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The interaction of a moving domain wall with spin excitations is considered. No assumptions are made in 
advance regarding the final micromagnetic structure of the wall, the nature of its motion, or the processes 
responsible for dissipation of energy in the system. A system of equations is derived that describes the motion 
of the domain wall, the dynamic distortions of its structure, and the precessional and translational spin waves. 
In the case of nonstationary motion in a sufficiently large constant external field, the processes that emerge 
from these equations are studied in the lowest orders with respect to the amplitudes of the spin excitations, 
and the mean velocity of the wall motion caused by them is also calculated. 

PACS numbers: 75.60.Ch, 75.30.D~ 

Within the last  decade, because of the practical de- attention on the microscopic dissipative processes,  the 
velopment of memory devices based on mobile cylin- authors prescribe in advance the structure of the DW and 
drical magnetic domains (bubbles), and also because of the character  of i t s  motion (usually the motion of the 
intensive investigations of various nonlinear excita- wall is  assumed to be uniform). 
tions in magnetically ordered media, there  has been a 
sudden growth of interest  in the dynamical behavior of 
domain walls (DW) in uniaxial high-anisotropy fer ro-  
and ferrimagnets. A number of interesting results  in 
this direction have been obtained by consideration of 
f ree  DW motion,' on the assumption that both external 
excitation and damping a r e  absent in the system. But 
in actual cases, the DW motion occurs under the action 
of a n  external magnetic field, and the character  of this 
motion i s  determined by dissipative processes in the 
system. 

In the investigation of dynamic SW behavior, two 
methods a r e  usually used. The  f i r s t  is based on the 
Landau-Lifshitz equation, in which the dissipation of 
energy is taken into account p h e n o m e n ~ l o g i c a l l y . ~ ~ ~  The 
equation contains a parameter ,  describing the damping, 
which i s  estimated for  each specific material  ei ther  
from the linewidth in ferromagnetic resonance o r  from 
the experimentally found value of the initial mobility 
of the DW. The  values of the damping parameter  ob- 
tained by these two methods in many cases differ sharp- 
~ y . ~  Furthermore,  even the solutions of the equation 
connected by this method to experiment nevertheless 
describe poorly the motion of a DW in sufficiently large 
fields. Such an approach to the problem is not connec- 
ted with r ea l  dissipative processes in a ferromagnet, 
although many observedfeatures of thedynamic behavior 
of DW may be the result  of the action of specific mech- 
anisms of scattering of the Zeeman energy. 

The other approach to the problem is f ree  of this 
inadequacy. I t  is based on calculation of definite micro- 
scopic processes that lead to dissipation of energy: for 
example, interaction of a moving DW with magnons5 o r  
with p h o n o n ~ . ~  The  velocity of the wall is determined by 
the condition that the change of Zeeman energy must be 
equal to the energy scat tered by the quasiparticles. But 
whereas in the f i r s t  method the primary attention is 
directed a t  the micromagnetic s t ruc ture  of the DW, and 
the damping is taken into account phenomenologically, in 
this case the picture is the reverse :  concentrating their 

The  present  paper gives a self-consistent description1) 
of the motion, under the action of a constant magnetic 
field, of a 180-degree DW in a uniaxial high-anisotropy 
ferromagnetic dielectric. No assumptions a r e  made in 
advance regarding its s t ruc ture  and the character  of its 
motion, o r  regarding the specific mechanisms respon- 
sible for the dissipation of energy. Both a r e  derived 
from the Landau-Lifshitz equation without a dissipative 
term. This  equation describes the DW structure,  the 
spin waves (SW), and also their interaction; this en- 
ables us to treat  in a unified manner a l l  the processes 
that a r e  occurring in the magnetic subsystem of the 
material. 

The  paper derives,  in the most general form, an  
equation that connects the velocity of motion of the 
wall with the amplitude of the spin excitations. Various 
mechanisms of energy dissipation a r e  considered, and 
their contribution to the DW velocity is calculated. 

1. BASIC EQUATIONS 

We consider an infinite high-anisotropy ferromagnet 
with orthorhombic magnetic anisotropy. We choose 
the coordinate system s o  that the z axis is directed 
along the axis  of easy magnetization of the ferromag- 
net, and the yz plane is parallel to a sol i tary DW. We 
shall  describe the behavior of the magnetization Y in 
such a system by the equation 

where g> 0 is  the gyromagnetic ratio. In  the effective 
field H we shall,  for simplicity, take into account the 
minimum number of magnetic interactions necessary 
for  existence of the DW and for  its motion: 

Here e, a r e  the unit vectors of the chosen coordinate 
system. The  f i r s t  te rm is  the effective exchange field 
(a is the exchange parameter), the second and third 
a r e  the orthorhombic magnetic anisotropy field (the z 
axis will be an axis  of easy magnetization if /3,> la 1 ), 
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the fourth is the demagnetizing field in the Winter ap- 
proximation,' and the last  is the constant external field, 
oriented along the z axis. The  third and fourth t e rms  
have the s ame  form; i t  is therefore convenient to com- 
bine them into one by introducing the quasidipole inter- 
action parameter q =4n - &. It must be remembered,  
however, that the fourth te rm in (2) accurately des- 
cribes the demagnetizing field only in the case of a one- 
dimensional distribution of the magnetization along the x 
axis,  whereas the expression for the plane components 
(in the xy plane) of the anisotropy field in (2) a r e  applic- 
able in the general case. In  this sense ,  the theory de- 
veloped below will be exact for )q 1 >> 4n, when the con- 
tribution of the dipole interaction can be neglected. 

