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The Dykhne method [Sov. Phys. JETP 32, 63, 348 (1971)l is used to analyze the relations between the 
effective characteristics of reciprocal systems that differ from each other in that the components interchange 
places. Reciprocity relations are obtained for a system in an external magnetic field, and also in the case when 
the phenomena that occur in the medium are described by several currents and fields. This permits the 
galvanomagnetic properties of two-component systems to be determined outside the region of the 
metal-insulator phase transition, as well as their thermoelectric properties in a zero magnetic field at equal 
concentrations of the components. 

PACS numbers: 72.10.Bg 

1. Owing to the considerable difficulties that ar ise  in of the effective conductivity tensor in a weak magnetic 
the theoretical analysis of various properties (e.g., field has enabled shklovskii3 to find the behavior of the 
conductivity) of inhomogeneous media, each exact Hall coefficient in the entire range of the concentrations. 
analytic solution takes on a special role. In this re- 
spect, two-dimensional systems (d = 2, where d i s  the 
dimensionality of the space) a r e  in a more favorable 
position than three-dimensional ones, since a number 
of exact results for two-component media a r e  available 
a t  d = 2  (see Refs. 1 and 2, a s  well a s  3-51. This i s  
attained because in the two-dimensional case the dc 
equations admit of a symmetry transformation1 from 
the initial system into a "reciprocal" one differing from 
the original by the substitution ol *a2. Here a, i s  the 
conductivity of the i-th component. A relation, called 
hereafter the reciprocity relation,' can be established 
between the effective conductivities of the initial and of 
the reciprocal systems. 

Reciprocity relations can be derived also in other 
more complicated cases (see Ref. 2 and the exposition 
below), so  that a number of new results can be obtained 
for a reciprocal system if the properties of the initial 
one a r e  known. They can be used also a s  checks and 
auxiliaries for various calculations. The most interest- 
ing consequences of reciprocity relations can be ob- 
tained, however, for those systems whose reciprocals 
go over into the initial ones following the additional 
substitution p - 1 - p ;  here p i s  the concentration of one 
of the component, for the sake of argument of the first  
("metallic"). These include primarily randomly in- 
homogeneous media, which a r e  attracting the greatest 
attention: a s  well a s  certain periodic media, such a s  of 
the checkerboard type. At p = 8 [T=O, where 7 

= ( p  -pc)/pc and pc = $1, these relations make it possible 
to determine for such systems the properties of the 
medium at  the point of the metal-insulator (MI) transi- 
tion. ' w 2  The significance of the reciprocity relations 
for such systems goes much farther, however, since 
they make it possible to relate the properties of the 
"metallic" (T> 0) and "insulating" ( T <  0) phases. 

The use of the reciprocity relation in the simplest 
form [see Eq. (8)] has enabled ~ ~ k h n e '  to prove the 
presence of a metal-insulator phase transition in a sys- 
tem and to obtain the critical concentration p,= 8. The 
same relation made it possible to obtain an independent 
proof5 of the relation between the critical exponentsO6 
The use of the Dykhne relation2 between the components 

- 
In the present paper the Dykne method'*2 is used to ob- 

tain reciprocity relations for an isotropic two-component 
system in a transverse magnetic field H. We con- 
sider also the case when the phenomena that occur in 
a medium a r e  characterized by a matrix of kinetic coef- 
ficients, i. e . ,  by a set of n currents and n fields, and 
the corresponding reciprocity relations a r e  obtained. A 
~ i m i l a r ' ~ r o b 1 e m  ar ises  in the study of the thermoelec- 
t r ic ,  thermal-diffusion, and other phenomena. We 
consider some consequences of the reciprocity rela- 
tions, which make it possible, in particular, to  find 
the galvanomagnetic properties of two-component sys- 
tems outside the metal-insulator phase transition re- 
gion and the thermoelectric properties at equal con- 
centrations of the components at H = 0. 

