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A complete analysis is presented of the behavior of muon polarization in anomalous muonium in polycrystals 
with diamond and zincblende structure. The specific depolarization mechanism in polycrystals, connected 
with the dependence of the precession frequency in 0-Mu on the symmetry-axis orientation relative to the 
magnetic field and with the corresponding dephasing of the precession frequencies is considered. It is shown 
that in both weak and strong magnetic fields this depolarization obeys a power law. It is shown that an 
experiment with polycrystals can determine all the hypertine-structure parameters of anomalous muonium. 
The experimentally observed picture is in a certain sense simpler than in single crystals. Muon depolarization 
due to spin-exchange scattering of the muonium electron by the electrons of the medium is considered. It is 
shown that the spin-exchange relaxation in T-Mu is determined by a single constant in n- and p-type 
semiconductors. The relaxation in 0-Mu is determined by a single constant in n-type semiconductors and by 
two constants in p-type. The rate of the "true" depolarization of the muon in 0-Mu depends on the 
orientation of the single crystal in a magnetic field at low as well as at high exchange frequencies. 

PACS numbers: 36.10.Dr, 77.30. + d 

INTRODUCTION 

In 1972, Crowe's group in Berkeley found that be- 
sides the previously known Mu atom another modifica- 
tion of muonium i s  produced in single-crystal silicon. ' 
This new type of Mu atom was named by them "anom- 
alous" muonium. The results were later duplicated 
and extensively expanded in a number of in 
which detailed studies were made of the hyperfine struc- 
ture of anomalous muonium in different magnetic fields, 
and of the dependence of the line intensity of anomalous 
and normal Mu on the density of the dopants and on the 
temperature. Anomalous muonium was observed and 
investigated somewhat later in g e r m a n i ~ m . ~ ' ~  Indica- 
tions were found7 that anomalous muonium exists also 
in single-crystal quartz. A detailed investigation of the 
temperature dependence of the polarization of normal 
and anomalous muonium in n- and p-Si single crystals 
was investigated in detail in Ref. 4. 

where 54, and 51, a r e  the hyperfine-splitting constants, 
u,, uI1, pe , and p, a r e  the spin operators and the mag- 
netic moments of the muonium electron and of the muon, 
respectively, n i s  a unit vector directed along the 
threefold symmetry axis, and B i s  the external magne- 
tic field. It follows from experiment2 that in Si we have 
451,=2n(92.1+0.3) MHz and 49,,=2n(17. 1 i 0 . 3 )  MHz, 

In Ref. 8 the normal muonium was identified with 
trapping of a muon in a tetrapore of the crystal (T- 
muonium), while the anomalous muonium was identified 
with trapping in an octapore') (0-muonium). It was 
correspondingly predicted that two muonium types can 
exist in a l l  crystals with diamond o r  zincblende struc- 
ture. This interpretation is  most logical. The alter- 
nate hypothesis, that attributes the anomalous Mu to 
formation of a paramagnetic chemical complex with the 
lattice  atom^^.^ (the muonium is shifted away along the 
threefold axis from the center of the tetrapore towards - 
one of the nearest atoms) i s  not very convincing and i s  To explain the results of Ref. 1 we have developed a 
artificial. In particular, trivial group-theoretical con- 

theory of the behavior of the polarization of positive 
muons in single crystals with diamond or zincblende strut- siderations show that the chemical-binding hypothesis 

ture.*-lo It followedfrom the theory, in particular, that excludes trapping of Mu in an octapore. 

the pattern of the polarization precession should be much 
more complicated than observed in Ref. 1, and the exis- 
tence of two types of Mu is determined by the symmetry 
properties of the crystal rather than by the character and 
density of the doping impurity. The predictions of the 
theory were later fully confirmed in Refs. 2-6, and the 
very same Hamiltonian was proposed in Ref. 2 for the 
anomalous muonium. In the numerical analysis , the 
authors have duplicated certain analytic results of Ref . 
8. 

