) that a finite interband current appears when A(k) 
acquires an imaginary symmetrical component, i. e . ,  
when a nontrivial [ ~ ( k )  = A(-k) # 01 solution of the con- 
sistency equation appears in (11). This i s  indeed the 
result obtained in Ref. 1. Owing to the inconvenience 
of the diagonal Bloch representation, in which i t  i s  
difficult to satisfy gauge invariance, the intraband cur-  
rent that cancels out (13) was not obtained in Ref. l; 
this current i s  now 

Addition of (13) to (14), using the identity 

I 
€ . (k)  + P k - A ( k )  ('I"' = {%e (k) + - P ( A  (k) - r n - l ~ k )  -[ 8k 1; d k m 

which i s  valid for imaginary A, yields the following 
expression for the total current: 

2 >/2 

j , , ~ j . ~ + . i , > + j > , = e  {$ [el  (k)  + / p k - 1  (k) I ] 
k 

dA (k) m-'Pk-A (k) +- 
ak [ e z ( k )  + I ~ - ' P ~ - A  (k) IZ]" (15) 

The f i r s t  term of (15) vanishes upon integration with 
any distribution function that depends only on the en- 
ergy. To calculate the second we must resor t  to the 
self-consistency equation (11). Differentiating i t  and 
substituting in (15) in place of aA(k)/ak, we can verify 
that 

a~ (k) ~ - I P ~ - A  (k) FT [ ~ ~ ( k ) + m - ~ P k - b ( k )  1']'* k,k' dk 

A (k) -m-'Pk A (k') -m-'Pk' 
- 0  (16) 

[ e 2 ( k )  +lm-'Pk-A(k) IZ]'" [ez(k' )  +lm-'Pk'-A (k')  12]''' 

by virtue of the fact that the potential V(k - k') is even 
in k-k' [in (16) it suffices to make the substitution 
k z k ' ] .  

It has thus been shown that, f i r s t ,  when the current  
operator i s  correctly defined in gauge-invariant form, 
there i s  no uniform spontaneous current  in the equili- 
brium system and second, the exchange correction 
makes no contribution to the average current. The 
procedure of redefining the current  operator via an 
exchange correction, proposed by ~ a t y e v ' ~  to prove the 
absence of a uniform spontaneous current, seems 
therefore doubtful. 

One more attempt to annihilate the homogeneous 
spontaneous current  was made by Nozieres and Saint- 
James. l4 Their model differs from our (5) in that the 
interband matrix element of the momentum operator 
in Ref. 14 reverses  sign on moving through the 
Brillouin zone, s o  that i ts  integral is zero  over the en- 
t i r e  zone, whereas in (5) i t  is constant. Thus, the 
result obtained in Ref. 14 does not hold for  the model 
considered here (and in Ref. 1). 

It is of interest  to trace how the ferroelectr ic pro- 
pert ies discussed ear l ie r  in Refs. 1 and 7 appear in the 
model with the k *  P interaction (5) for  a rea l  order pa- 
rameter  A. The impression a t  f i r s t  glance is that since 
the Hamiltonian has no dipolar matrix elements d of the 
coordinate operator (7), neither spontaneous polariza- 
tion nor a uniform current appear in the case  of a spa- 
tially homogeneous order  parameter A = ReA. Indeed, 
the appearance of the anomalous Green's function G,, 
does not lead automatically to the appearance of a 
mean value of the operator P ('I), since the lat ter  is 
diagonal, and the function GI, (11) a t  A=ReA is quad- 
rat ic in A, s o  that i t  seems that there should be no 
spontaneous polarization linear in A. It will be shown 
in 82 that a spontaneous polarization linear in A =ReA 
does indeed appear, and the seeming paradox is due to 
an incorrect  transition to the limit of homogeneous A. 

We have considered here a two-band model. A gene- 
r a l  proof of the absence of uniform spontaneous current  
in equilibrium systems,  is given in the Appendix in the 
Hartree-Fock approximation. The f i r s t  method used 
for the proof is based on the definition (4) of the cur- 
rent  and is due to  L. V. Keldysh. The second is based 
on considerations of gauge invariance for  Hamiltonians 
with nonlocal Hartree-Fock potentials. Both require 
that the density matrix be Hermitian. In the f i r s t  case 
the current  calculated is that of the particles, and in 
the second that of the quasiparticles. 

