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The shape of the spectrum of inelastic neutron scattering by helium is investigated in the near-threshold 
regions where an important role is played by the ir teraction of the excitations. The attraction between the 
rotons at large momenta on the shape of the spectr, n is considered near its end point. The experimental data 
on neutron scattering with production of excitatior near the maximum of the dispersion curve at increased 
pressures are explained. The spectrum near the p: non-emission threshold is investigated in the case when 
the group velocity of the excitations exceeds the saund velocity in a certain region. It is shown that at 
arbitrarily low temperatores, the neutron-scatterin. spectrum line corresponding to the production of one 
roton has a wing on the high-energy side. 

PACS numbers: 67.40.Db, 61.12.F~ 

This article deals with the effects produced in inelas- traction exists between the rotons. It turns out that in  
tic scattering neutrons by superfluid-helium excitation- this case the spectrum curve continues up to momentum 
spectrum singularities due to the presence of various values p >  2p0, and only then does the decay into two ro- 
decay thresholds. We note first  of all that observation tons with parallel momenta take place. Comparison with 
of these singularities calls for a rather high measure- experiment will decide the choice between the two possi- 
ment accuracy. One can hope, however, that the latest bilities. 
progress in experimental techniques will make such mea- In the notation of Zawadowski, Ruvalds, and S ~ l a n a , ~  
surements possible.' the single-particle Green's function with allowance for 

The first  section of the paper considers the influence 
of attraction between rotons on the shape of the spectrum 
near i ts  end point at large momenta. In the second sec- 
tion is investigated the roton spectrum near i ts  maxi- 
mum at increased pressure, when this maximum i s  
close to the threshold value 2A. The third section is 
devoted to neutron scattering with production of a roton 
in the region where "Cerenkov" emission of a phonon by 
a roton i s  possible. It i s  shown in the last section that 
the neutron-scattering spectral line corresponding to 

roton-roton interaction is of the form 

G - ' ( P ,  E )  =e-Eo ( p )  - 2 g , 2 F / ( 1 - g , F ) ,  (1 ) 

where g, <O, g3 are  constants describing respectively 
the amplitudes for the scattering and decay of the exci- 
tations (a negative g, corresponds to attraction); Eo(P) 
= A +  (p - Po)'/2p i s  the unperturbed spectrum; F ( p ,  c) i s  
the polarization operator, 

(&, 1 rfqdeG"l (p-q. e-e)G(o' (g, o), F ( P ,  E) = - (2 ) 

production of one roton has a wing on the higher-energy ~ i t a e v s k i i  and Fomin3 have shown also that if g 4 < 0 ,  
side even at absolute zero temperature. This wing i s  then at P<2Po the equation C-L(p, c)=o has two solu- 
connected with the simultaneous emission of a long-wave tions." One of them corresponds to energies E-2A and 
phonon. describes the upper branch of the spectrum, i.e., the 

We point out beforehand that the entire paper deals one above the fundamental branch. It will be explained 
only with the case of very low temperatures, when the in detail in the last section of the article that this branch 
collision damping of the excitations can be neglected. i s  damped and i s  of no interest to us (see also Ref. 5). 

For the fundamental branch, however, the energy i s  
1. SHAPE OF THE He I I  SPECTRUM NEAR ITS END rigorously less than 2A at P <  2P0. 
POINT This means that the lower branch of the spectrum can- 

pitaevskii2 has shown that Bose elementary excitations not terminate at a point p,<2p0, &,=2A, a s  assumed in 
can have three possible decay thresholds. He has also Ref. 2. The solution obtained in Ref. 3 i s  bounded by the 
advanced the hypothesis that in real liquid helium the condition P<2P0. We shall calculate the Green's func- 
spectrum terminates atter i ts  curve reaches an energy tion (1) in the region I P -  2pJ<<p0 (we shall see that this 
&,=2A. At this point (at a momentum p,<2p0) the exci- i s  the end point of the spectrum). 
tation can decay into two rotons. The available experi- 
mental data on neutron scattering do not contradict this 
assumption. The question is nonetheless not quite clear. 
The point i s  that, as will be shown below, a threshold 
of the type indicated can exist only if the sign of the in- 
teraction between the rotons at the threshold point cor- 
responds to repulsion." Yet this sign i s  not known be- 
forehand, and the only way of determining i t  reliably i s  
to compare the theoretical spectrum curve in the thresh- 
old region with experiment. We shall therefore deter- 
mine this curve by assuming, unlike in Ref. 2, that at- 