As shown in Ref. 8, the spin Hamiltonian of normal 
muonium is isotropic, while that of the anomalous one 
has axial symmetry about the threefold axis 

H(n,  B )  =BQ,(o.a,) +f2 (Q,,--Q,) ( a n )  (o,n) (1) 
-@ae- P~BU,,, 

0- and T-muonium were recently observed in single- 
crystal  diamond," thus confirming the conclusions of 
Ref. 8. Muonium in diamond i s  of particular interest. 
In fact, the equation for the density matrix of muonium 
in diamond contains practically no relaxation terms that 
could lead to "true" depolarization of the muon spin. 
First ,  diamond is an ideal insulator, s o  that spin-ex- 
change scattering of the muonium electron by the con- 
duction electrons i s  excluded. Second, the spins of al- 
most al l  the nuclei a r e  zero, and there is no dipole- 
dipole relaxation. ') 

The hyperfine structure constants a,, and 51, differ 
by approximately five t imes in both Si and Ge,2a5 and 
can naturally not be attributed to the presence of a 
quadrupole moment in an isolated Mu atom.'' 
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Crystals with diamond structure have four threefold 
axes. The observed precession picture is  therefore 
determined by four modifications of 0-muonium (in 
accordance with the relative orientation of n and B) and 
is quite complicated. At certain single-crystal orienta- 
tions relative to the field the picture becomes much 
simpler. The most convenient is  the orientation along 
(loo), when the behavior of the polarization in all octa- 
pores is equivalent. 0*'0 

MUONIUM IN POLYCRYSTALS 

2. The theory of the behavior of the muon polariza- 
tion in single crystals with diamond or zincblende struc- 
ture must be generalized to include polycrystals, pri- 
marily in the interest of the experimenters. The study 
of many important materials in single-crystal form is 
difficult. We shall show that experiments with poly - 
crystals can yield practically all the hyperfine-struc- 
ture information obtainable from experiments with sin- 
gle crystals (the only exception is  a precision measure- 
ment of the g-factor of the muonium electron). More- 
over, the experimentally observed picture of the pre- 
cession in polycrystals i s  in general simpler to decode. 

For the T-Mu atom with spherically symmetrical 
Hamiltonian, single crystals with polycrystals a r e  iden- 
tical. In 0-muonium the behavior of the polarization, 
and in particular of the precession frequency, depends 
essentially on the mutual orientation of the external 
magnetic field and the symmetry axis of the pore. 
Therefore in polycrystals one observes effectively, 
even in the absence of true depolarization due to relaxa- 
tion processes, rapid depolarization of the muon spin 
because of the "dephasing" of the precession frequencies 
upon averaging over all possible orientations. Anom- 
alous muonium may therefore not be observed at all  in 
polycrystals, andthe correspondingpart of the polariza- 
tion will be simply "lost ." Let us examine this mechan- 
ism. 

3. In Refs. 9 and 10 we obtained for the total muon 
polarization in the 0-Mu atom in a single crystal the 
equation 

- 

s,(&, B,  t )  ='I, SP(UP@X exp [ - - ih- '~(&,  B )  ~ ] U ~ ' @ X  
(2 

X e x p [ f i - ' H ( b ,  B l t ] } .  

The summation i s  over all four octapores that a r e  non- 
equivalently positioned relative to the magnetic field; 
P,(O) is the initial polarization of the muon, of a r e  the 
spin matrices of the muon, x i s  a unit 2 x 2 matrix, and 
the symbol €3 denotes the direct product. 

For a nontextured polycrystal it is necessary to aver- 
age (2) over the equally probable orientations of the 
crystallites. The averaging for each octapore is then 
identical and 

It follows from (2) that the tensor S ikh ,  B, t )  depends 
only on the angle 0 between n and B. In Ref. 9 we ob- 
tained simple formulas for the tensor Sik(n, B,t) in two 
limiting cases: weak (w<<(n,, + n,)/2= SZ) and strong 

(w >> .>) fields. A coordinate system was chosen with 
z l l ~  and with the x axis lying in the plane passing 
through n and B; then S,,(n, B, t )  =Si,(O, B ,  t). We shall 
use for polycrystals likewise a coordinate system with 
zllB. 