We choose a second system of coordinates, which 
moves with the DW along the x axis with some velocity 
v( t ) .  We shall  seek  a solution of equation (1) in this 
comoving system in the form 

t 

M(&, Y, 2, t )  =Mo(E, t )  +m(E, y, z, t ) ,  E = Z -  j u( t )d t .  
b 

&([, t) roughly describes the structure of the SW and 
is determined by the polar angle 9 and azimuthal angle cp 
a s  follows: 

cos 6=t l i (E/6) ,  q=cp(t),  6=[a l ($ ,+vq) ] '" .  (3) 

Here the angle 0 is measured from the z axis, cp from 
the y axis. The distortion of the original DW structure 
(3) and also the SW a r e  described by the function 
m([, y, z, t),which, together with v(t) and ~ ( t ) ,  must be 
found from equation (1). The  DW thickness 6 also con- 
tains the s t i l l  undetermined parameter v. It  allows for  
the effect on 6 of the quasidipole interaction, and it de- 
pends on the micromagnetic structure of the DW. In 
stat ics,  for a pure Bloch DW (cp = 0, n), v = 0; for a N6el 
wall (cp =kn/2), v = 1.' 

We choose at  each point of coordinate space a local 
reference system for the magnetic moments, in gen- 
e ra l  time-dependent, in which M,, =(O, 0, M,). On writ- 
ing (1) in components in these local sys tems and on 
introducing, instead of the projections m,, the cyclic 
variables m =m, +im2, m* =m, - im,, we get, after s im-  
ple but cumbersome calculations, carr ied out through 
te rms cubic in m (with exclusion of the cubic quasidpole 
terms),  

im-$ (Am-cos 26m) - i v ( t )  amla: 
+'Ir{(1-2v) q-2(@-h)cos 6+3q (v-sinZ cp)sinZ O)m 
+'Izq (cos 2q- (v-sin2 q )  sinZ 6-i sin 2q cos 0 )  m* 
-ip sin 6(m+m')am/aE+'/,{[q sin 2q+u(t)  ]s in+ 

- i [  ~-' / ,11  (v-s inzq)  ]sin 26) mm' 
+'I, { q  sin 29 sin 6+ i [2$-q  (v-sin") ]sin 26)mZ (4) 

-'/2p(mzAm'+2m(VmVm') +cos 2 6 m k m ' )  
=u ( t )  sin 6+' /z iq  (v-sina c p )  sin 20, 

and also the equation complex-conjugate to this. In 
these equations, 

$-$:+v% u ( t )  =V(t) sin 2cp+i(@-h) . 

Here and everywhere hereafter, the units of measure - 
ment for the magnetization and field a r e  the saturation 
magnetization M,; for distance, 6; for  time, (gM,)-'; 
and for energy, I@,6'. 

We transform from a coordinate t o  a momentum rep- 
resentation. For this purpose, we expand m(r,  t) in 
normalized Winter  function^,^.^ which a r e  eigenfunctions 
of the operator A - cos 26. The  amplitudes obtained by 
this procedure for the translational (m,(t)) and preces- 
sional (mk(t)) spin excitations (n i s  a two-dimensional 
wave vector in the DW plane, k is a three-dimensional 
wave vector) satisfy equations that can be easily ob- 
tained from (4); the f ree  t e rms  of these equations have a 
6-function singularity at the point n = 0. One can expect 
the s ame  singularity to appear also in the solutions; 
therefore we shall seek  them in the form 

where c, and c k  a r e  functions regular  a t  zero,  and where 
q - k , .  

We substitute (5) in the equations of motion for the 
amplitudes and separate out from them the t e rms  con- 
taining the indicated singularity, by operating with the 
operator 

and taking into account that K ~ ~ ( U ) ~ ( U )  = t(0) and K ~ ~ ( U )  
=0,  where C(U) is any function regular  a t  zero. This  
transformation enables us to obtain two inhomogeneous 
equations for a(t) and $(t). The  remaining regular  
t e rms  give two homogeneous equations for c , ( t )  and 
ck(t). These and the others can be written schematical- 
ly a s  follows: 

ci+f(a, a,, c,, cr, c p ,  U )  =-2"inu(t),  
(6 

i ,-io,a,f f,(a, a,, c,, ck, cp, u) 

=-2 (n/2) "q (v-sinz p) ( l+fq)ch- '  ( z q i 2 ) ,  (7) 

