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INTRODUCTION 

The thermal fluctuations smea r  out the phase transi- 
tion in homogeneous superconductors only in a very 
narrow temperature region. Therefore, the smearing 
of the phase transition is often determined by the in- 
homogeneities of the sample. Only those superconduc- 
tors  with a greatly smeared  transition temperature 
will be considered below. The coupling constant in in- 
homogeneous superconductors is a random function of 
the coordinates. The smearing of the transition near 
the upper cri t ical  field H,, depends also on the inhomo- 
geneities in the mean free path. The physical cause 
of such'inhomogeneities may be dislocation, impurity, 
o r  crystallite pile-ups. In certain cases  the cause is 
not clear;  in others the inhomogeneities a r e  artificial- 
ly produced. Also greatly smeared  a r e  the supercon- 
ducting phase transitions in heterogeneous systems 
in which the regions of the matrix separate out a s  a 
new phase with superconducting properties different 
from those of the matrix,  a s  well a s  in systems of 
compressed superconducting balls covered with a thin 
dielectric layer o r  imbedded in a normal-metal matrix. 

The details of the temperature dependence of the 
superconducting parameters vary  from one type of 
system to another and strongly depend on the dirnen- 
sion of the superconducting regions and the magnitude 
of the local-transition-temperature spread,  but the 
qualitative picture is the s ame  in al l  the cases  of a 
highly smeared transition. At a temperature close to 
the smeared-transition temperature, there  exist in the 
superconductor superconducting regions whose energy 
i s  high compared to the temperature. The binding 
energy of these regions is exponentially smal l  a s  com- 
pared to the energy of each region. The phase transi-  
tion occurs a t  a temperature of the o rde r  of the binding 
energy. It is significant that the binding-energy spread  
i s  exponentially large. Therefore, we can consider the 
regions whose binding energy is higher than the tem- 
perature to be strongly coupled, and neglect the ther-  
mal  fluctuations of the order  parameter in them. We 
can neglect the couplings whose energy i s  less  than the 
temperature. Strongly coupled regions form clusters  
whose dimensions increase with decreasing tempera- 
ture. At some temperature one of the clusters  be- 
comes infinitely large. This is the transition tempera- 
ture.  A s  the temperature is decreased further,  the 
number of regions belonging to the infinite cluster  in- 
c reases ,  and they form a cellular s tructure with char-  

acteristic dimension L. These quantities can be found 
from percolation theory. In the f irst  part of the paper 
we express the superconductor's characterist ics ,  such 
a s  the cri t ical  current ,  the magnetic-field penetration 
depth, and the superconducting transition temperature,  
averaged over the sample,  in t e rms  of the parameters 
of percolation theory. In the second part we express 
these parameters in t e rms  of the macroscopic param- 
e t e r s  of various systems with a highly smeared  phase 
transition. 

I. PERCOLATION MODEL OF A HIGHLY SMEARED 
SUPERCONDUCTING TRANSITION 

Let us consider a model in which the modulus of the 
superconducting order  parameter  is large near the 
individual centers  and exponentially smal l  at  points far  
away from them. The binding energy of such super-  
conducting drops is exponentially smal l ,  the quantity 
in the exponential being, moreover, a random quantity. 
A s imi lar  exponentially weak random coupling a r i s e s  
in a system of superconducting drops separated by di- 
electric layers of varying thicknesses. 

The thermal fluctuations have little effect on the 
properties of the individual superconducting drops; the 
phase q and modulus A of the order  parameter will 
therefore be considered to be constants inside a drop. 
The f ree  energy of such a structure is equal to 

Here the integral i s  evaluated over a path between the 
individual centers  and Fo is the free energy of a single 
drop. If Vi, is exponentially smal l ,  then the second 
te rm in the formula (1) is smal ler  than the f i r s t  every- 
where except at  temperatures close to the transition 
temperature o r  to the H,, of an individual drop. Outside 
this narrow region, the order  parameter  i s  the same 
in al l  the drops, and the f ree  energy depends only on 
the phase difference, which is equivalent to saying that 
the f irst  te rm in the formula (1) can be dropped. It is 
convenient to represent  the quantity V i j  in the form 

where b is a random quantity with a characterist ic  do- 
main of variation much grea ter  than unity. Fo r  exam- 
ple, for  superconducting drops imbedded in a normal- 
metal matrix,  
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where 5 is the correlation length in the normal metal. 
In this case  Lo =N"'~[-', where N is the concentration 
of the drops. 