We write down the components of the averaged tensor 

where R,,(cp) i s  the matrix of rotation through an angle 
cp about the z axis. After averaging we obtain 

s,(B, ~ )=s , (B ,  t )  = s , ( t ) = v 2 [ < s , ( e ,  B,  t ) ) e + ( ~ , , ( e ,  B ,  t )  

s,, ( B ,  t )  =Sll  ( t )  =(S, , (e ,  B, t )  )e ,  Sxz ( B ,  t )  =Svz (B ,  1) -0, 

s,(B, t)---s,(B, t )  = ( s , ( e ,  B, t ) ) e ,  (5) 

4. Assume that there is no external field. The be- 
havior of the polarization in polycrystals and single cry- 
stals is  the same and is  determined by the formula 

The damping i s  not produced by dephasing but is  deter- 
mined only by the true relaxation. In contrast to iso- 
tropic muonium, only one-sixth of the polarization is 
preserved. Therefore, if the trapping of the muon in 
the different pore types is  equally probable, the ratio 
of the conserved components of the polarization in the 
octa- and tetrapores is Po,,,, /P:,, = 2/3, although there 
a r e  twice a s  many octapores as  tetrapores. 

In a weak field, a complicated multifrequency preces- 
sion is  observed in single crystals. 'el0 In polycrystals 
all the terms that oscillate with frequencies that depend 
on the magnetic field attenuate in power-law fashion at 
a rate proportional to the frequency w [tiw = I p, I B, see 

Eqs. (45)-(47) of Ref. 10.1 Even in a field B - 10 G 
the amplitude of these terms inS.(t) and the off-diagonal 
components of the tensor decrease by one order of 

magnitude within lom6 sec. Actually, therefore, start-  
ing with t > sec only polarization oscillation with 
one frequency 

will be observed. 

5. In intermediate fields (w - 0) all  the frequencies 
of the transitions between the 0-Mu hyperfine-structure 
levels a r e  of the order of SZ; the transition probabil- 
ities a r e  high, so that the muons a r e  rapidly depolar- 
ized. This case is  of little interest. We proceed to 
the most interesting case, with abundant possibilities, 
of strong magnetic fields (corresponding to B > 100 G 
for Si and Ge). 

In single crystals, the tensor components S,,(n, B, t) 
have terms dependent a s  well a s  independent of the 
time, Sik(n,B,t)=qk+S;b(t). As shown in Ref. 9, Stk 
has a unity trace. Using the results of Ref. 9 and of 
Eq. (5), we obtain 
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Here 

(9 

wherea,=52,iCw, b = ( ~ , , - 5 2 , ) ( ~ , + 5 2 , i 2 ~ w ) ,  and 
5=  I p, /p ,  I .  It i s  seen that in a strong magnetic field 
gw* all + 52, the time-independent part of the trans- 
verse polarization components tends to zero, and S: - 1. 

6. We consider now the time-dependent polarization 
components, assuming that there is not true damping. 
The damped component S;(t) of the longitudinal compon- 
ent can be represented in the form 

In strong fields, the precessions a r e  large (wih - 10' 
sec-') and the functions S(a,, b, , t) reach their asymp- 
totics within times t -  lom7 sec. We obtain an asymptotic 
estimate of the integral (11) by the stationary -phase 
method (the critical-point method),13 according to which 
the main contribution to an integral of a rapidly oscil- 
lating function is made by the vicinity of the points 
where the phase has extrema. Equation (10) at t > 
sec then takes the form 

where the upper sign corresponds to b, > 0 and the low- 
e r  to b, < 0; the damping rates a r e  

7. The stationary-phase method cannot be used for 
S,,(a-, b-, t )  at  two values of the external field, namely 
5w = ( a , ,  + 52,)/2 (then A _ =  0) and lw = 52, (singularity 
in the amplitude). 

The case of particular interest is  5w = (5211 + S2,)/2. 
Insuchaf ie lda~=(52 , -  52,,)/2, b-=OandS, , (~ , , -S$) /2 ,  
O,t)= (8/15)cos(52, - Q,)t. The frequency w,, is  then 
independent of the angle between B and C, for all  "types" 
of O-Mu, and only the true depolarization will be ob- 
served. ' e l 0  

The function S,,(a+, b + , t )  attenuates a s  before prac- 
tically to zero within t -  sec. Therefore at t 
sec there will be observed an oscillation of the longitud- 
inal polarization with one frequency: 

where the time-independent contribution to the polariza- 
tion Sf; is  determined from Eq. (8). 

