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The energy dependence of the reflection coefficient of slow electrons is obtained in the threshold
approximation. It is shown that the rate at which the macroscopic potential approaches the vacuum value
affects most strongly the energy dependence of the reflection coefficient.
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1. INTRODUCTION

The reflection and transmission coefficients of elec-
trons through the potential barrier at the interface of
a solid with vacuum (or some other medium) at energies
=<1 eV in vacuum has repeatedly attracted the atten-
tion of the theoreticians. One reason is that these
coefficients are capable of describing many processes
that take place on the interface, such as photoemission,
thermionic emission, reflection of slow electrons from
surfaces, and others. Another reason is that the ex-
perimental methods of research into this field are still
far from perfect. The exact solution of problems of this
kind is exceedingly complicated because they require
knowledge of the details of the potential near the surface,
and these data are lacking in most cases. It is there-
fore not surprising that under these circumstances
certain importance is attached to attempts at deter-
mining the so-called threshold singularities of the
energy dependence so the the transmission coefficient
(see Ref. 1 and the citations therein, even if it is
necessary to resort for this purpose to substantial
simplifying assumption.

The purpose of the present paper is further develop-
ment of the indicated ideas under assumptions that
are less stringent than usual. In particular, an attempt
will be made to separate the influences of the long- and
short-range forces on the coefficient of the transmis-
sion of an electron through the potential barrier at
the interface with vacuum.

2. EFFECT OF THE IMAGE-FORCE POTENTIAL ON
THE COEFFICIENT OF TRANSMISSION OF AN
ELECTRON THROUGH A POTENTIAL BARRIER ON
A CRYSTAL—VACUUM INTERFACE

We consider first, by way of example, the normal
incidence of slow electrons from a vacuum (or a
medium with dielectric constant ¢) on a metal boundary.
The transmission coefficient obtained in this manner
coincides, as is well known, with the coefficient of
transimission from a solid to a vacuum in the thresh-
old approximation.

At distances a, from the boundary on the order of the
interatomic distances at which the micropotential be-
comes constant and beyond, the behavior of the elec-
tron is described by the one-dimensional Schrodinger
equation with a long-range image-force potential:
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The z axis is directed into the interior of the crystal.
The wave function ¢ in the region z <0, however, is
influenced not only by this macroscopic potential and
even not only by the micropotential in the region | z|
~a,, where it varies most strongly, but also by the
micropotential in the interior of the crystal.?>® The
influence of the last two factors is taken into account,
for example, in the theory of LEED (low-energy elec-
tron diffraction). We, however, are interested in the
low-energyregion (<1 eV), when there are still no
diffraction processes.

In its formulation, our problem is closest to that
of finding the threshold singularities in the cross sec-
tion for particle scattering near the threshold of
some process, and more specifically to the resonant
scattering of charged particles,* which is described
by using a Schrodinger equation with a long-range po-
tential, while the short-range potential is accounted
for via the boundary condition. It is precisely these
properties which determine the constant », to which
the logarithmic derivative of the solution at zero is
equated. The reason why this derivative is constant
is that a low energy real or virtual level is present in
the spectrum of the micropotential, and this is why the
scattering is called resonant. Thus, the separation
of the threshold singularies imposes in this case
rather stringent requirements on the micropotential.

We shall attempt to divide the problem into two stages
and consider separately the effect of the long-range
forces, as is done in the theory of scattering of charged
particles, describing in this case the micropotential
by a certain reflection coefficient that must be found
by solving an analogous problem, but now without the
macroscopic potential. We choose a distance |z, |
~a, at which the three-dimensional character of the
potential and of the wave function can be neglected.
Since the micropotential becomes one-dimensional
precisely at lengths ~a,, this can always be done.

We now divide the macropotential into two smooth
parts, V, +V,, such that one of them differs negligibly
little at |z| = | z,| from the image-force potential,

and at |z| <|z,| it becomes constant at distances much
smaller than a, from z,; we then solve the problem
with the new macropotential V,, and relegate V, to the
micropotential. Since the potential energy of the
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electron is perfectly finite at z=z,, namely ~a/a,,
this subdivision can always be so effected that the
wave functions of the threshold electrons are hardly
changed.