L:*-io,ck+ft(a, a,, r,, ck, cp, u)=O, (8) 

t,-io,c,+f*(a, a,, c, , ck, cp, u) =O, (9) 

where w, =,9(1+#), ( ~ b  = p ( l + @ ) ,  and w, =fin2 a r e  the 
eigenfrequencies of the spin excitations. The  func- 
t i o n a l ~  f, contain t e rms  linear in a, 4 ,  c., and c k ,  of 
quasidipole origin, and t e rms  of higher order;  in the 
linear approximation, f and fa a r e  independent of c, and 
ck ,  and f and f, a r e  independent of a and 4. The  func- 
t i o n a l ~  f, depend also on the complex-conjugate ampli- 
tudes, which have not been written out for simplicity of 
notation. Furthermore,  for completeness of the system 
(6)-(9) we must add to them the equations complex- 
conjugate to those given. 

Equations (6) and (7) determine the amplitudes a(t) 
and a&) of the one-dimensional dynamic distortions of 
the original DW s t ruc ture  (3), which occur under the 
action of a driving force of quasidipole origin. We note 
that a(t) is the amplitude of the translational distortions, 
which constitute sma l l  displacements of the DW a s  a 
whole and rotations of the fan of i ts  magnetic moments 
about the z axis. The  homogeneous equations (8) and 
(9) determine, respectively, the amplitude ck(t) of pre- 
cessional and c,(t) of translational SW. Equations (8) 
and (9), in contrast to (6) and (7), permit ,  in particular, 
zero  solutions. Such a separation of spin excitations 
into distortions and SW i s  convenient, though to a con- 
siderable degree conventional. 
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So far  we have not made specific the form of the func- 
tion u(t) [or, equivalently, v(t) and cp(t)]. The function 
~ ( t )  is not determined uniquely by the system (6)-(9), 
since the number of unknown functions is larger than the 
number of equations; but its choice can a l so  not be arbi-  
trary. The  arbitrariness is res t r ic ted  by the require-  
ment of smallness of the translational distortions a(t) 
(in the local reference systems),  which a r e  the elemen- 
tary motions of which the macroscopic DW motion i s  
made up. In order that the system (6)-(9) may become 
complete and the DW motion self-consistent, we com- 
plete the system by the rela tion a(t) = 0. This  identity 
removes the arbitrariness in the choice of v(t) and cp(t), 
and equation (6) a t  once gives the connection between 
u(t) and the amplitudes of the SW and of the DW distor- 
tions : 

u ( t )  =-1/2q sin Zrp-Z-"n-' Irn f (a,, c,, cr, rp, u) , (10) 
ip ( t )  =h+2-"n-a Ref (a,, c,, c t ,  c p ,  u) . (11) 

Analytical solutions of the equations presented can be 
obtained in two limiting cases. The  f i r s t  is the region 
of smal l  external fields, where the equality 2 3 / 2 ~ h  
=-Ref can be satisfied. Under this condition, cj, =0 ,  
and the DW moves with constant velocity. The  second 
case is defined by the conditions 2312nlh I>> lFte f I and 
2112nJqJ >>11m f 1 .  If they a r e  satisfied, then the motion 
is nonstationary2 s3; the function cp(t) is nearly l inear,  
and the velocity oscillates with frequency 

where the bar  denotes a time average. The  f i r s t  case  
leads to results  s imi lar  to those obtained by Abyzov and 
Ivanov5; therefore we shall  consider only the second 
case. It should be mentioned that the conditions corres-  
ponding to it, and relating h,  q ,  and f, a r e  not too 
rigid, since for  high-anisotropy ferromagnets, a s  will 
be seen  from what follows, the est imate 1 f 1 - 1 is  us- 
ually correct. 

In the system (7)-( l l ) ,  the parameter  v has st i l l  r e -  
mained undetermined. There  a r e  no limitations in prin- 
ciple on i ts  choice. But we shall  attempt to choose the 
original DW structure (3) s o  that its dynamic distortions 
shall  be minimal. Therefore we choose the value v =;, 
for which the driving force,  and also the amplitudes a, 
determined by equation (7), will not contain constant 
components. With such a choice, the mean-thickness 
parameter of the dynamic DW coincides with the thick- 
ness of the original DW. In the general case,  when the 
function cp(t) is arb i t ra ry ,  the requirement of equality 
of the thicknesses of the original DW and of the DW 
"dressed" by dynamic distortions leads to the relation 
v =sin2q.  

The  functional f ,  which determines the DW dynamics, 
takes the form, when all the restr ict ions presented 
above have been taken into account, 

1 
f (a,, c,, cr, c p ,  u) =- - i 

i 
n'q sin 2rp Irn I, + -n"q cos 2cp(312+1;) 

24 

l-iq" 

2'"i 
X 6(x-x'+xl')dk'dk" ] - 24n - q sin Z ~ K . { ~  cx~c.~~6(x-x'-x")dx'  dx" 

where the integration extends over the whole of momen- 
tum space. In (12) we have retained only t e rms  of the 
lowest order in 4, ck, and c, that a r e  not identically 
equal to zero. 