2. We consider a two-dimensional two-component 
medium with an isotropic local conductivity o=o(r). 
Following Dykhne,' we transform to a primed refer- 
ence frame of the current density j and of the electric 
field E in accord with 

j=h[nxEf], E=h- ' [n~  j']; (1) 

here n i s  a unit vector normal to the ( x , ~ )  plane of the 
system, and h is a certain constant independent of the 
coordinates. Under the transformation (1 ), the dc 
equations retain their form, and the conductivity in the 
primed frame i s  equal to 

a'(r) -hzla (r) . (2) 

We note that the existence of the transformation (1) i s  
due exactly to the fact that the system is two-dimen- 
sional, for in this case the equation curlE=O has only 
one component. On going to the primed system with the 
aid of ( I ) ,  the equation divj = O  i s  transformed into 
curlE'= 0 while curlE = 0 i s  transformed into divj' 
= 0. 

At h2=a1a2 the primed system differs from the initial 
one by the substitution 0, =a2. We call such systems 
reciprocal. Following ~ ~ k h n e '  we obtain the recipro- 
city relation in the considered simplest case 

0. ( p ) 8 .  ( p )  =OiOz. (3 
The tilde marks here and below quantities pertaining to 
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the reciprocal system; p i s  the concentration of the 
first  component. Relation (3) is  quite general, being 
valid for any concentration p and for any form of the in- 
clusions and their distribution. 

Relation (3) can be useful in various approximate cal- 
culations. Thus, if ue i s  sought a s  a ser ies  in the pow- 
e r s  of the second-component concentration c = 1 -p: 

then (3) leads to relations between the coefficients A j  
and A,: 

For circular inclusions it i s  easily obtained, by a known 
m e t h ~ d , ~  

so that the first equation of (5) is  automatically satis- 
fied. The equations in (5) a r e  valid also for inclusion 
of arbitrary shape and of arbitrary distribution. 

For randomly inhomogeneous media and for certain 
periodic models (e. g. , of the checkerboard type), the 
additional substitution p - 1 -p transforms the recipro- 
cal system into the initial one: 

The condition (7) imposes rather stringent limitations 
on the statistical properties of the system, so that the 
relation (8), which follows from (3) and (71, is  less 
general than (3). We note that for a randomly inhomo- 
geneous medium Eq. (7) is  valid also in the three-di- 
mensional case. In particular, it is  satisfied by the 
approximate expressions obtained for oe by the method 
of the effective-medium theory (EMT),' both at d = 2 
and at d=3.  When the equations of Ref. 8 a r e  used for 
oe it must be taken into account that the continuous case 
considered here corresponds in i i e f .  8 to z=  6 nearest 
neighbors at d = 3  and to z = 4  at d=2.  

When condition (7) i s  satisfied, Eq. (3) takes the 
form1 

Equation (8) was used by Dykhnel to prove the existence 
of a metal-insulator transition at o2 = O  and to find the 
critical concentration pc= i. It can be used also for an 
independent proof5 of the connection between the critical 
exponents.= Moreover, relation (8) makes it possible 
to determine the conductivity of the system in the entire 
p < $ region if $ is  known for all p > $ (or vice versa). 

It is  curious to note that the expression obtained for 
o, by the EMT methodR (d=2 )  

satisfies Eq. (8). Equation (9) therefore gives not only 
the correct answer for  the critical concentration p, -" - 29 but also the exact result that follows from (8) at 
p = 3  (Ref. 1): 

This i s  in fact the reason why the EMT i s  apparently 
a rather successfulapproximation in the two-dimensional 

case (especially a t  o,+O-Ref. 8). 

Expressing (8) in the form oe(r)$(-r) = ulo2, where 
T =  ( p  -pc)/p, is  the parameter of the proximity to the 
transition in terms of the concentration, and proposing 
that ue(r) can be expanded in powers of T, we obtain 
the relations between the various derivatives of u,(T) 
a t  the point T =  0. In particular, 

It follows therefore that if ~ $ 0 )  + 0 we have u ~ ( O )  > 0, 
i. e. , the %= %(T) curve is concave upward a t  the point 
T =  0. On the other hand if ~ $ 0 )  = 0 we also have oa(0) 
= O  so that T = O  i s  an inflection point. 