52. DENSITY OF INHOMOGENEOUS CURRENT 

The absence of a homogeneous current  does not pre- 
vent the existence of macroscopic inhomogeneous trans- 
verse  current, if the parameter A (9) itself is macro- 
scopically inhomogeneous. To demonstrate this, it  
suffices to calculate the currents in an approximation 
linear in A and P, assuming that the order parameter 
A is imaginary and varies slowly in space. It is con- 
venient to  represent the paraemeter A in the form 

A (r,, r,) = A (k, R) exp ik (r,-r,), (17) 
k 

where the relative and average coordinates r, - r, and 
R = ( r ,  + r,)/2, respectively, have been introduced. 
The slow variation of A(k, R) with R will in fact be 
used. It is possible to separate in A(k, R) the sym- 
metrical  and antisymmetrical parts  As and Aa, r e -  
spectively: 

k 
~ ( k , R ) = d " k , R ) + - A Q ( k , R ) ,  

Ikl 

A"k, R)=A"-k, R ) ,  P ( k ,  R)=-A"(-k, R ) .  

In the spatially inhomogeneous case, A(k, R) is inde- 
pendent of R and, a s  shown in 91, there is likewise no 
homogeneous spontaneous current. In the inhomo. 
geneous case, the current can be calculated in the ap- 
proximation linear in A and P, provided the correspond- 
ing Green's functions a r e  known: 

1 
GI,  (I,. I?) = Gllo(rl-rZ) - JJJ G1,0(r1-r')-PV..G210 rm 

X (r'-I") A' (r", r"') G,,"(r"'-rz) dr' dr" dr"' - J J J GIIo(r,-r')A (rr,r") 

1 
X Gzzo(r"-r"')-PV.~..Gt,o(r'"-q)dr' dr" dr"', 

rm 
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Substituting in (19) the expression for the order para- 
meter A(k, R) (17) and calculating with the aid of (19) 
the average value j of the current operators (6), we 
can obtain 

j=ja+j6, 

j, = L Re rot[P grad S q R )  1, 
m 

(20) 

Here 

These formulas were obtained assuming a weak depen- 
dence of ~ ( k ,  R) on k. This is justified for the case of 
a short-range potential V(r, - r,) (B), and account was 
taken here only of the lower derivatives of A(k, R) with 
respect to the coordinate R (large inhomogeneity 
scale). It follows from (20) that the spontaneous cur- 
rent is patently transverse, so that the continuity 
equation i s  satisfied explicitly. Furthermore, this 
current appears only in the case of an order parame- 
ter  that is  inhomogeneous in space, its amplitude in- 
creases with increasing degree of inhomogeneity, and 
the scale of the current turns out to be macroscopic 
and is determined by the inhomogeneity scale, and the 
inhomogeneity must have a transverse character if a 
spontaneous current i s  to exist. In other words, the 
change of the amplitude A(R) should be in a direction 
perpendicular to P, in which case the current is di- 
rected along the P anisotropy axis. The expressions 
obtained here for the spontaneous current (20) show 
that it consists of two components, j, and j,. The first  
is connected with the appearance of an imaginary sym- 
metrical order parameter A, and exists a t  all doping 
levels. The second appears only in accord with the de- 
gree of doping p (the noncongruence of the electron and 
hole Fermi surface) in the presence of an antisymme- 
trical real part Aa(R) of the order parameter (18). 
Principal attention will therefore be paid hereafter to 
the symmetrical current component j,: 

It seems useful to obtain results similar to (20) in 
the semiconductor model of an excitonic insulator. 
This makes it possible to make these results more 
lucid, since the calculations a r e  technically simpler. 
In addition, the semiconductor model will be used here 
to explain the paradox described in 81 concerning the 
appearance of ferroelectric properties in the system at  
a real  value of the symmetrical part of the order para- 
meter A. The Hamiltonian of the semiconductor model 
does not differ in any way from the Hamiltonian (5), (8) 
of the semimetal model, and it is assumed only that the 
electron 6,) and hole (&,) bands do not overlap and a r e  
separated by an energy gap &,. The equations for the 
Green's function (19) and the self-consistency equa- 
tions (9) retain their form in the low-density limit 

(&, -&,)/&, << 1 (E,, is the exciton binding energy), and 
expressions (19) likewise remain in force. In the mo- 
mentum representation with respect to the relative and 
average coordinates (r, - r,) and R it is necessary to 
replace (17) by 

A (k, q)  = I A (k, R) crqR d3R. (22) 

Relations (19) a t  the temperature T = 0 then take the 
form 

G,, (k,  k+q) =G,'(k)PkGZo(k)Apf ( k ) G t o ( k + q )  

+G,O(k)Aq(k)G,O(k+q)P(k+q)G,o(k+q), 

G,, (k ,  k+q) =G,'(k)il,(k)G~(k+q)+6(q)G,0(k)PkG20((k), (23) 
G , " ( k ) = ( m - ~ , ( k ) ) - ' ,  G z o ( k ) = ( m - ~ z ( k ) ) - ' .  