I t  is evident that al l  excitations of the spin system 
exer t  a n  influence on the nature of the DW motion. The  
maximum contribution can  be expected from the ampli- 
tudes a,, which occur in (12) already in the f i r s t  order ;  
the minimum, from the translational SW, whose ampli- 
tudes a r e  contained only in the quadratic quasidipole 
terms.  But actually the relation of the contributions 
can change, since so  far  nothing is known about 4, ck, 
and c,, which must be determined from equations (7)- 
(11); therefore we shall pass on to a systematic cal- 
culation of the amplitudes of the dynamic distortions 
of the DW, and also of the precessional and transla- 
tional SW. 

2. DYNAMIC DISTORTIONS OF DOMAIN-WALL 
STRUCTURE 

The  presence in the right s ide of equation (7) of a 
drivingforce of quasidpole origin causes the occurrence 
of distortions of the DW structure (3) postulated earl ier .  
In order  to estimate these distortions, we shall  omit 
f, in (7). This  is justified because in the linear approxi- 
mation, f, contains only quasidipole t e rms  much smal-  
l e r  than the f i r s t  two t e rms  of the equation. Further- 
more ,  with the s ame  degree of accuracy we shall  r e -  
place 2 q  by wot. After these simplifications, the solu- 
tion of equation (7) is obtained by elementary methods 
and has the form 

where we have allowed for possible damping of the dis- 
tortions by replacing w, by w, +iy,. On transforming 
from the momentum representation (13) again to the 
coordinate representation, we obtain an  expression that 
describes the distortions of the DW structure in the 
local reference systems: 

inq . m(r , t )=-s ign:  [ e i a t ~ ( @ , ,  E)+e-'mot~(-ao,  E) I ;  
168 

where 4, = w,/p, 7 = y  /p ,  ~ ( 4 ~ )  =(Go - 1 - i?)l1' [that value 
of the root is meant for which Im q(0,) >O]. Here i t  i s  
assumed that the damping coefficient y is  independent of 
4. 

In the special  case when y = +0, for  c3,< 1 the value of 
q(iG,) is pure imaginary, and the DW distortions de- 
c rease  exponentially a t  large distances from the wall. 
The  situation changes fundamentally when (J, 3 1. In this 
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range of fields, q(J,) is r ea l ,  and the f i r s t  t e rm in (15) 
is nonzero a t  infinity. Periodic excitations, whose phase 
velocities a r e  antiparallel,  a r e  propagated in the regions 
5 >> 1 and 5 << - 1 in a ferromagnet. The  DW radiates two 
sW) that diverge from it. This  case was treated by 
~ h o d e n k o v ' ~  in the approximation of SW shor t  in com- 
parison with the wall thickness. 

In the general case,  when y + 0, the value of q(*cJo) i s  
always complex; therefore the f i r s t  te rm in (15), and 
with it also the whole expression (14), a r e  nonzero only 
near the DW. The  distortions, like the wall itself, a r e  
always localized. 

3. SCATTERING OF THERMAL MAGNONS BY A 
MOVING WALL 

We consider equation (a), which determines the am- 
plitudes of precessional SW. In the linear approxima- 
tion, f k  depends only on c k ,  ck, c,, and c t .  The 
te rm containing c,and c,* may be  omitted, since the 
processes corresponding to them, conserving the 
wave vector x, a r e  forbidden, a t  least  for Po<  1, by the 
law of conservation of energy in the f i r s t  Born approxi- 
mation. One can proceed similarly in the range g o <  2 
with t e rms  containing c t .  The remaining linear t e rms  
describe two-particle scattering of precessional SW by 
a moving DW whose structure is determined by the 
relations (3). Scattering of SW by the distortions (14) 
of this s tructure is a second-order process; but in 
contrast to the processes described by the linear t e rms  
and having a quasidipolar origin, it is caused by ex- 
change and anisotropy. I t  may therefore make a con- 
tribution comparable with the scattering by the original 
DW structure,  and i t  must be taken into account. 

After these simplifications, Eq. (a), with use of (14), 
takes the form 

1 
Cr-iohcr+ - iqq sin ootcr 

2 

- 
fi 

0 (k, k') - - q8 (x -x ' )  { (q'-q) [ l+q2+q"+qq'+i(q'+q) 1 
16 ( l+ iq ' )  (1-iq) sh (n  (4 ' -q ) /2 )  

iq-th 
q P ( f -  (2n)-" - l+iq e ' q ~ .  

The f i r s t  te rm in (17) determines the interaction of the 
SW with the DW proper, the two others with its dynamic 
distortions. 