From (1) follow directly reciprocity relations for the 
relative quadratic fluctuations of the current density 
A j  and of the electric field A,: 

The result (3) can be generalized to include the case 
an anisotropic film described in terms of the principal 
axes by the components o, and uve of the effective con- 
ductivity tensor. We assume a s  before that the local 
conductivity o(r)  i s  isotropic, so that the tensor char- 
acter of $ i s  due to the shapes and disposition of the 
inclusions. The derivation of the reciprocity relations 
i s  similar to the previous one. As a result we obtain 
two equations : 

For systems that coincide with their reciprocals we 
have ce=6, and Eqs. (13) degenerate into a single one: 

so that it is  impossible to determine both components 
of the effective conductivity tensor. Nonetheless rela- 
tions (13) can be useful for different calculations. 

3. A two-dimensional isotropic system in an extern- 
a l  transverse magnetic field i s  described by the con- 
ductivity tensor 

The galvanomagnetic properties of two-dimensional 
two-component systems were investigated by Dykhne2 
(see also Refs. 3 and 4). The reciprocity relations 
can be obtained by the same method a s  above, and coin- 
cide with Eq. (4) of the preceding paper4 with the follow- 
ing substitutions : 

Expressing the quantities in these equations in terms of 
of the components of the tensor (15) we obtain two re- 
ciprocity relations : 

Here 

(1 7) 

B. Ya. Balagurov 356 356 Sov. Phys. JETP 54(2), Aug. 1981 



The reciprocal system i s  obtained from the initial one 
by the substitution (u,,, a,,) =(a,,, a,,). 

In addition, a s  shown by Dykhne? the components of 
the effective conductivity tensor a r e  connected by an 
exact relation [see Eqs. (7) and (6) of Ref. 41 that i s  
valid for arbitrary concentrations, shapes, and dis- 
tribution of the inclusions 

where 

From (18) and (19) (with the substitution el= e2) it is  
seen that the reciprocal system also satisfies Eq. (18), 
so that relations (16) a r e  not independent. This can be 
verified by directly substituting (16) in the equation ob- 
tained from (18) by the substitution 6, =a2. In the cor- 
responding calculations it is convenient to use the 
readily verified identity 

If the reciprocal system is converted by the additional 
substitution p - 1 -p into the initial one, then 

The conditions (20), just a s  (7), a r e  satisfied for a lim- 
ited class of systems. In particular, they a r e  valid for 
a randomly inhomogeneous medium and for a system of 
the checkerboard type, for which we obtain from (16)- 
(20) at p = $ 

Expressions (21) generalize somewhat the results of 
Dykhne2 and can be obtained also from the corresponding 
equations of the preceding paper. 

At p = 3 relations (16)-(20) yield the components of the 
effective conductivity tensor at p < p c  if they a r e  known 
at p > p c  (and vice versa). Moreover, for a complete 
description of the galvanomagnetic properties of such 
systems in the entire concentration region it suffices 
to know only one of the components of the tensor ee at 
al l  p >pc (or p <pc). 

We now use (16) and (18) to determine the galvanomag- 
netic properties of two-dimensional two-component 
media. We consider first for this purpose a system in 
the form of a conductivity matrix 6, with ideally conduct- 
ing (superconducting) inclusions (8, - .o) whose concen- 
tration i s  less than critical ( p  <pc,  T <  0). In this case  
the electric field E inside the inclusions is zero, so that 
the boundary condition i s  the vanishing of the tangential 
component of the field, E, = O .  We introduce in place 
of the current density j the vector 

where 6,, denotes the off-diagonal part of the conduc- 
tivity tensor 6,. The dc equations outside the inclusion 
then become 

div J=O, rot E=O, J=o,,E (23) 

with the boundary condition E, = 0. The problem i s  thus 
completely analogous to that of calculating the conduc- 
tivity 08(r< 0) of a system with superconducting inclu- 
sions in a zero magnetic field, so  that 

here the function fs= fS(r) determines the dependence of 
U ~ ( T  < 0) on T: 

In particular, fa- 1 T 1-a a s  T - 0. 3 s 6  On the other hand, 
the entire dependence of ox@ on the magnetic field i s  
contained in or,. 

The expression fo r  use can be obtained from (18) and 
(19) by taking the limit a s  8, - .o. As a result 

oae=ooz. KO, (25) 
which seems natural, since the quantity o, has in fact 
dropped out of the problem. 