With account taken of G,,  and G,, and of the substitution 
q - -q, there a r e  altogether eight such expressions. 
The matrix of the Fourier component of the current 
operator (6) takes in the momentum representation the 
form 

since the operator of the intraband current density 
equals in the coordinate representation 

i, (r) = & (peiqr+e*qri). (25) 
k 

It follows then from (23) and (24) that in the approxima- 
tion linear in A and P the mean value of the q-th com- 
ponent of the current is 

After integrating in (26) with respect to the frequencies, 
i t  turns out that, accurate to the q2 terms, 

This expression was obtained by expanding in (26) in 
powers of q, followed by the use of the formula for 
the integration by parts: 

dsk y grad z=- d3k z grad y. 

It is seen that expression (27) duplicates exactly the 
structure of the formula for the symmetrical part j, of 
the spontaneous current of a semimetal, i f  (20) i s  r e -  
cast in the momentum representation. 

It was stated in Refs. 1 and 7 that a system with al-  
lowed interband transitions acquires ferroelectric pro- 
perties if a rea l  order parameter se ts  in. It is easy to 
show that for the model considered here this i s  indeed 
the case. It is necessary first  to determine the charge- 
density operator P,. In accord with the statements 
made in 81,  that the operator of the coordinate ? and the 
electron density k(r )  a r e  diagonal in a system with 
Hamiltonian (5), it must be assumed that the operator 
of the Fourier component of the charge density i, is 
also diagonal in the band indices. Therefore the elec- 
tric-field intensity operator Ea takes the form 
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Now, to find the polarization E in a system with a spa- 
tially homogeneous symmetrical order parameter, we 
must use expressions (23) for the Green's functions in 
the inhomogeneous case, and then find the limit of the 
corresponding expression a s  q -- 0. We then obtain 
from (23) and (28) 

In the limit a s  q-- 0, this quantity is finite i f  q II P, this 
being evidence of the transition of the system into a 
state with homogeneous spontaneous polarization when a 
real order parameter appears in it, a s  was indeed 
stated in Refs. 1 and 7. In a recent paper15 Batyev con- 
sidered likewise the possibility of a ferroelectric state 
in a model with the Hamiltonian (5). The calculation 
in his paper i s  incorrect, since the ferroelectric pro- 
perties appeared a s  a result the presence of nondiagonal 
matrix elements in the coordinate operator 1, which 
was shown in I1 to be incorrect. 

33. STRUCTURE OF THE CURRENT STATE 

In this section we consider the possible spatial struc- 
ture of a state with spontaneous current on the basis of 
the free-energy functional Such a functional was ob- 
tained macroscopically for a semimetal model earl ier  
in Ref. 16, where the corresponding phase diagram 
was also constructed. In that reference, only a sym- 
metric complex order parameter AS(R) was considered. 
We have shown here in (20), however, that when a real  
antisymmetrical parameter Aa(R) appears a spontaneous 
current can also be produced. We shall threfore dis- 
cuss briefly in the conclusion of this section the changes 
brought about by the existence of Aa(R). 

The simplest structure of a functional for a symme- 
trical complex order parameter was macroscopically 
determined in Ref. 16. For a system with a sym- 
metry axis (Oz 11  P) it can be obtained also purely phe- 
nomenologically: 

b [ A s ( R ) ] =  ~ d ~ { o l ~ ' l ' + ~ , l ~ m d b . l ' + ~ .  I -gradAS IPI 