Upon integration with respect to w ,  Eq. (2) takes the 
form 

We shall use the following device for the  calculation^^'^: 
accurate to terms of fourth order in P-  Po we can write 

( p u p o )  ' / 2 p  (p2-p:)  Z / 8 ~ ~ 2 p .  

The integration in (3) i s  next extended to infinity, the re- 
sult being 

320 Sov. Phys. JETP 54(2), Aug. 1981 0038-5646/81/080320-07$02.40 O 1982 American Institute of Physics 320 



The threshold PC, &, is characterized by the presence 
of branch points of the Green's functions at p =PC and & 

=&, . It i s  seen from (4) and (5) that in the region P >  2P0 
only a square-root branch point (2A- & +s2)lh=0 is pos- 
sible. Thjs corresponds to a threshold of type b in 
Pitaevskii's paper.' It follows from this condition that 

The value of PC i s  determined from the condition 
G-'(P,  &,)=O; this yields 

For the obtained formulas to be valid we must have g4 
4nE3/p,1-1. 

We see that at small negative g, we actually have PC 
> 2p0 and p, - 2po<<pO. The spectrum near the threshold 
i s  determined by the poles of the Green's function (I), 
and this yields 

p.-2po 
&=Ec + - (P-PJ. 

2Y 
(8 ) 

The spectrum near the threshold i s  thus close to linear. 
At the threshold point, a decay takes place into two ro- 
tons with parallel momenta pl=p2=pc/2. As seen from 
(7), PC - 2p0 (meaning also &, - 2A) increases exponen- 
tially with increasing jg,l. Assuming by way of estimate 
g4=-1.2x10-38erg.cm3 (seeRef. l)and2g:/g4"1 K, 
we ob ta inpc-2po~1 .9~10-2po  and &,- 2A=23 mK. 

We consider now inelastic neutron scattering with pro- 
duction of excitations near a threshold of this type. Let 
p and & be the momentum and energy lost by the neutron. 
Production of one excitation i s  possible at E &&, and p 
<PC [see diagram (9)]. When & *2A, two excitations with 
energy 3 A  each can be produced [see (10) and (lo')]. 

FIG. 1. Dependence of the probability of inelastic neutron 
scattering on the energy transfer E at fixed momentum-trans- 
fer values near the threshold momentum p,:  1) p-p, = -0.5 
(Pc-~Po); b)PZPc; c)P-Pc= ~ . ~ ( P C - ~ P O ) .  

For  diagram (9), the matrix element M i s  finite, there- 
fore the behavior of dw near  the decay threshold i s  de- 
termined by the renormalization constant 

A',=[- ResG(p, e)]'"a(2A-~+S~)"~. 

Inasmuch a s  in the production of one excitation the 
quantities E and p are  connected by Eq. (8), i t  follows 
that if the momentum transfer p i s  given we have 

The line intensity corresponding to production of one ex- 
citation decreases thus in proportion to P - PC when the 
threshold momentum i s  approached. 

The probability of production of two excitations is 

N ,  corresponds to an excitation with energy close to 2A 
and has no singularities. The diagram (1-0) likewise 
yields no singularity. The behavior of dw is determined 
by diagram (10'). After integrating the 6-function with 
respect to q we obtain near the threshold 

In diagrams (9)-(lo'), the wavy lines correspond to the Plots of the scattering probabilities vs. & at different 
neutron, r and Y are the exact vertex functions, and V values of the momentum p near PC are  shown in Fig. 1. 

is the amplitude for neutron scattering bv a free atom. The single line vanishes at a momentum transfer P =PC, - - 
while the continuous spectrum has a singularity at the 