The reciprocity relations enable us  now to determine 
the galvanomagnetic properties of the system in the 
form of a conductivity matrix 6 with insulator inclu- 
sions (62 - O) ,  when the concentration of the conducting 
component exceeds critical ( p  >PC, 7. > 0). Choosing 
a reciprocal structure with superconducting inclusions 
and using the inequality 62<< C,, we obtain from (16), 
(171, (141, and (25) 

The second equation in (26) also follows from relation 
(18) a s  6, - 0. From (26) we obtain the components of 
the effective conductivity tensor for a system with in- 
sulator inclusions: 

In (27) we have included the function f a =  f , ( ~ ) ,  which 
describes the dependence of the conductivity of the con- 
sidered system on r at H= 0: u,(T> 0) = u, f , (~ ) .  The 
functions fd and fa a r e  connected, according to (3),  by 
the relation 

Expressions (24), (251, and (27)were obtained for 
systems with "superconducting" and insulator inclusions. 
Outside the smearing regi~n,~*%owever ,  they a r e  valid 
also for a medium with finite but strongly differing con- 
ductivity components, &,<< 81. 

4. In thermoelectric, thermodiffusion, and diffusion- 
electric and other phenomena:*9 the medium i s  charac- 
terized by a set of currents j, and fields E, ( i = l , .  . . ,721 

satisfying in the linear case the equations 

rot E~=o, div ji-0. (29) 

For an isotropic medium in the absence of an external 
magnetic field, the linear connection between j, and E, 
i s  given by the "Ohm's law" 

ji=oilEk. (30) 

where the matrix of the kinetic coefficients 6 in the 
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inhomogeneous system depends on the coordinates. As 
usual, summation over the repeated indices is  implied 
in (30) and hereafter (i, k = 1,. . . ,n). 

In a two-dimensional two-component system it is  also 
possible to obtain reciprocity relations for the matrix 
6, of the effective kinetic coefficients. To find them we 
generalize (1) by transforming to a primed frame 

The matrices ,% and lido not depend on the coordinates. 
The equations for the currents and the fields in the 
primed system a r e  of the form (29) and (39) with a 
kinetic-coefficient matrix 

ar(r)  ( r ) i .  (32) 

The reciprocity relations a r e  found as  above, and coin- 
cide in form with (32) 

-- .. 
a.po.=a. (33) 

To calculate the matrices h and we impose the con- 
dition that the primed system i s  the reciprocal one and 
differs from the initial one by the substitution 6, =62, 
where c1 and B2 a r e  the values of the matrix 6 in the 
first  and second components. This yields equations 
for  the unknown matrices and c: 

The equalities in (34) constitute a linear homogeneous 
system of equations in the components of the matrices 

and c. We determine the conditions for solvability 
of this system after first eliminating from (34) the ma- 
tr ix i: 

The system solvability condition (35) can in general im- 
pose certain restrictions on the matrices 6, and e2. 

If the current densities jl and the corresponding fields 
E, a r e  conjugate," then according to the Onsager prin- 
ciple of the symmetry of the kinetic coefficients1° the 
matrix 6 i s  symmetric. In this case, with the matrix 
I; symmetric the condition (35) for the solvability of the 
system i s  satisfied. Moreover, for the n(n + 1)/2 un- 

knowns the system (35) contains n(n - 1)/2 equations, so  
that n - 1 components of the matrix I; can be choosen a r -  
bitrary, say equal to zero. In particular, a t  n = 2 ,  put- 
ting pl, = 0, we arr ive  a t  the conclusion that the matrix 

can be sought in diagonal form. In the case of 
asymmetrical matrix 6, the investigation of the system 
solvability condition (35) in general form is difficult. 
In the case  n = 2  of practical interest, however, direct 
calculations show that the determinant (35) of the sys- 
tem vanishes identically, so  that the solvability condi- 
tion is  satisfied. 

For  systems that coincide a t  p = with their recipro- 
cals (6== 6,), we can obtain from (33) all  the compon- 
ents of the tensor 6e. In particular, for the effective 
thermoelectric coefficient a, we obtain the simple ex- 
pression 

where a,, ut, and xi a r e  respectively the thermoelec- 
tr ic coefficient, the conductivity, and the thermal con- 
ductivity of the i-th component. 
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