Hereafter, for  study of the scattering of thermal SW, 
i t  is necessary to go over from the classical  equations 
(16) to a quantum description of the process,  according 
to  well known rules. The  classical amplitudes ck(2~)- l I2  
and c%(~E)- ' '~ must  be replaced, respectively, by opera- 
tors  E; and Ei, which in the linear approximation sat is-  
fy the Bose commutation relations. The Hamiltonian of 

such a quantum system has the form 
- -  A 

%= jekcr+crdk- - q sin o. t j qik+&dk 

(18) 
+ei" I@ (2, i ) ; l + & d k ' d k N + ~ . ~ . ,  

where 1= kt, 2 =  kt', ck=Ewk. T h e  second te rm appears 
because of the motion of the comoving coordinate system 
and describes a phenomenon analogous to the Doppler 
effect. The  third and fourth t e rms  describe inelastic 
transitions in the magnon system under the action of the 
periodic perturbation due to the oscillating motion of 
the DW and to the precession of the magnetization in it. 

The  motion of the DW is not s tr ict ly periodic: the 
mean velocity of the wall is in general nonzero. This 
forward motion causes additional scattering of magnons, 
which was treated by Abyzov and Ivanov.' We shall  
not take account of this process,  since in our case  the 
constant component of the velocity i s  smal l  in compar- 
ison with the variable component taken into account 
in (18). 

Inelastic transitions in the magnon system lead to a 
change of its energy; in other words, there a r i s e s  a 
possibility of dissipation of the Zeeman energy, and 
consequently also of forward motion of the DW. In 
order t o  calculate the velocity of this motion, we use 
the nonequilibrium part  of the correlation function 
(c^;t,). It can be calculated by means of formula of 
~ u b o , "  describing the linear response of a system to 
a periodic perturbation. Omitting the calculation, we 
give only the result: 

where ni is the Bose equilibrium distribution function. 
The f i r s t  te rm of the nonequilibrium part  of the cor- 
relation function appears because of transitions that 
involve increase of the magnon energy; the second, 
decrease. The  mean values of other operators can be 
calculated similarly; for example, it can be shown that 
( E : E ; )  =O. Hereafter we shall  need only these two 
correlation functions; therefore we pass on to con- 
sideration of translational SW. 

4. PARAMETRIC EXCITATION OF TRANSLATIONAL 
SPIN WAVES 

Finally, we consider equation (9). In the linear ap- 
proximation, f, in (9), like f k, depends only on the am- 
plitudes c,, ::, ck ,  and c$. T e r m s  containing c k  and 
c$ may be omitted when Go< 1, for  the s ame  reason a s  
were t e rms  containing c, and c: in (8). The  remaining 
part  gives the equation 

tx-io.c,+y,c,-'/zi~~ cos ~ ~ t c , - ~ / ~ i q  cos w,tc-;=0, 

where the damping of translational SW has been taken 
into account phenomenologically, as in (13). The  fourth 
te rm gives a slight modulation of the SW energy and 
may be omitted, like the t e rms  containing ck.  The  1 s t  
t e rm leads, for a certain relation between the param- 
e t e r s  q and y,, to the development of parametric insta- 
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bility of the translational SWu: c, increases with t ime,  
without limit. Limitation of the growth of the amplitude 
occurs because of nonlinear processes,13 which have not 
been completely investigated even in a uniformly mag- 
netized ferromagnet. 

Without claiming completeness and r igor  of our treat-  
ment of the problem, we shall attempt to estimate the 
amplitude of parametric SW, taking into account in f 
only the t e rms  cubic in the amplitudes of the transla- 
tional SW, which appear because of exchange and ani- 
sotropy. In th is  case  the equation of motion will have 
the form 

Following S theory,13 we multiply the integrand in (20) 
by the sum where 

As a result  of this procedure, only those parametric 
SW will contribute to the integral for which the product 
c,c,c$ of the amplitudes has the s ame  phase a s  c,. The 
6 function in (20), in combination with the factor (21), 
enables us to remove one integral and to reduce equa- 
tion (20) to quasilinear form, with renormalized f re-  
quency and pump. Introducing in this equation new 
"slow" amplitudes b,(t) = c,(t) exp(-i ( w, 1 t/2) and replac- 
ing their products by the correlation functions 

(b .b .~' )=n.b(x-x ' ) ,  ( b , b . , ) = a , b ( x + x ' ) ,  (22) 

we get 

It can be shown that this equation leads to the equality 
lu.l =n,; that i s ,  u, . - n , e ~ p i i j ? , ' ~  where 4, is  the total 
phase of the pair of waves with vectors x and -X In the 
stationary state of the parametric SW, when 6, =0 ,  
equation (23) reduces to the form 

where it is assumed that y, ,  like w., depends only on 
1x1. 

As a result  of renormalization of the pump, the system 
of parametric SW freezes,  a s  it were,  on the threshold 
of excitation; the only nonzero amplitudes a r e  those of 
waves whose wave vectors terminate on the resonance 
curve 

which is a circle. Equations (24) and (25) enable us to 
calculate N and 4,: 

N-40n'(qz-3672) "/(5 1 COO 1 +8B), sin rp.*6yx/q. (26) 
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If the damping depends on U, then to  eliminate this 
dependence i t  is necessary to solve equations (25) and 
(26) simultaneously. 