1. Magnetic-field penetration depth 

Let us f i r s t  find the depth of penetration of a weak 
magnetic field into a highly inhomogeneous supercon- 
ductor. In a weak magnetic field the expression (1) 
assumes the form 

1 
V ,  ( -  " J  Adr 

Minimizing this expression with respect  to q j ,  we ob- 
tain for  the f r e e  energy the expression 

where x i s  the depth of penetration of the magnetic 
field into the superconductor. The coefficient c2/ 
1 6 1 r e ~ ~ ~  coincides with the mean conductivity of a sys-  
tem of drops joined by resistances equal to v;:. 

The problem of the computation of the mean conduc- 
tivity of highly inhomogeneous media has been solved 
by the methods of percolation theory.' According to 
this theory, the dominant contribution to the mean con- 
ductivity i s  made by cri t ical  resistances,  equal in 
magnitude to 

which a r e  found from the requirement that al l  the r e -  
sistances less than R, should form an infinite cluster 
near i t s  percolation threshold. The resistances lower 
than R, a r e  not connected with each other,  while the 
resistances much higher than R, a r e  shunted by res is -  
tances of the order  of R,, and do not contribute to the 
mean conductivity; L C  is determined from the condition 

where v ,  is the volume of that region inside which two 
drops interact with V,, grea ter  than veJc;  B, is a num- 
ber that depends weakly on the shape of the region; it 
is computed in Ref. 8. The quantity B, is equal to 2.7 
and 4.5 respectively in three-  and two-dimensional 
systems. 

Fo r  randomly arranged drops interacting according 
to the law (2), we have' 

c c = & - l l d g - l  (6) 

where a!=0.89 f o r d = 3  andcu=0.95 f o r d = 2 .  Fo r  
drops forming a regular  lattice, and the interactions 
between which a r e  distributed according to a law p ( f ) ,  
the values of 5, and, consequently, V, a r e  found from 
the equation 

where the numbers x,- 1 ,  and a r$  give? for different 
lattices in Table 5.1 in Shklovskii and Efros 's  book.' 

The mean distance between the cri t ical  resistances 

is found from the condition Vi, - V,, and is equal in 
o rde r  of magnitude to' 

In the three-dimensional case  v=0.9; for  films v =  1.3. 
The mean conductivity and, consequently, the penetra- 
tion depth x a r e  expressed in t e rms  of V, and L by the 
formula 

Thus, the mangetic-field penetration depth is expo- 
nentially large, much la rger  than L. Therefore,  we 
can use the local approximation to compute i t ,  assum- 
ing that A in the formulas (3) and (4) does not depend 
on the coordinates, a n  assumption which was made 
ear l ie r .  

2. The critical current 

The superconducting current  flowing between two 
drops is equal to 

It cannot exceed 2eVij. Contacts with very sma l l  Vo 
a r e  unimportant, s ince they will be shunted. The do- 
minant contribution to the cri t ical  current  density will 
be made by contacts with Vij-V,. The cri t ical  current  
density is equal to 

The same  expression can be obtained by expanding (1) 
in a power s e r i e s  in A and finding the vector potential 
A from the condition that a l l  the t e rms  of the s e r i e s  
should be of the s ame  order  of magnitude. Thus, the 
cri t ical  current  is proportional to V,, and exponential- 
ly small .  From the formulas (9) and (11) we can eli- 
minate V,, and determine the cri t ical  length 

Like the formulas (9) and ( l l ) ,  this expression is valid 
up to a numerical factor of the order  of unity. 