As shown by experiments, the necessary external 
fields a r e  of the order of 1, 1.5, and 2 kG for Si, Ge, 
and diamond, respectively. A simple estimate shows 
that at a field deviation 6B - 10 G, Eq. (14) operates 
well up to an observation time t -  lo5 sec. An interest- 
ing effect is thus observed near the point 5w = (SZ,, 
+ 52,)/2: the longitudinal component of the polarization 

acquires an oscillating component that attenuates very 
slowly with time. 

In a field tw = 52, the integral (11) can be calculated 
exactly and decreases asymptotically like tQ. 

8. We restrict the analysis of the damped component 
S,V ( t )  of the transverse polarization component likewise 
to an asymptotic behavior determined by the equation 

1 61,-So '11 cos[21Rl-Eolt*n/4] 
s A v ( t ) = T ( n l m  1 )  (A- t )  'I' 

1 Q , + ~ ~ J I  " cos[2 (R,+So) t*n/41 
(15) 

+-(.-) 4 lQL-Ql l l  (A+t)  

The component S,,(t) is defined in similar fashion [see 
Eq. (81) of Ref. lo], has the same order of damping 
~ ( t  -'I2), and the same depolarization rates A,(13). It 
i s  seen that the precessing part of the transverse com- 
ponent of the polarization attenuates more slowly than 
the oscillating part of the longitudinal polarization. 

An undamped precession with frequency close to 
152, - 52,, 1 should also be observed in the vicinity of the 

point 5w = ( a , ,  + 52,)/2: 

Equations (16) a r e  subject to the same conditions on the 
observation time and on the field mismatch 6B a s  Eq. 
(14). 

MUON DEPOLARIZATION I N  SINGLE CRYSTAL 
WITH DIAMOND OR ZINCBLENDE STRUCTURE 

9. We consider now the true muon depolarization in 
single crystals, due to  spin-exchange scattering of the 
muonium electron by the electrons of the medium. We 
assume that the muonium atom does not diffuse over 
the lattice. The experimental data now available lead 
to no concrete conclusions whatever concerning the dif- 
fusion. It can only be stated that O-muonium does not 
diffuse once its characteristic frequencies a r e  ob- 
served. Diffusion would cause the precession picture 
to vanish a s  a result of transition from the octapore 
to another one with a different orientation relative to 
the magnetic field. On the whole, the problem calls 
for detailed theoretical and experimental research. 

The form of the relaxation equation for the spin den- 
sity matrix of the muonium depends on the symmetry 
of the exchange-scattering operator. In the general 
case this operator i s  determined by six independent 
functions (see, e.  g. , Refs. 14 and 15); specifically, i t  
i s  determined by the symmetry of the wave functions of 
the electrons of the medium relative to the scattering 
center. 

The ground state of the muonium electron i s  an orbital 
singlet, therefore the wave function of the muonium 
electron i s  factorized i n  the spin and coordinate 
variables. Usually the conduction band in semi- 
conductors with diamond o r  zincblende structure is  not 
degenerate, and the spin and coordinate variables a r e  
separated in the conduction electron wave function. It 
i s  known (see, e. g., Refs. 14 and 15) that in this case 
the exchange-scattering spin operator i s  isotropic. 
The relaxation term depends then on one constant v ,  
namely "the frequency of the spin-exchange scattering." 
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The valence band is usually degenerate, and for the 
electrons of the valence band the spin and coordinate 
variables of the wave function do not separate. Thus, 
the spin operator of the exchange scattering of the muon 
electron by the valence-band electrons i s  not neces- 
sarily isotropic. T-Mu i s  located a t  the center of a 
tetrapore with tetrahedron symmetry (point group T,). 
For this group, only the isotropic exchange-scattering 
spin operator i s  isotropic. Accordingly the T-muon 
relaxation i s  determined by a single constant indepen- 
dently of the type of semiconductor conductivity. 