In sma l l  fields, when 1 5 3  1 w, 1 < 2pN, the relation 
(25) is not fulfilled. In  this case,  SW a r e  excited with 
u = 0 and with frequencies different from the resonance 
frequency, and N is determined by the expression 

The  role of pump in the system considered is played 
by the sum of the demagnetizing field of the wall and of 
the plane component of the anisotropy field; these fields 
oscillate as a result  of the precession of the magnetiza- 
tion about the z axis. The  SW amplitude is nonzero only 
when v2 > 36y2,. If this inequality is not satisfied, a 
subliminal mode of excitation prevails. 

5. VELOCITY OF A DOMAIN WALL 

In the preceding sections, we calculated, in certain 
approximations, the spin excitations that exist  in a 
ferromagnet with a DW, placed in a constant magnetic 
field. This  enables us now, by means of equations (10) 
and ( l l ) ,  to determine the contribution of the processes 
considered above to the mean velocity of a DW. 

We note that the functional (12), in the approximations 
adopted, contains no mixed te rms;  therefore the pro- 
cesses  considered will make additive contributions to 
the velocity. In fact, al l  the described mechanisms of 
excitation of SW a r e  independent of one another in the 
high-external-field range, since they a r e  caused by 
precession of the magnetization about the z axis, which 
in turn is determined by the external field. Consequent- 
ly, the effect of the spin excitations on the character of 
the DW motion, in the case considered, i s  a l so  indivi- 
dual. Coupling between the different processes can show 
up only when, in the equations of motion, account is  
taken of t e rms  of higher order in comparison with those 
considered in the present paper, and also in the low- 
external-field range, where the ~ ( t )  relation is signifi- 
cantly nonlinear and is dependent on the amplitudes of 
the spin excitations a s  well as on h. 

The contribution of distortions of the DW s t ruc ture  to 
f (a,, c., c,, q,  v ) ,  according to (121, will be 

f (a,) --'/,in'"q sin o,t Im I,+'lz,n'"q cos oot  (3z2+zz'). (27) 

On substituting here  a, from (13), one can easily show 
that I, = 0 because of the oddness of the integrand. The  
remaining part  off  (a,), af ter  substitution in (10) and 
averaging over time, leads to the following expression, 
which determines the contribution of the amplitudes a, 
to the mean velocity of the DW: 



where q(D,) is the s ame  as in (15). The main contribu- 
tion to Q(Go,y) comes from the f i r s t  two terms.  

When y = + 0 ,  the value of q(* a,) will be pure imagin- 
a ry  in the field range Go< 1; therefore V,  vanishes. 
When (J, 2 1, the value of q(G,) is rea l ,  and radiation of 
SW ensures scattering of the Zeeman energy and a 
nonzero velocity of motion of the DW. On further in- 
c rease  of the external field, the f i r s t  two te rms in 
Q(JO, 0) decrease exponentially; this occurs because 
of the ineffectiveness of excitation by the wall of SW with 
a wavelength much smal ler  than its thickness. At the 
point 3, = 1, the velocity V ,  becomes infinite. 

In the general case,  when y PO, typical functions 
Q(Jo,T) a r e  shown in Fig. 1. The  discontinuity a t  the 
point 3, = 1, which was characteristic of the previous 
case,  is absent here; furthermore,  the velocity is  non- 
zero  even when Go< 1. As the damping increases,  the 
value of the maximum on the curve decreases. This  is 
caused by a decrease of the amplitude of distortion of 
the DW. 

We now consider the contribution of precessional SW 
to the velocity of motion of the DW. In (12) we replace 
ck, cg,, by 2ti(Eit Ekfr), cktck,, by 2R(E+k, E+k,,). It  has al-  
ready been mentioned that the second correlation func- 
tion is equal t o  zero. Therefore the part of f(a,, c,, 
ck, (P, v )  that depends on the amplitudes of the preces- 
sional SW can be transformed, with use of (19), to the 
form 

iT 
f (CE) -- {elm' at (ao) +e-<-' a z ( a o ) ) ;  

2''~ib 
(1-iq') (q"'-q'Z) @ (q', ql')G(q', q") n 

sh-' - (q"-q') dq'dq", a l ( 0 ~ -  .I ( i - iqu)  (qfz-q~/z-ao+io) 2 

(1-iq') (qt"-q") @' (q", q') G(q',  q N )  n 
sh-' - (qN-q') dq'dq", 

2 
G ( q f ,  q " )  =ln{1-exp[-fr~(1+q")/T])-ln{i-exp [ -@(I+q1") /T] } ,  

where T is the temperature in energy units, and where 
@(kt ,  d t )  = 6(xt -u'). @(q', 9"). 