By varying the temperature o r  the drop concentra- 
tion, we can vary  5,. By determining f ,  with the aid 
of the formula (6),  o r  with the aid of the formulas (5), 
(9), and (11), and comparing the formulas (8) and (12), 
we can experimentally determine the index v, and com- 
pa re  i t  with the above-presented values, which were  
calculated on a computer.s 

3. The superconducting transition temperature 

We shall  determine the superconducting transition 
temperature in the s ame  way a s  the magnetic transi-  
tion temperature for very dirty magnetic alloys was 
determined.' We shall  assume that the drops whose in- 
teraction energy is higher than T have order  param- 
e t e r s  with the same phase, and that they a r e  gathered 
in clusters .  The transition temperature is found from 
the requirement that one cluster  should become infinite: 

In order  to verify that the formula (13) does not contain 
So dependent pre-exponential factors,  let us compute 
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the correction to the penetration depth due to the ther- 
mal  fluctuations. We shall estimate the quantity T, a s  
that temperature at  which this correction assumes a 
value of the order of unity. For  this purpose, let us 
expand the cosine in the expression for F up to t e rms  
of second order  in ( q i  - v , ) ~ ,  and let us replace in the 
lowest approximation ( q i  - (pj)4 by 6(qi - q j ) 2 ( ( ~ i  - qj)2)o: 

Here (. . .) denotes averaging with the Hamiltonian 

over the thermal fluctuations: (Vij(qi - cpj)') = T. In 
approximation 

As a result ,  the Vij's grea ter  than T a r e  replaced by 
Vij -$T,  while the couplings smaller  than T a r e  shunt- 
ed, and do not contribute to the penetration depth; thus, 
the V, in the formula (9) for x i s  replaced by V, -+T 
when T << V,: 

It can be seen from this formula that the correction to 
A assumes a value of the order  of unity when T - T, 
given by the expression (13). 

Usually, V, increases rapidly with decreasing tem- 
perature; therefore, the condition, T << V,, of appli- 
cability of a l l  the formulas obtained above i s  fulfilled 
everywhere except in a narrow region in the vicinity 
of T,. 

4. The magnetic moment 

The critical current  given by the formula (11) i s  a 
slowly varying function of the magnetic field. There- 
fore ,  strong coupling and hysteresis exist in the super- 
conductor. The magnetic properties depend on the past 
history and the time the experiment i s  performed. The 
characteristic t imes a r e  determined by the charac- 
ter is t ic  t ime of slippage of a flux quantum through the 
weakest contacts in the infinite cluster ,  and a r e  equal 
to t ,  -exp(V,/T). If the time of the experiment is 
shorter  than t, ,  then the magnetic field begins to pene- 
t ra te  the sample to a depth greater  than x when the 
current  density on the surface attains i t s  cr i t ical  value, 
given by 

where x i s  given by (9). Upon further increase,  it gets  
distributed inside the sample according to the law 

It is distributed according to the same law when the 
field is switched off, and there remains in the super-  
conductor a trapped macroscopic flux determined by 
the currents  flowing through the entire sample. 

If the time of the experiment i s  longer than ti, then 
the magnetic field begins to penetrate into the super- 
conductor when i t s  intensity is equal to the value H,, 

given by the condition for  the minimum of the free 
energy: 

H,,-h-2 ln ( U L )  . (17) 

When the field i s  switched off, not a l l  the flux gets  out 
within the time t,. The part of the flux trapped by 
closely spaced drops with a large interaction energy 
remains in the superconductor significantly longer. 
This part of the flux remains trapped even at  tempera- 
tures higher than T,, when the sample contains smal l  
superconducting c lus ters ,  but no infinite cluster. 