Located at the center of the octapore i s  0-Mu. The 
symmetry group is D,, for a crystal with diamond struc- 
ture and C,, for a crystal with zincblende structure. 
Invariant for these groups i s  the exchange-scattering 
spin operator, which has axial symmetry relative to a 
threefold axis. We direct the z axis along a threefold 
axis, and then the axially symmetric exchange-scatter- 
ing operator takes in the general case the form 

where u f v *  and a;'* a r e  the spin operators of the muon- 
ium electrons and of the medium electrons, respective- 
ly, I is a unit 4 x 4 matrix, and A, a r e  the exchange in- 
tegrals. From the invariance of the operator (17) to 
reflection in a plane passing through a threefold axis 
(the z axis) we obtain A, = 0. 

The relaxation equation can be obtained by using the 
scattering-matrix formalism. For isotropic scatter- 
ing, such an equation was obtained in Ref. 16. In our 
case an axially symmetric exchange-scattering opera- 
tor corresponds to an axially symmetric scattering ma- 
trix. The relaxation equation also has axial symmetry 
relative to a threefold axis of the crystal. 

As i s  customary (see, e. g, Refs. 17 and 181, we in- 
troduce the effective spin Hamiltonian corresponding to 
the exchange-scattering spin operator (17). We can 
then use the equations obtained in Ref. 19 from the 
known NMR and ESR equations. 20*21 At high tempera- 
tures we can neglect the influence of the polarization of 
the electrons of the medium on the relaxation term.lg 
Then the spin density matrix is  determined from the 
Wangsness-Bloch equation, which has axial symmetry: 

where Av = v,, - v, , v,, and v, a r e  the "frequencies" of 
the spin-exchange scattering, ni i s  a unit vector direct- 
ed along the threefold symmetry axis ( I l l ) ,  and H is the 
Hamiltonian of the hyperfine interaction (1). The polar- 
ization of the electrons of the medium leads to a renor- 
malization of the magnetic moment of the muonium elec- 
tron (see, e. g., Refs. 16 and 22). However, since 
usually the polarization of the electrons of the medium 
in semiconductors is low, the indicated corrections can 
be neglected. 

We arrive thus a t  an important qualitative result: the 
relaxation term in the Wangsness-Bloch equation is 
isotropic for T-Mu in n- and p-type semiconductors, 
and for 0-Mu it i s  isotropic in n-semiconductors and 
has axial symmetry in p-semiconductors. 

The relaxation equation for T-Mu with isotropic spin 
Hamiltonian is isotropic (v, = v,, = v) and the solution is 
well We consider now the depolarization of 
a muon in 0-Mu with the anisotropic spin-Hamiltonian 
(1). We confine ourselves only to the region of strong 
fields (w* a),  when the precession picture i s  simplest. 
In weak fields, the behavior of the polarization is com- 
plicated enough even without allowance for relaxation. 
We obtain next the solution of the anisotropic relaxation 
Eq. (18) for low (v<< 5 2 )  and high (v>> 52) exchange fre- 
quencies. 

10. We consider first  the case v<< 52, when preces- 
sion with muonium frequency is observed. The 
Wagsness-Bloch Eq. (18) withthe Hamiltonian (1) i s  equiv- 
alent to a system of 15 coupled equations for the den- 
sity-matrix components. In the considered region 
(damping rate A much less than all the observed pre- 
cession frequencies lo,, I 1, however, in a basis that 
diagonalizes the hyperf ine-interaction Hamiltonian (I), 
this system breaks up into a system of three equations 
for the diagonal components of the density matrix, into 
a system of four equations for the components oscillat- 
ing with observable frequencies, and a system of equa- 
tion for the components having unobservably high f re-  
quencies. The oscillating and nonoscillating compon- 
ents of the tensor Si, a r e  determined respectively by 
the off-diagonal and diagonal components of the density 
matrix. The damping of the oscillating and nonoscillat- 
ing components of the tensor S,, is  thus determined from 
equation systems that a re  not interrelated. 