The  functional f (ck), in contrast to f (a, ), has no con- 
stant component; therefore a direct  averaging of it over 
time gives zero. But as is evident from (10) and ( l l ) ,  
the period of variation of f (ck) and therefore a lso  of 4 
coincides with the period of oscillation of the DW vel- 
ocity. Scattering of precessional magnons may modu- 
late the precession frequency of the magnetization in 
such a way that the time of motion of the DW in one 
direction will exceed the time of motion in the opposite 

FIG. 1. The function Q(Jo, fi for various fixed values of 7: 
1, 0.01; 2, 0.1; 3, 1.0. 

direction, and the mean velocity turns out to be non- 
zero. Integrating (11) with use of (29), substituting the 
resulting ( ~ ( t )  relation in (lo), and averaging the result- 
ing velocity over time, we find 

The problem has been reduced to calculation of the 
functions a,(O,). I t  can be shown that the last  two t e rms  
in (17), which i r e  responsible for the scattering of mag- 
nons by DW distortions, make no contribution to a,. 
The magnons that take part  in this process,  interacting 
with the DW distortions, produce damping of them but 
do not directly affect the wall itself. The remaining 
te rm in (17) describes scattering of magnons by the DW 
and leads t o  the following contribution to the mean vel- 
ocity: 

i?$' xa ah-'(nxI2) v,= - - 
(x"4x2+~p") 2-4tj02x' 

At high temperatures @>>tip) and sufficiently smal l  ex- 
ternal  fields ( 0 , ~  2), one can obtain the simpler ex- 
pression 

The variation of this integral with 0, is shown in Fig. 2. 
In the small-field range, I may be considered constant; 
therefore the velocity V, in this range is a nearly linear 
function of the external field. 

We shall  now calculate the contribution of parametric 
SW to the mean DW velocity. For this purpose, we 
transform in (12) from the c. to the slow amplitudes 
b ,  and average the te rms containing them over an en- 
semble of individual phases of the parametric SW. After 
this, the part  of (12) that depends on translational SW, 
with use of (22), takes the form 

2'"i 
f(c.)--- q sin oot 24n 
x [2+exp i($.+lo0lt) I N .  

Substituting this expression in (lo), averaging over t ime,  
and taking account of (26), we get for  153 1 w,l 3 2pN 

5y, sign oo 
V,= - 101001+i6~ (q'-367x2) "'. 

Thi s  velocity a s  a function of y, has a maximum a t  y ,  

=71/6fl and goes through zero  a t  the points 0 and q / 6 .  

FIG. 2. The function ~ ( 5 ~ ) .  
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In the f i r s t  case,  the parametric SW do not attenuate 
and do not produce dissipation of the Zeeman energy; 
the second case corresponds to the threshold of param- 
e t r ic  instability of SW. The  field dependence of V, is 
determined not only by the explicit dependence of the 
wlocity on w,, but also by the function y,, since n is 
related to w, by the relation (25). 

6. DISCUSSION OF RESULTS 

The expressions (28), (31), and (32) determine the 
contributions to the mean velocity of motion of a DW 
from, respectively, dynamic distortions of the DW 
structure,  a,, scattering of therma1,precissional SW, 
ck, and parametric excitation of translational SW, c,. 
In the case when, for  some reason, 4,  c k ,  and c, s im-  
ultaneously vanish, the functional (12) also vanishes, 
and with it the mean velocity of the wall. Only the f i r s t  
te rm in (10) produces oscillations of the DW about the 
position that it had a t  the instant of application of the 
external field. In fact, a n  external field parallel to the 
axis of easy magnetization produces a uniform preces-  
sion about this axis. Departure of the magnetization 
from the plane of the wall leads to the appearance of a 
demagnetizing field, and consequently to a torque, 
which causes displacement of the DW. But the periodic 
variation of the demagnetizing field produces only 
oscillations of the DW about some initial position, a s  
depicted schematically in Fig. 3a. 

A progressive motion of the DW is possible in the  
presence of an  additional torque, which ei ther  des- 
troys the equilibrium of the precession of the magnet- 
ization about the external field, o r  directly reverses  
the magnetic moments from direction -e, to direction 
e,. Both of these possibilities a r e  realized in the 
interaction of a DW with SW. As was shown above, 
thermal magnons scattered by the wall produce a 
torque, which modulates (and in the case  of sma l l  
external field and uniform motion of the DW, stops) 
the precession of spins about the axis of easy mag- 
netization. The frequency of this modulation coincides 
with the frequency of oscillation of the DW velocity. 

FIG. 3. Illustrative form of the u( t )  relation: a ,  in the absence 
of interaction of the DW with SW; b, with allowance only for 
scattering of thermal magnons; c ,  with allowance only for 
radiation of precessional and/or parametric excitation of tran- 
slational SW. 

The time intervals corresponding to the positive and 
negative sections of the v( t )  relation, shown qualitatively 
in Fig. 3b, a r e  different, and the mean velocity is 
nonzero. 

The  interactions of dynamic distortions and of param- 
e t r i c  translational SW with a DW a r e  examples of a 
process of the second type. T h e  constant components 
of the torques produced by these excitations directly 
r eve r se  spins in theDW, causing an  increase of i ts  
velocity during motion in one direction and a decrease 
during the opposite motion. An approximate form of the 
t ime dependence of the resulting velocity of the wall is 
shown in Fig. 3c. We note that if we take account only 
of processes of this type, uniform motion of the DW is 
altogether impossible, since the torque produced by 
the external field and causing precession of the spins 
about the z axis cannot be compensated by the torque 
produced by these excitations. 