II. SPECIFIC SUPERCONDUCTING SYSTEMS 

As noted in the Introduction, the model of supercon- 
ducting drops with weak and strong random couplings 
can be realized in different physical systems.  Here  
we can express the random quantity V and i t s  param- 
e t e r s  V ,  and L in t e rms  of the temperature and the 
microscopic parameters,  and then find with the aid of 
the above-obtained formulas the mean macroscopic 
characteristics. 

1. Widely-spaced superconducting drops in a normal-metal 
matrix 

We consider a system consisting of drops of a super- 
conductor with a high transition temperature Tcd im- 
bedded in a matrix with a lower transition temperature 
T,, in the temperature range T,, < T < T,,. Here we 
assume that the drops have sufficiently large dimen- 
sions,  s o  that the proximity effect does not destroy the 
superconductivity in an  individual drop. For  this pur- 
pose it i s  sufficient a t  any ra te  that the drop dimension 
be grea ter  than the correlation length 5 in the drop. 
If the transmittance of the boundary between the drops 
and the matrix i s  low, o r  if the temperature is close 
to T,,, then the proximity effect i s  weak, and the con- 
dition on the drop dimension is less  rigid. The case  of 
small-sized drops will be considered later .  

Let  us write down the Ginzburg-Landau equation for 
the order parameter at  temperatures slightly higher 
than T,,: 

D n T - T ,  AmZ = - 
(T-T.,) 8' B I 

and D i s  the diffusion coefficient. If A inside a drop 
is grea ter  than A,, then the solution to (18) in the vi- 
cinity of the drop surface decreases over distances 
-5 to A,; a t  large distances Eq. (18) reduces to a lin- 
e a r  equation, and has the solution 

In the case  in which A, inside a drop is smal ler  than 
A,, o r  the transmittance of the boundary between the 
drops and the matrix i s  low, A, in the  formula (19) 
should be replaced by the A value inside the drop multi- 
plied by the transmittance; in the opposite case ,  i.e., 
when A,< Ad, A. in this formula coincides with A,. 

The parameter  characterizing the order  between two 
drops located a t  a distance much grea ter  than 5 from 
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each other is equal to A = A i  +A,. The current  flowing 
between two such drops is 

(20) 
Comparing this expression with the formula ( l o ) ,  we 
obtain 

Comparing the expression (20) with the formula (5), we 
obtain the parameters of the percolation model: 

V=vD2n2g2N",I A ,  1 Z, (21) 

with LC and L given respectively by (6) and (8). 

The above formulas a r e  applicable in the case  in 
which the temperature is not close to the transition 
temperature of the matrix; in this c a s e  instead of the 
formula (18) for 5 we should use a more  general ex- 
pression for this quantity; in the particular case  of 
T,,<< T we can use the expression4 

The percolation picture i s  applicable in those cases  
in which 5 is small  compared to the distance between 
the drops. Therefore, i t  i s  not applicable in the region 
of temperatures very close to the transition tempera- 
ture  of the matrix, where is large. The standard 
Ginzberg-Landau equation with averaged parameters  
i s  applicable in this region. 

2. White noise in the coupling constant 

When the s ize  of the regions with an increased value 
of the coupling constant i s  smal l ,  the superconducti- 
vity in each of them is suppressed on account of the 
proximity effect; nevertheless, i t  can exist in clusters  
of such regions. Such a s t ruc ture  i s  a particular case  
of white noise in the coupling constants: 

j / g - (  l / g ) + g , ,  ( g ,  ( r )  g,  ( f )  )=y6  (r-r')  . (23) 

In the case of sma l l  regions with temperature T, the 
quantity y is  given by the formula 

where v,, is the  volume of a region and n is the con- 
centration of the regions. 

The order  parameter  in clusters  of these regions 
changes over distances 5(T) >> 5 , ;  therefore, we can 
write for  it the Ginzburg-Landau equation with a noise 
addend in the te rm with 7: 

where m = ~T/T'D, T = ( T  - T,,)/T,,, and T,, is the 
transition temperature of a homogeneous superconduc- 
tor  with the mean coupling constant. 