In order not to encumber the text with the straight- 
forward but unwieldy calculations, we present only the 
final results. The damping of the nonoscillating com- 
ponents of the tensor S,,(@,B,t) i s  determined by two 
rates: 

h,=v,{2+ (y1+y,)/2* [a2-t(y,-y,)2/4] "1. (19) 

Here 
y1,2=(Q,+ASi2)2(1+q sinZ 0) (l+cos 6,, ,)+ Q12(2+q sin2 B)+q sin", 

a=2(Si,+AB1)2 ( i f r /  sinZ O)COS 26, cos 2er- (I-B?) 6 (2+q sinZ 8) 

+q[Aa2(2Q,+AQ,) (1-26cos2B)-Qlsin2(6, - 1 9 ~ )  sin28], 

6=cos 2 (03-6'), (20) 

where 52, = a,/@, ?2,, = 51,,/0, ?2=-&,, co_sZ@ + 6, sin2@, 
A n ,  = (C,, - 32,) sin6 cos8, AG,= ( a , ,  - 52,) sin28, and q 
= A v / v .  The parameters 9, and 9, a r e  determined by a 
transformation that permits approximate diagonalization 
of the Hamiltonian (1) in strong fieldsg: 

The solution (19) was obtained accurate to terms 
5'. This accuracy i s  necessary in the case when 8 
= O  or  r/2. Indeed, in that case we have 8 n 1  and a 
n-2, and h-=O accurate to a2 terms. At 8 = 0  and 
r/2 the expression for the depolarization rates be- 
comes much simpler. 

Let 0 = 0, then y, = y, = 2 5232 + q),  (Y = -2[1- 5232 
+q)],  and we obtain for the damping rates 

It turns out here that damping of the nonoscillating com- 
ponents will be observed only at the low rate 7;'. 
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Let 0 = n/2, then y, = y, =2(52; + 52;) + (1 + 5 2 ; ) ~  and 
a = -q(l-  52;) - 2(1- ~ 2 :  - 52; ). In this case the non- 
oscillating components attenuate likewise only at the 
slow rate 

We consider now the damping ra tes  a t  the angles 0 en- 
countered in the three single-crystal orientations that 
a r e  simplest for experimental observation: B1)(100), 
~ ~ I ( 1 1 1 ) ,  and B11(110). In the first  case one observes 
one 0-Mu for which cos@ = 1/a. In the second case 
two 0-Mu a r e  observed, with 8 = 0 for one and cose 
= 1/3 for the other. In the third case, too, two 0-Mu 
a re  observed, with @ =n/ l  for one and cose = (2/3)lf2 
for the other. Thus, if B f O,r/2, we have 6 < 1 and 1 
- 6 - 1 for all 0-muonium orientations, so  that there 
is  no need to take the quadratic terms a2 into account, 
and we obtain y, = y, =q sin2@ and a, = -6(2 +q  sin2$). 
Within the limits of the indicated accuracy, the nonoscil- 
lating terms of the components of the tensor S,, will 
again attenuate at only one rate 

We see that the damping rate i s  no longer small but is  
of the order of the exchange frequency v. 

Solution of the system of equations for the off-diagonal 
components of the density matrix, which oscillate 
with observable frequencies (w,, and w,,), leads to a 
simple expression for the damping rate of the oscillat- 
ing components of the tensor Sik: 

The components of the tensor Sib, which determine the 
muon polarization in 0-Mu in strong fields in the in- 
dicated single-crystal directions that a r e  simplest from 
the experimental point of view, take thus, with allow- 
ance for the relaxation a t  low exchange frequency, the 
form 

n-go Q+6o e-t,.s 
szz=2 [(,)% +(,)%I 
89 eos ualt + 2 cos o,,t e-lJTa, 

+ 2  [( '0%' 1 : 1 
ss=2 [(%)' +(%)'] e-ilrk 

Q-Lo " Q + f o  
+ 2 [ ( 7 )  

cos o,,t + (--)' cos a. .t] e-llv: 

The damping rate 7;' is  determined by Eqs. (22)-(24), 
and 7;' by Eq. (25). 

The total polarization of the muon is 0-Mu in the 
three simplest single-crystal orientations is determined 
by the same combination (26) of the components of the 
tensorsi, a s  in the absence of relaxation [see Eqs. (36)- 
(41) of Ref. 91. We see that the simplest way to deter- 
mine the exchange-scattering constants v,, and v, i s  to 
measure the damping rate 7;' of the precessing compon- 
ents of the muon polarization in a strong external mag- 
netic field at various single-crystal orientations. 