Thus interaction of a DW with quasiparticles that 
sca t te r  the Zeeman energy of the ferromagnet produces 
a progressive motion of i t ,  and not damping, a s  is  often 
assumed. One can speak of damping only in the absence 
of a n  external field. In this case the principal type of 
DW motion i s  motion with constant velocity, and dissi- 
pative processes cause damping of it. 

We shall estimate the contributions (28), (31), and 
(32) to the mean DW velocity, using the following values 
of the parameters,  which a r e  typical for materials  with 
cylindrical magnetic domains, for example epitaxial 
iron-garnet films: 4nM,- LOO G, ,9- 100, T J -  10, gM,6 
- 10 m/s. For temperatures -300 K (in dimensionless 
units, T-0.3), we easily obtain from (31) V2 - 1 0 - 5 ~ ,  
m/s. Even for  9, - 1, this value is severa l  orders  of 
magnitude smal ler  than the experimentally observed 
values (-10 m/s13). A considerably la rger  contribution 
to the DW velocity is made by parametric excitation of 
SW. For yX - 1 [the maximum on the V,(yx) curve], V, 
is found to be -0.3 m/s. Finally, distortions of the 
DW structure give V ,  - Q ( O , , ~ )  m/s (see Fig. 1). For 
Go = 1 and fo r  smal l  damping of spin excitations, this 
contribution to the velocity may turn out to be -10 m/s ,  
and the resonance peak characterist ic  of i t  on the V(h) 
curve can be detected experimentally. But in smal l  
fields, Vl< V,. 

The relative value of the interaction of DW with SW is 
determined by the rat io 77 /p .  When 77 =0, the DW, in 
the approximations adopted, does not interact with SW; 
therefore V,,,, , =O. With increase of TJ /&  the contri- 
butions V,,,, , to the mean velocity a lso  increase. I t  
may be expected that the processes considered will de- 
termine the dynamic behavior of a DW in materials with 
a sufficiently low quality factor  /3/4n. 

We again emphasize that the observed velocity of 
motion of a wall is the resul t  of the action of many 
dissipative processes. In the  present paper, only the 
one- and two-magnon contributions to the velocity have 
been calculated. Many-magnon processes may exert  a 
significant influence on the dynamics of a DW. Prel im- 
inary est imates show that a large contribution to the 
velocity is made by interaction of the DW with elast ic  
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waves. In the low-temperature range, i t  is necessary 
to take into account the interaction of a DW with the 
rare-earth ions, which a r e  an  intermediate like in the 
transfer  of the Zeeman energy to the t h e r m ~ s t a t . ' ~ * ' ~  
Furthermore, we have considered only steady nonsta- 
tionary motion of a DW. Transitional processes may 
have grea t  importance. For  example, in the initial 
stage of development of parametric instability of t rans-  
lational SW, the Zeeman energy is used not only to 
maintain but also to increase their amplitude. There-  
fore a t  the f i r s t  instant after application of the external 
field, the mean DW velocity should be la rger  than a t  
later instants. 

In conclusion, we shall  discuss st i l l  another approxi- 
mation made in this paper: namely, uniformity of the 
micromagnetic structure (3), of the magnetic proper- 
t ies ,  and of the external field along the DW. It is clear 
that in the experiments these conditions a r e  never 
strictly fulfilled. Even if the DW was initially one-di- 
mensional, the nonuniform precession of the magnetiza- 
tion about the external field, caused for example by the 
presence of a slight dependence of h on the coordinates 
y and z ,  will lead to the result  that the angle p after a 
certain time will be different a t  different points of the 
wall; furthermore, these differences will increase with 
time, since 4= h. There  will occur a "twisting" of 
Bloch lines, whose strong influence on DW dynamics is 
common knowledge.17 

Thus the method developed in this paper for self- 
consistent calculation of DW motion makes it possible 
to investigate a t  least qualitatively, on a model of the 
magnetic subsystem of the material, the dynamic pro- 
cesses  in a ferromagnet containing a SW and placed in a 
constant magnetic field. A more  rigorous theory, in 
contrast to that s e t  forth above, must take into account 
a possibly la rger  number of interactions, and conse- 
quently also fo dissipative processes in the system, 
and must allow a three-dimensional s tructure of the DW 
itself, and not only of the spin excitations. 

The  author' is grateful to G. S. Kandaurova for  dis- 

cussion of the research  and to I. L. Ivanova for  help 
in the calculations. 

'1 The DW motion determines dissipative processes in the sys- 
tem and a t  the same time is  itself determined by these pro- 
cesses. 

2, The term SW i s  used here  in a general sense. These SW, 
according to our definition, a r e  periodic distortions of the 
DW structure. They must not be confused with the SW de- 
scribed by the amplitudes c, and ck. 
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