The described artifice allows us, first, to match the
wave functions in the one-dimensionality region and,
second, describe this matching with the aid of one
parameter. In fact, since the wave function is one-
dimensional at z ~z,, it should take the form

$~u,+Ru,, (2)

where u, and u, are the incident and reflected waves,
normalized to unity flux, for the problem with V, =0,
and R is the reflection coefficient. By virtue of the
formulation of the problem, there is no second linearly
independent solution, since it corresponds to a wave
indident on the surface from the inside. The proposed
breakdown is convenient because in the notation (2) the
logarithmic derivative, which is needed for the matching
of the wave functions at z=z,, is simple in form and is
described by a single parameter R, that depends now only
on the new micropotential and is, generally speaking a
function of the energy (and not a constant).

The boundary condition can thus be represented in

the form
’ — ﬁ’.‘k 2 h’.‘ 2
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where % is the wave vector of the electron in vacuum.

The problem has now been reduced to a solution of
Eq. (1) with the boundary condition (3). The procedure
here is fully analogous to that described in the book by
Landau and Lifshitz,* We therefore note here only
that since the matching of (3) is carried out here at
z#0, and the behavior at zero is of no importance at
all, we need a general solution of (1), which includes
also the one with the singularity at zero. Further,
the solution in Ref. 4 was obtained for the case

ka, <1, (4)
a.=h[ma (4")
for a repulsion-force potential. In analogy with Ref.

4, we can obtain for the case of attraction forces the
following equation for the reflection coefficient |71 (»
is the amplitude of the reflection coefficient)

i.l—_r=—1-(1—exp[_ ])[h(kac)'*’ x;c]'
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k>,
y=0.577. . . is the Euler constant.

The transition to the case @ =0, when there is no
image-force potential, leads naturally to a solution
»=R(k) that does not contain the characteristics of
the macropotential. A similar expression for 7 is ob-
tained also in the case of large %:

ka:>1, k> (2am/h?|z,|)"=k,. (6)
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It should also be noted that, in contrast to the theory
of particle scattering, » in (5) depends significantly on
the difference 1 - |R|. In particular, if x is real,
as in Ref. 4, then | 7| =1 and there is no energy de-
pendence. It is easy to show that for » to be complex
it is necessary and sufficient to satisfy the inequality
|R| #1. The transmission coefficient is then ~1 - |R|
and can be small if |R| is close to 1. We note that
this is a perfectly realistic case® and can be observed
in semiconductors, where the electron effective mass
differs strongly from the mass of the free electron.

In the opposite limiting case, ka, <1, there is no
explicit dependence on k in (5), and if R(k) is constant
in the threshold region, then 7 is independent of energy,
although it can be quite small. Finally, in the inter-
mediate case, if realized at all,

ko>k>1/a,, (7)

it can be shown that 1 - |7|2~k/k, if 1 - IR]| is not
too small.

Next, in contrast to Ref. 4, the inequality (4°),
which greatly simplifies the calculations and is valid
at ¢ >1, may not hold at ¢ =1, i.e., for emission into
vacuum. In this case the calculations become much
more complicated and (5) assumes in the threshold
approximation (i.e., at ka, <1, |z,| ~a_) the form

g LR O o 270l (2(200) ") | 11
CTER T e T @e)t i
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where J, and Y, are Bessel functions of the first and
second kind.® The dependence of » on p, thus becomes
more substantial.

3. CASE OF ZERO MACROPOTENTIAL

The formal artifice employed above, of breaking up
the macropotential into two parts, cannot be used if the
macroscopic part of the potential does not exist at all.
This can occur when the crystal is in contact with a
sufficiently well conducting medium, say an electro-
lyte. In this situation the wave functions will be
matched inthe region z ~a,, where the three-dimensional
character of the potential cannot be neglected, and this
makes the calculations much more difficult. For a
qualitative description of the energy dependence of the
transition coefficient we can nevertheless use the
general assumption that the reflection-coefficient am-
plitude is analytic in the energy, in analogy with the
assumption usually made in the theory of scattering
near the threshold of a reaction.* It is then convenient
to consider the incidence of an electron on a surface
from the interior of the crystal. We consider the struc-
ture of the wave function that describes reflection of
anelectronfrom the surface at near-threshold energies.
Near the threshold, where the potential is still large
enough to be able to neglect in the Schrodinger equation
(in the threshold approximation) the dependence of the
function onthe energy (reckoned from the vacuum level),
the sought wave function can be represented in the
form

Q=0 Q1T @z, )
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where ¢, and ¢, are two aribtrary linearly independent
solutions (in accord with the formulation of the problem)
that have no singularities whatever at k=0. On the
other hand the coefficients @, and a, have a strong
dependence on k near the threshold. At large distances
from the surface the wave function should have the form
of an incident (x,) and reflected (ru,) wave near the
crystal and of a transmitted (or damped) wave (u,).