The probaljility of neutron scattering with production point & =&, : 
of one excitation with energy & i s  
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2. ELEMENTARY-EXCITAIION SPECTRUM NEAR 
THE MAXIMUM OF INCREASED PRESSURE 

In this section we consider the behavior of the spec- 
trum near the first  maximum at pressures such that the 
height of this maximum approaches the doubled roton 
minimum 2A. This situation was experimentally investi- 
gated in Ref. 9. According to the data obtained there, 
the roton minimum falls off almost linearly with increas- 
irg pressure, while the energy 4 increases slowly at 
the maximum. As a result, this maximum energy ex- 
ceeds 2A at a certain pressure P- P0=18.6 atm, so  that 
the excitations near the maximum can break up into two 
rotons. The experimental 4 ( P )  plot given in Ref. 9 has 
no singularity whatever near P= Po. In our opinion, how- 
ever, this is due to the insufficient experimental accur- 
acy. More accurate measurements should reveal a pe- 
culiarly singular behavior of Al (P) in this region. 

We shall carry  out the analysis for two different signs 
of the roton-roton interaction: g4 > 0 (repulsion) and g4 
<O (attraction), since the question of the sign of the in- 
teraction in this momentum region has not been solved 
as  yet. The accuracy of the experiments on inelastic 
neutron scattering with "maxon" production0 does not 
permit a s  yet a choice between these two possibilities. 
We hope that this choice will become possible after a 
detailed comparison of the theory presented here with 
experiment. There i s  every reason for assuming that 
the interaction between the rotons is weak in the con- 
sidered region, so that the spectrum i s  substantially 
distorted by the interaction only near the decay thresh- 
old, i.e., near the energy E =2A(P). 

The dependence of the excitation energy c on the pres- 
sure P and on the momentum P i s  determined by the 
poles of the Green's function G(p, E, P). The latter, tak- 
ing into account the roton-roton interaction, is of the 
form 

The bare energy Eo(p, P )  can be determined by extrapo- 
lating the obtained experimental function E(P, P) from 
the region P < Po into the region P> Po: 

According to the data of Ref. 9, the constant A i s  small. 
The remaining notation is the same as in Sec. 1. 

At energies E close to 2A(P) and momenta p near p, 
we obtain after integrating in (3) 

When E approaches 2A(P), the term in (15), which de- 
scribes the roton-roton interaction, causes the spec- 
trum to deviate substantially from the "unperturbed" 
spectrum Eo(p, P). The point PC, E, at which the exci- 
tation energy reaches the value 2A(PC) i s  a branch point 
of the Green's function, o r  the threshold of decay into 
two rotons. 

a. Consider the case g, > 0 (repulsion). The single- 
excitation spectrum reaches here the decay threshold 

FIG. 2.  Pressure dependence of the energy of the excitations 
a t  a fixed momentum p-pi. Curve 1 describes the position of 
the maximum of the spectrum at  pressures P < PC. Curve 2 
corresponds to the peaks in the continuous scattering spectrum 
a t  pressures P>Pc. The parameter values a r e  g4 = 0.2 X 

erg.cm3 and 2&/g4 = 0.1 K. The 2A curve and the dashed line 
a re  taken from Ref. 9. 

E,=~A(P,) at a pressure Pc>Po  and at an energy E, 

< ~A(P,) :  

P.=P,+2g,al~g, ,  eC=2Ao--2g3'/g~; 

d (17) 
q = -- 2A (P) I p-r,+. 

dl' 

If E < 2A(P), then G(p, c, P )  has poles determined by 
the implicit equation 

2g:/g.- [e-e.+ ( P - P . ) ' / ~ P I ~  ) (18) e ( p ,  P )  --2A ( P )  -a exp 

When the pressure approaches PC, the maximum on the 
dispersion curve A,(P) approaches exponentially the val- 
ue E, = 2A(PC); with decreasing pressure, however, 
Al(P) approaches monotonically Eo(p,, P) (see Fig. 2, 
curve 1). 