Here a = a(T - T,) and the remaining coefficients of the 
constant and their numerical values a r e  given in Ref. 
16. Usually & >O, because the effective coupling con- 
stant corresponding to a rea l  order parameter exceeds 
that for an imaginary one. However, a s  noted in Ref. 
17, the presence of impurities1' and the spin-order in- 
teraction18 alter  the ratio of the constants in favor of 
the imaginary order parameter. It is easily seen that 
at E >O, y1 >0, and y, + y, >O the minimization of the 
functional (30) leads to the appearance of a real  homo- 
geneous order parameter in T,, i. e . ,  to ferroelec- 

tricity (29). For a state with spontaneous current to 
be produced, the necessary (but not sufficient) condi- 
tion is inhomogeneity. This calls for yl<O. In addi- 
tion, this inhomogeneity should have a transfer charac- 
ter ,  which is realized a t  y, < 0. At a temperature 
TI >T, determined from the condition 

a structure appears witha transversely inhomogeneous 
real  order parameter with a wave vector 

At the temperature T, this structure turns out to be 
unstable to the onset of an imaginary transversely in- 
homogeneous order parameter (i. e. , of a current 
state). This temperature can be determined from the 
relation 

where u: is the square of the amplitude of the real  
order parameter. 

Specific applications of formulas (31)-(33) to a sys- 
tem with a semimetallic spectrum were made in Ref. 
16. It turned out that in the vicinity of the Lifshitz 
point (y, = 0) there actually exists on the phase diagram 
a region where a state with spontaneous current is 
realized. 

The physical picture of the onset of a macroscopically 
inhomogeneous current in a ferroelectric can be vis- 
ualized a s  the following sequence of transitions. Fi rs t ,  
to appear in a uniaxial system at  the temperature TI is 
a ferroelectric phase with a domain (amplitude soliton) 
structure, in which the domains a r e  stretched out 
along the polarization vector (P) and a re  periodically 
disposed in space in a direction transverse to the po- 
larization. In the soliton region, the phase of the or- 
der parameter A remains unchanged (Im A = 0), and the 
amplitude reverses sign on going through zero. Next, 
a t  the temperature T,, a nonzero imaginary value of 
the order parameter se ts  in the transition region be- 
tween neighboring domains. Now both the phase and the 
amplitude of the order parameter vary smoothly in this 
region, over scales of the order of q,(32). The soliton 
becomes thus gradually phase dependent and spon- 
taneous current begins to circulate in it. The phase of 
the order parameter changes from 0 to n within the 
region of one soliton. Thus, according to (20), two 
opposing current loops a r e  produced inside the soli- 
ton (Fig. 1). The soliton has therefore no magnetic 
moment o r  ferromagnetic properties, but is a mag- 
netic multipole. 

All the foregoing pertains to a system without doping 
( p  = 0). If the chemical potential p # 0 (there is an ex- 
cess of carr iers) ,  then the possibility of appearance of 
a real  antisymmetrical order parameter R e ~ ~ ( 1 8 )  and 
of the associated current j, (20) must be considered. 
This leads, a s  shown by a microscopic calculation, to 
an additional term in the functional (30), 

r (Re A")Z+o((Im A') 

X (div Re A") 

-Re A" (grad Im A') ] (34) 
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FIG. 1. * 

In the semimetal model, the coefficients r and a are  
given by 

r=a (T-T,"), 

It is curious that the presence of a complex invariant 
in (34) of the type of the Lifshitz invariant) causes the 
inhomogeneous symmetrical order parameter that ap- 
pears in the doped system to induce a real  antisym- 
metrical parameter, so that the total current pro- 
duced in the doped system is always a sum of two 
currents, j, and j,(20). Qualitatively, however, the 
situation illustrated in the figure remains unchanged. 

CONCLUSION 

We have thus shown in present paper that in sub- 
stances with allowed interband dipole transitions 
(P#O), which a re  unstable to dielectric pairing, a sys- 
tem of rigidly secured macroscopic currents is pro- 
duced when a spatially inhomogeneous order parame- 
ter  appears. The structure of these currents is  such 
that they cannot produce a homogeneous magnetic field, 
so  that the substance is not ferromagnetic in the state 
with the currents. Moreover, the free-energy func- 
tional constructed in 63 for the order parameter A(R) 
(the density of the exciton condensate) cannot be re-  
written a t  all in terms of the density of the magnetic 
moment (even i f  the density is inhomogeneous), for in 
accord with Eqs. (20) for the currents it would acquire 
in this case a patently nonlocal form. For  the same 
reason, the current can likewise not be regarded a s  an 
order parameter. 