At distances | z| ~a, from the surface these functions
should match the function (9) on certain, generally
speaking nonplanar surfaces (since the potential is
three-dimensional).

The values of the function (9) or of its derivatives
are thus the boundary conditions for the corresponding
Dirichlet boundary-value problems of the Helmholtz
equation, to which the Schrodinger equation in vacuum
is equivalent’: the envelopes of the wave functions in-
side the crystal can be similarly treated. The asymp-
totic expressions for the solutions of the indicated
boundary-value problems, as is well known, depend
linearly on «, and a,. It is this circumstance which
makes it possible to express &, , @, , and 7 in terms
of the logarithmic derivative of the asymptotics, in
analogy with the procedure in particle-scattering
theory*:

aa, to.a,’ (uytru,)’

gy to.a. u,+Fru, | iz

(10)

ayb,’ +o.b.’ us’
et = u |

where u, and u, are the envelopes of the wave functions
corresponding to the incident and reflected wave: a,,
aj, b,, by, . . . are quantities calculated from the func-
tions ¢, and ¢, (functionals of ¢, and ¢, ), while z,
and z, should be located in the one-dimensionality
regions. The choice of z, depends on the change, of
no importance here, of the phase of 7.

It must be noted, however, that the matching surface
and hence the values of the wave functions and of their
wave derivatives on it may generally speaking depend
on the wave vector. To separate the threshold sin-
gularities we must therefore make one more assump-
tion, that this dependence is not critical in the threshold
approximation at least for a certain range of sufficiently
small but finite 2, and it is for these that the sought
formula will be obtained.

We have thus two equations for the two unknowns a,
/a, and 7, and among the coefficients in (10) only one
quantity depends in practice on k, namely the logarith-
mic derivative of the transmitted wave u,, which is
designated x in (10). Since we should have |7|2=1 be-
low the threshold, it is clear that the form of () should
be (\ =—|k| is real below the threshold)

1+BA et (1 1 )

r)= 1+pa”

where 7 is a real constant and p a complex one. We
easily find from (11) that above the threshold, when
x =ik, the transmission coefficient is

D=const-k. (12)

The expression (12) is arrived at for a rather large
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class of one-dimensional potentials that tend rapidly
enough (faster than |z|-2) to the vacuum value, including
potentials with abrupt breaks, such as steps.* Equation
(12) should also be realized in numerical calculations
within the framework of the jellium model or in the
egg-shaped-potential approximation, usually employed
in LEED studies, when it is usually specified that the
potential is one-dimensional or a nearly one-dimen-
sional near the boundary and tends rapidly enough to

a maximum value. The description of the numerical-
calculation methods is the subject of an extensive
literature (see, e.g., Refs. 2 and 3) and we shall

not dwell here on this question. We note only that ex-
pressions of type (12) [but not (5)] will appear also in
those cases when a macropotential is present but tends
to a constant value rapidly enough (faster than |z|-?),
for example as a result of screening effects. This can
be demonstrated by reasoning and derivations similar
to those used in the derivation of Eq. (5).

Investigation of oblique incidence of the electrons
on a crystal surface in the threshold approximation
reduces to the following. It must only be borne in
mind that # now means the normal component of the
momentum and not the total momentum, and that £
depends not only on % but also on the parallel com-
ponent.

4. CONCLUSION

Thus, the energy dependence of the transmission coef-
ficient D of an electron through a potential barrier on
the crystal boundary near the threshold is very strongly
influenced by the rate at which the macroscopic part of
the potential in the vacuum (or in some medium) tends
to a constant value. If this potential varies rapidly
enough, D tends to zero [see Eq. (12)] near the thresh-
old, and in the case of the image-force potential,
which decreases slowly, the coefficient tends to a
constant. Intermediate cases are of course also
possible.

The foregoing analysis holds for attracting and uni-
form potentials. If these conditions are not satisfied
(particularly the latter), the investigation becomes much
more complicated (see Ref. 8).

It is known that a change of D(%) brings about a change
of the corresponding equations that describe processes
connected with emission of electrons from a crystal,
for example formulas, for the thermionic or photo-
emission.! In particular, a change from (5) to (12)
corresponds to violation of the known Fowler’s law for
the dependence of the photocurrent on the emission fre-
quency near the threshold.

In conclusion, the author thanks Sh.M. Kogan for
helpful discussions.
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