The maxon energy as  a function of the momentum has 
the following behavior near the threshold. When P >  PC, 
the spectrum consists of two unconnected pieces: there 
are  no poles of the Green's function in the momentum 
interval lp- p,1<12p117(P- pC)]lh (this circumstance was 
first  noted by ~ e ~ o m n ~ a s h c h i ~ ' ~ ) .  The maxon energy 
c (p, P )  approaches the value 2A(P) exponentially. 

The analytic continuation of the Green's function into 
the energy region E >  2A(P) has neither real nor com- 
plex poles on the physical sheet. In this sense the 
branch point of the function G(p, E, P )  i s  the end point of 
the spectrum. Nonetheless, the neutron scattering in- 
tensity has in this region maxima of finite width, which 
can be regarded a s  a continuation of the spectrum in the 
indicated region. 

Let u s  see  how the neutron scattering probability 
should behave a s  a function of energy in the case of a 
momentum loss p=pl at various pressures P. At an en- 
ergy transfer E <2A(P), one excitation with energy 4 ( P )  
i s  produced [the probability of this process i s  described 
by formula (l l)] .  When the critical pressure i s  ap- 
proached, the line intensity decreases in proportion to 
(2A - E){ln1(2~ - &)/a]}'. With decreasing temperature, 
the line width in this region becomes arbitrarily small. 
In the continuous spectrum E > 2A(P), however, rather 
pronounced peaks appear starting with a certain pres- 
sure P,(Po<P, <PC) (see Fig. 3). These peaks are  due 
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FIG. 3. Plot of continuous neutron-scattering spectrum at a 
fixed momentum transfer p  = pi at  various pressures: 1) P 
= PC, 2) P-PC= 1 atm, 3) P =  PC = 2  atm. The parameter 
values are g4 = 0.2 x erg-cm3, 2&/gr = 0.1 K. 

to the proximity of the poles of the analytic continuation 
of the function G(p, c, P), which lie on the unphysical 
sheet of i ts  Riemann surface near the real semiaxis 
c > 2A(P). We emphasize however, that these maxima 
have a finite width even as  the temperature T -0. The 
scattering intensity at & > 2A(P) i s  described by Eq. (12). 
The behavior of dw i s  determined by the matrix element 
of the diagram (lo'), so that 

r; E 
w=lI'G(p,, e,  P )  IZ=  - 

Bang,' ( e -5 ) '+E2  ' 
2h-e 2A-E 

E=2aga2 Irn [ln ?/ ( I-ag. ln -)I , 

Far  from 2A(P) the dependence of 5 and 5 on c i s  very 
weak, so that the "line" in the continuous spectrum has 
an almost Lorentz shape. The line half-width 

increases somewhat with increasing P, the height of the 
peak decreases in proportion to I/[, and the position of 
the maximum approaches E,(P,, P) logarithmically with 
increasing P (see curve 2 of Fig. 2). 

Thus, at g4 > 0 the set of lines A, (P) at P <  PC and of 
the peaks in the continuous spectrum at P > P c  describes 
well the plot obtained in Ref. 9 and shown dashed in Fig. 
2, provided that the parameters g, and g, are properly 
chosen (thus, if we choose 2yi/g4=0.1 K, then at g, 
50.2x loe3' erg .  cm3 the theoretical curves are  indistin- 
guishable from the experimental one within the limits of 
the accuracy of Ref. 9). Nonetheless, characteristic 
singularities should be observable at a higher experi- 
mental accuracy. We note, for  example, that the 4 ( P )  
curve should be tangent to the 2A(P) curve at the point 
P=Pc, and should approach the tangency point from 
above, so that a characteristic downward bending of the 
A, (P) curve takes place. 