Next, since the spontaneous current vanishes under 
conditions of thermodynamic equilibrium, when the 
order parameter becomes homogeneous, the state- 
ment of the Bloch theorem,lg which is violated in Ref. 
1, turns out to be satisfied, although in a nonequili- 
b r i m  system there can exist a special contribution 
to the current due to the homogeneous order parame- 
ter .  

It is of particular interest to determine the behavior 
of the investigated system in an external magnetic 

field. It turns out that the response of the system to a 
homogeneous magnetic field, when the temperature of 
the phase-transition into the current state i s  approached 
from above, has no singularities whatever, and the di- 
amagnetic anomally obtained for the equilibrium case in 
Ref. 20 does not exist. 

The authors a r e  deeply grateful to V. L. Ginzburg 
and L. V. Keldysh for helpful discussions. 

APPENDIX 

The description of a system in an excitonic-insulator 
state can be regarded a s  one of the variants of the 
solutions of the nonlinear Hartree-Fock equations for 
this system. We present below two methods of proving 
the absence of homogeneous spontaneous currents from 
equilibrium systems in the Hartree-Fock approxima- 
tion. The first  is due to L. V. Keldysh. 

1. In the Hartree-Fock approximation, the Hamil- 
tonian of an electron in a periodic field U(r) is  of the 
form 

vz  a=- - + U(r)  - j d3r' V (r-r') p (r, r'), 
2m (A. 1) 

where V ( r  - r') is the interelectron Coulomb interac- 
tion, p(r, r') = p*(rl, r )  i s  the density matrix, and the 
last term of (A. 1) describes the nonlocal exchange po- 
tential. Taking the periodicity of the problem into ac- 
count, the solution of the Hartree-Fock equation 

is sought in the form 

*,k=u.k (r )esp  (i kr) . (A. 3) 

After substituting (A. 1) and (A. 3)  in (A. 2), cancelling 
the factor exp(i k .  r), and differentiating the obtained 
equation with respect to k ,  we get 

sunk 
xp (r, r') exp (ik (I-r') )- - 

ak 

(A. 4) 
Multiplying this relation from the left by u,, and inte- 
grating with respect to r ,  taking it into account that the 
Hamiltonian (A. 1) is Hermitian, we get 

x p ( r ,  r') unk' (I) e-'krunk(r') e'kr'(r-r'). (A. 5) 
The last term in (A. 5) is the exchange correction to the 
electron velocity. In i ts  absence, we would get the 
known result 

(A. 6) 

To find the average current connected with the exchange 
correction, we must sum the exchange term over a l l  the 
occupied states. We then get 

since the density matrix is Hermitian (the interchange 
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r = r'). Thus, the homogeneous current is determined 
by averaging (A. 7) over all  the occupied states, and if 
the occupation numbers of these states depend only on 
their energies, then the current for al l  the solutions of 
the Hartree-Fock equation vanishes identically. 

2. The second method is based on a definition of the 
current in the form (3) and on the requirement that the 
Hartree-Fock Hamiltonian (A. 1) be gauge-invariant. 
If it is noted that the exchange term in (A. 1) can be 
identically rewritten in the form 

1 d3a li ( a )  p ( r ,  r f a )  exp ( i a c )  , (A. 8) 

then i t  is transformed for an external field A ,  with the 
aid of the formal gauge substitution 3 - 6 - eA/c, into 

5d3av ( a )  ( r ,  r fa )  exp [ia ( p - e ~ / c )  1. (A. 9) 

Variation of (A. 9) with respect to A yields for the 
current an exchange correction identical with (A. 7), i f  
we se t  A = O  after the variation and reverse the change 
of variable a = r - r'. We note that this approach yields 
also the local-current density in the Hartree-Fock ap- 
proximation. To this end it is necessary to "untangle" 
the shift operator in (A. 9) .  If the vector potential is 
resolved into a transverse part A,(divA,= 0)  and a lon- 
gitudinal one A,, (A,, =gradqo), we get 

(A. 10) 

To prevent misunderstanding, i t  must be noted that the 
density matrix itself depends on A and the Hartree- 
Fock equation is in fact i t s  self-consistent definition. 

se he formal expression for d cannot be  used, since r does not 
belong to  the basis of bounded functions. To calculate d one 
must use the formula 

1 d 
d= lim --('p2tIeiq'l'plrf), 

q-o 1 dq 

which i s  analogous to that in 822 of Ref. 12. 
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