The temperature region T < T,, has been studied by 
Ovchinnikov and one of the present   author^.^ They have 
shown that the inhomogeneities s m e a r  the supercon- 
ducting phase transition over a region of the o rde r  of 

6 t = y Z P / D 3 ;  (26) 

also smeared  out in this region a r e  the specific-heat 
jump, the temperature dependence of the order  param- 
e t e r ,  and the penetration depth. 

Below we shall  consider the temperature region T 
> T,, , with 7 >> 67. In this temperature region, the 
last  t e rm in Eq. (25) i s  sma l l ,  and can be taken into 
consideration with the aid of perturbation theory. 
Let  us,  for  a given realization of g,, expand A in a 
s e r i e s  in the eigenfunctions of the linear equation 

Only one te rm,  A = A,$, , in this expansion i s  large. 
Multiplying Eq. (25) from the left by #,, and integrat- 
ing over the coordinates, we obtain 

When we average over the various g, realizations, the 
dominant contribution is made by that realization for 
whichg, -$!. Therefore, z,bo is found by solving the non- 
linear Schrbdinger equation 

and normalizing the solution. Fo r  E close to 7, the 
function depends weakly on E .  Therefore,  the 
averaging over the realizations amounts to multiplica- 
tion by the density of s ta tes ,  which, to within an  addi- 
tive number, is equal to9 

As a result,  we obtain - pz d3r = jp ( E )  (E-T)  dE/B d3r. (30) 

Here it is supposed that T,, in the formulas (29) and 
(30) has been renormalized on account of the very- 
small-scaled fluctuations. As shown in Ref. 10,  these 
fluctuations increase T,, by an amount grea ter  than the 
smearing width 67. 

The superconductivity-related correction to the 
specific heat is equal to 

Here T i s  reckoned from the renormalized transition 
temperature T,, which is defined a s  the temperature 
corresponding to the middle of the specific-heat jump. 

The t rue  transition temperature,  which corresponds 
to the disappearance of the long-range o rde r ,  is given 
by the formula (13); i t  l ies  above T,,. In the region 
between T,, and T,, the cri t ical  cur rent  and the pene- 
tration depth a r e  given by the above-obtained formulas 
( l l ) ,  (12), (8), (5), and (6). These formulas contain 
the drop concentration N. The drops exist in exponen- 
tially spa r se  regions, where the inequality -gi > T i s  
fulfilled in a fairly large volume, s o  that Eq. (27) has 
an eigenvalue E n  > T. It  i s  precisely these regions that 
contribute to the density of s ta tes  p ( E ) ,  (29); therefore, 
the number of drops 
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Inside each drop, A, is given by the formula (28). 
The important values of E - 7 - 67; therefore, 

Outside a drop A decreases exponentially, and, just a s  
in the case of large drops, it i s  given by the formula 
(19), where 

The interaction V between the drops will be determined 
by the same formula, (21), as for large drops, the 
quantities A, and 5 in which a r e  given by the expres-  
sions (33) and (34). 

Because of the exponential decrease of the number of 
drops with increasing T ,  the dependence of the cri t ical  
current and the penetration depth is very strong. 

From the formulas (21), (6), and (32) we obtain an 
expression for  the transition temperature shift: 

In a rea l  sample, there is a spread in the dimensions 
of the superconducting regions, and a relatively small  
number of them may each have a dimension greater  
than 5. Each such region forms a superconducting 
drop, and the concentration of these drops may be high- 
e r  than the drop concentration produced by white noise 
and given by the expression (32). In this case  the 
structure coincides with the structure considered in 
the preceding subsection. 

3. The smearing of Hc, 

The percolation picture is applicable not only in the 
vicinity of To, but also in the vicinity of H,. Let the 
metallic matrix contain widely-space impregnations 
of a material  with H,, higher than the Hcz of the ma- 
t r ix ,  and let each of them be in the superconducting 
state. 