We consider now the case g4 < 0 (attraction). After 
finding the poles of the function G(p, c, P) in the region 
c <  2A(P) we obtain two branches of the spectrum. Both 
branches are described by Eqs. (17) and (la), in which 
now g4 < 0. At a fixed momentum p =PI the energy de- 
pendence on the pressure for both branches i s  shown in 
Fig. 4 (curves 1 and 2). The lower A,(P) curve (1) de- 

FIG. 4. Pressure dependence of the energy of the excitations 
at a fixed momentum transfer p = pi.  The curves 1 ( A l p )  ) 
and 2 describe the positions of the maxima in the upper and 
lower branches of the spectrum. Curve 3 corresponds to the 
peaks in the continuous neutron- scattering spectrum. The 
parameter values are gr = 0.2 x erg-cms and 2&/g4 = -0.1 
K. The 2 4 P )  curve and the dashed lines are taken from Ref. 
9. The dash-dot line is a plot of S ( P )  - Eb . 

scribes the fundamental single-particle branch of the 
spectrum. It exists at all pressures (unlike the case g, 
>O). When the pressure exceeds Po, the energy 4 ( P )  - 2A(P) - E, , where E ,  plays the role of the binding en- 
ergy: 

Eb=aexp (-l/aIg'I). 

The line intensity tends then to a constant small limit. 
On the other hand, when the pressure i s  lower than Po, 
the 4 (P) curve (1) approaches E,(p,, P) monotonically. 
The upper branch (2), which can be called a bound state 
of two rotons, lies entirely in the energy region 2A(P) 
- E, <&(PI ,  P)s2A(P).  It exists only at P < P c ,  when 
&(PI, P)' 2A(P), the line intensity tends to zero like 
( 2 ~  - c ) [ l n ( 2 ~  - 

The dependence of the energy of the excitations on the 
momentum for the upper branch i s  the following. When 
P> PC, the upper branch consists of two u n c o ~ e c t e d  
pieces located in the momentum region I p - 
>[2p1q(P- P~)]'". It approaches the energy 2A(P) ex- 
ponentially. We note that the upper branch i s  always 
damped, since decays with phonon emission a re  possi- 
ble. 

Any analytic continuation of the Green's function into 
the energy region c > 2A(P), just as in the case g, '0, 
has no poles on the physical sheet of i ts  Riemann sur- 
face. The neutron scattering probability has in this re- 
gion maxima of finite width. The sign of g, has practi- 
cally no effect on the positions of the peaks in the con- 
tinuous spectrum at high pressures. In contrast to the 
repulsion case, however, the width of the peaks de- 
creases slightly with increasing pressure, and their 
height increases. In general, however, the width of the 
peaks i s  several times larger in the case of attraction 
than in the case of repulsion. The positions of the maxi- 
m a  in the continuous spectrum a re  shown as functions 
of the pressure in hlg. 4 (curve 3). 

The experimental data9 show a decrease of the scatter- 
ing intensity with increasing pressure (at P >  Po). It i s  
possible that this indicates that the rotons a re  repelled. 
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Although, as seen from Figs. 2 and 4, the behavior of 
the spectrum curves are  different in repulsion and at- 
traction, it i s  not always easy to distinguish between 
these two possibilities primarily because of the rather 
low scattering intensities in the region & "  2A. There 
is no doubt, however, that in principle it i s  possible to 
observe the described singularities in experiment. 

We emphasize that, just a s  in the preceding section, 
observation of the predicted phenomena calls for re- 
search at sufficiently low temperature. For  the down- 
ward bend of the Al(P) curve to be noticeable, it i s  ne- 
cessary that the temperature width of the lines be less 
than the characteristic quantity Z&/g4, which we have 
assumed in the calculations to be 0.1 K. The tempera- 
ture width of the lines decreases exponentially with de- 
creasirg temperature (see, e.g., Refs. 11 and 12). At 
T=1.2 K, the half-width is "0.1 K, and at T=0.9 K it 
already one-tenth as small, so  that the predicted phe- 
nomena should become noticeable. 