We point out an interesting possibility of determining 
the g-factor of the muonium electron in a strong mag- 
netic field a t  low exchange frequencies. The muon de- 
polarization rate in 0-Mu in an octapore whose sym- 
metry axis i s  parallel o r  perpendicular to the magnetic 
field is proportional to w" [Eqs. (22) and (23)]. How- 
ever, in view of the low rate of depolarization one can- 
not expect good accuracy. 

11. At high exchange frequencies, no precession with 
muonium frequency will be observed. Just a s  for low 
exchange frequencies, the Wangsness-Bloch Eq. (18) 
leads to a system of 15 coupled equations for all the 
muonium density-matrix components. This system can 
be solved by perturbation theory with the small param- 
eter Q/v o r  Av/w. In the zeroth approximation, the 
hyperfine structure i s  inessential and the solution i s  
obtained directly. Leaving out the cumbersome calcula- 
tions, we present the final results. 

The damping rate of the longitudinal (parallel to the 
external magnetic field) polarization i s  

(27) 
Here 3, = v,/w. If 77 = 0 (n-type semiconductor), the ex- 
pression simplifies greatly (C,, = >, =>): 

The longitudinal polarization attenuates slowly with 
time, without oscillations: 

We emphasize that even if the electron relaxation i s  
isotropic, the rate of depolarization of the longitudinal 
polarization component of the muon in 0-Mu depends 
on the orientation of the single crystal in the magnetic 
field . 

The transverse (perpendicular to the magnetic field) 
polarization precesses at the muon frequency with a 
6' renormalized" magnetic moment and attenuates : 

P+ (0 ,  t) =P,+iP,=P+ (0) exp (i2&-rr-')t, (30) 

f = f f  ~ [ ~ ~ , ( B , + A P , ) + A s I , ' ]  (~,'[4+q(i+cos' 8)Iz+4)-', (31) 

+ 2 a a  + (AQ,)' 
vL (2+q  sin' 0 )  ' 

We note that just a s  for the longitudinal polarization, 
even a t  q = 0 the damping rate of the transverse com- 
ponent of the muon polarization in 0-Mu depends 
strongly on the orientation of the single crystal in a 
magnetic field: 

By investigating the dependence of the damping rate of 
the polarization component that precesses with the muon 
frequency on the orientation of the single crystal in the 
magnetic field, we can determine whether the muon goes 
over from an octapore to a tetrapore o r  back during the 
lifetime. Indeed, if the muon goes over into a tetra- 
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pore, then the damping ra te  of the transverse polariza- 
tion i s  isotropic. If 0-Mu turns out to be stable, then 
the damping rate of the transverse polarization (32) de- 
pends on the orientation of the single crystal in the mag- 
netic field. We note that the polarization of the medium 
leads in principle to a shift of the precession frequen- 
c ~ . ~ ~  However, the dependence of the depolarization 
rate on the single-crystal orientation in a magnetic field 
is  undoubtedly more substantial and of greater interest. 

The total polarization of the 0-muonium muon is equal 
to the sum of the muon polarizations in all the octa- 
pores that a r e  not equivalent relative to the magnetic 
field. The result is therefore somewhat simpler in 
form than for low exchange frequencies v. We note in 
this connection that the simplest picture for experimen- 
tal observation i s  obtained in the noted three cases: 
when not more than two different polarization rates 
should be observed, in analogy with the observatio_n of 
several types of anomalous muonium. In addition S de- 
pends on the orientation of the single crystal in the 
magnetic field, and this must also be taken into account 
in the analysis of the experimental results. 

We emphasize that the study of muon polarization is 
particularly important in the investigation of semicon- 
ductors with narrow forbidden bands (InSb, HgTe, and 
others), and also of semimetals (e. g. , grey tin). In- 
deed, owing to the high frequency v of the spin-exchange 
scattering, the muonium frequencies may become un- 
observable. In this case a study of the damping rate 
may turn out to be the main method of determining the 
parameters of the hyperfine structure. 

')In another terminology, these interstices a r e  called respec- 
tively tetragonal and hexagonal. 

')l'he admixture of the stable isotope C" withp = 0 . 7 4 ~ ~  is 
only 1.11%. 
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