For sufficiently large distances, A is given by the 
solution to the linear Ginzburg-Landau equation, and 
has,  in the Landau gauge, the form 

T I  r12 z A ( r )  = A ( -  exp (- - - - + im@+iy )  . 
E ' IE' El, 

Here r, , z , and @ a r e  cylindrical coordinates and 

m is the number of vortices in a drop. If H i s  higher 
than the H, of a drop, then the magnetic field penetrates 
the drop, and m i s  the number of flux quanta passing 
through the c ros s  section of the drop; A, is given by 
the solution to the one-dimensional nonlinear equa- 
tion. In a drop with semitransparent walls, A, coin- 
cides with the value of A inside the drop multiplied by 
the transmittance. 

Let us find an expression, analogous to (20), for  the 
current flowing between two drops a t  a distance R >> 5 
apart. Their order  parameter  a t  a distance much ,  , 
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greater  than 5 is 

Here the A, a r e  given by the formula 

&=A (r -Ri)  exp (iy,+2i [HXR,] r )  , (38) 

where Ri i s  the coordinate of the center  of the drop. 
Computing the total current  flowing between the two 
drops, we obtain 

I t j = e v ~ L S  4 lm A'VA dS=evDIA(R,-R,) 1 %  E l l  ~ i n ( y , - ~ , ) .  (39) 

Comparing this expression with the formula ( l o ) ,  we 
obtain the drop-drop coupling constant: 

V,,=V exp ( -L j ) ,  V = ~ D ( r , l j ) ~ ~ " . , ,  1 A,Iz, 
(40) 

gi,= (rllE)2+ z/E,,. (41) 

The volume v,, which is limited by the condition c,, 
> LC, is equal to v, =n525,,5:. We find L C  from the con- 
dition (5): 

In the region v, the characterist ic  r, - [LC, while z 
-5,5,,; therefore, 

V=vD5,2"bu 1 Ao 1'. (43) 

This result  applies in the two-dimensional case  a s  
well; we only need to replace 5,, in the formulas (39) 
and (43) by the film thickness d and, in the formula 
(42), drop 5,, and replace B, by i t s  two-dimensional 
value, N being then the surface concentration. In the 
three-dimensional case  the H,,-smearing region is 
given by the formula (13) for T, after  substituting the 
formulas (42) and (43) in it ,  and the H,, shift (6H) i s  
given by the formula 

6 H  8nD 
-=- 

vDEIAolz ' 
[ B . N ~ Z  inz-] 

H T-T.  T 

In the region Hcz < H < H,, + 6H the cri t ical  current ,  
given by the formula ( l l ) ,  decreases exponentially with 
increasing H .  

In the ca se  of a film with a sufficiently high drop con- 
centration satisfying the inequality 

NE" ( n ~ .  ln' -1 -' 
the Hcz-smearing region is of the order  of Hcz. The 
cri t ical  current  in this region i s  given by the formula 
( l l ) ,  and depends smoothly on H.  If the inequality (44) 
i s  not fulfilled, then the percolation mechanism of 
superconductivity in films does not occur. 

4. White noise in the mean free path 

The mean-free-path fluctuations in ze ro  magnetic 
field have no effect on the smearing of the phase tran- 
sition. But H,, depends on the mean f r ee  path, which 
is therefore smeared  by these fluctuations. If the 
dimension of a region with a short  mean f ree  path i s  
large compared to 5, then this s t ruc ture  is equivalent 
to the s t ruc ture  considered in Subsection 3. If the di- 
mension of these regions i s  smal ler  than 5,  then the 
mean f ree  paths can be considered to be distributed 
according to the Gauss law: 
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These fluctuations give r i s e  to fluctuations in the co- 
efficient in the derivative te rm of the Ginzberg-Landau 
equations. For  fields close to Hc2 , 

where g ,  is white noise in the coupling constant; g has  
also a Gaussian distribution with a variance y + rZyl. 

As before, the drop concentration coincides with the 
number, (32), of s ta tes  with energy smal ler  than 1 7 1 . 
As will be shown elsewhere, the density of s ta tes  in a 
magnetic field is equal to 

Therefore, the drop concentration is equal to (47) 

(48) 
Fo r  a g iveng realization, A ~ B  in each drop is - 1  71 

-E; therefore, the mean order  parameter  in each 
drop is given by the expression 

H,, " Ao~=2!q(x) B TE 

The properties of an ensemble of such drops a r e  
equivalent to the large-drop s t ruc ture  considered in 
the preceding subsection, where the quantities N and 
A, in the formulas (42) and (43), for  6, and V a r e  givenby 
by the formulas (48) and (49). 

5. Superconducting drops in a dielectric shell 

The structure consisting of superconducting drops 
in a dielectric can easily be prepared by slightly oxi- 
dizing the surface of each drop. If the thickness of 
the oxide layer i s  a random quantity, then percolation 
theory is applicable here. 

The Josephson current  flowing through the contact 
between two balls is equal to6 

Here Ry, is the resistance of the contact in the normal 
state. Comparing the formula (50) with ( l o ) ,  we obtain 

The resistance between the drops is exponentially high: 

where L - l / a  (1 i s  the thickness of the dielectric layer) 
is distributed with probability p(5). The parameter  
V, entering into the percolation theory is equal to 

and LC is given by the relation (7). The form of the 
function p ( & )  and the parameter  x,  a r e  not known; 
therefore, 6, cannot be expressed in t e rms  of the 
microscopic quantities, but in this case  there  is an  in- 

dependent method of determining &, and V, in t e rms  of 
the conductivity of the sample in the normal state.  As 
has been shown in percolation theory, the conductivity 
of the structure consisting of resistances distributed 
according to the formula (52) i s  given by the expres- 
sion 

O = ~ - ~ = / R ~ L ,  (54) 
where L i s  expressed in t e r m s  of t, by the formula 
(8). From (54) we can  determine 5 ,  and V,. With loga- 
rithmic accuracy, 

The superconducting transition temperature T, is 
determined from (55) and Eq. (12). At temperatures 
below T, the cr i t ica l  current  and the penetration depth 
a r e  given by the formulas (9) and (10). 

Other physical situations a r e  possible for supercon- 
ducting drops in a dielectric matrix:  a )  there may not 
be any spread  in the oxide-layer thicknesses a t  al l ;  b) 
an  infinite cluster  may be formed by drops between 
which there is no dielectric layer a t  all.' In these 
cases  the transition temperature,  the penetration depth, 
and the cr i t ica l  current  a r e  expressed in t e rms  of the 
resistance in the normal s ta te  by the same formulas, 
but the percolation dimension L in them has a different 
value: in the case  a)  L - N - " ~ ;  in the case  b) L i s  given 
by the classical  percolation theory. 

Above we neglected the Coulomb energy1'; this i s  
admissible when the drop s i ze  i s  not very small :  V, 
>> e 2 / ~ .  

CONCLUSION 

In this paper we have not studied the temperature 
dependence of the resistance. We have considered 
only the temperature region below T,; T, was defined 
a s  that temperature at which the resistance vanishes o r  
becomes exponentially small .  This temperature i s  
higher than the superconducting transition temperature 
of the matrix,  and i t s  dependence on the number of 
drops i s  given by the formula (13). At temperatures 
lower than T,, the cri t ical  current  and the penetration 
depth depend exponentially on the temperature. The 
explicit form of this dependence in each  specific case  
is obtained by substituting the formulas of Sec. I1 into 
(11) and (9). From these quantities we can construct a 
combination that has no exponential smallness with 
respect to the formula (12). This quantity has the 
meaning of a percolation length, and it can be com- 
pared with the formula (8), which expresses  it in 
t e r m s  of the microscopic quantities. 
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