3. ROTON DAMPING DUE TO "CERENKOV" EMISSION 
OF PHONONS 

According to the experimental data,'3 the group velo- 
city of the rotons, starting with a certain momentum PC 
>Po, reaches the speed of sound c at low temperatures. 
The properties of the spectrum near the threshold be- 
yond which production of a phonon by a quasiparticle be- 
comes possible were investigated in a number of stud- 
i e ~ . ~ ' ' ~ " ~  It was shown, in particular, that near this 
threshold the phonon damping i s  I' a ( p  - It was 
assumed in these papers that the group velocity of the 
rotons only reaches c, but does not exceed it. Accord- 
ing to the data of Ref. 13, however, there i s  evidence 
that when the temperature i s  raised and the energy of 
the roton minimum decreases, the roton group velocity 
exceeds the speed of sound c in a certain momentum in- 
terval. Nonetheless, this question i s  not completely 
clear. In this section we consider the properties of the 
spectrum in the region of supersonic rotons (assuming 
that such a momentum region exists). 

We choose the bare spectrum &,(p) in the form of a 
cubic parabola, whose tangent has a slope equal to c at 
the point PC, 6, and which lies above this tangent in the 
momentum interval pc<P<p:. Below the threshold PC, 
the shape of the spectrum is given by a Landau para- 
bola. Thus, 

At momenta PC< P < P: the rotons can emit phonons. 
We calculate the roton damping by perturbation theory. 
From the momentum and energy conservation laws it 
follows that the roton p can decay into a roton p' and a 
phonon q such that 

The probability of such a process i s  
2n Pd'p'd5q 

dw =- li IV,t lz6(e ( p ' )  +cq-E) - 
(2nA)' ' 

of the operator of the effective interaction between the 
roton and the long-wave phonon i s  chosen in the form1' 

(2nh) ' qc % 
v,,=-i - , 6 P ( )  ( p cos 0 + - - 

c ap (24) 
( p  i s  the helium density and B is the angle between the 
vectors p and q). 

The damping connected with the phonon emission is r 
=liiu/Z. After integrating dw over all possible p' and q 
we get 

where q ,n,, (&,P) and q,,,(&,p) are  determined from the 
condition (22); this yields 

q-=AP+ [ ( A ~ - C A P ) / B I ' " ,  

0, A P C ~ / * ( P , ' - P . )  (26) 
Ap-'Is (pe t -p . )  ( 1+~xs in  cp - cos cp)  , Ap>'/, (p,'-p,) ' 

where have introduced the notation Ap=p - PC and A& = E  

- CC. 

Figure 5 shows the dependence of the damping on the 
momentum p, calculated along the bare &,(p) curve. 
First, near the lower threshold, r increases with in- 
creasing Ap(r a ~ p ~  at AP<<P:-P-~, in agreementwiththe 
results of Refs. 2, 14, and 15), and reaches a maximum 
at Ap=0.85(P:- PC). On the other hand when the momen- 
tum approaches the upper threshold p',, the damping 
tends rapidly to zero: l? a (pb- p)lb. 

We examine now in greater detail the spectrum near 
the upper threshold p',, c',. We shall show that in a cer- 
tain small vicinity of this threshold the spectrum i s  dis- 
torted by a phonon-roton interaction in such a way that 
at the point p:, E: the group velocity of the rotons again 
becomes equal to the sound velocity c. The Green's 
function near the upper threshold i s  of the form 

This corresponds to a threshold type b in ~ i t aevsk i i ' s  
paper.' 

FIG. 5. Momentum dependence of the roton damping, calcul- 
ated along the bare curve co(p). where V is the volume of the helium; the matrix element 
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In the momentum region pi-a2/(c - v,) < p < P i  the 
Green's function (28) has no poles. Nonetheless, the 
probability of inelastic neutron scattering at such mo- 
mentum transfers has maxima at energy values 

e (P) =e.'+c(p-p.') + (c-v,) '(p-p.')'/2a2. (29) 

Above the threshold Pi, C: the equation G-'(p, E)=O has 
real solution, i.e., there exists an undamped spectrum 
& (p) that takes near the threshold (P - p,' <<a2(c - v,)) the 
form 

As seen from (29) and (30), near the upper threshold the 
spectrum of the excitation is tangent to the straight line 
& =&,'+c(P- Pi). We note that near the upper threshold 
the region in which the spectrum differs substantially 
from the bare spectrum &,(p) i s  very small in size. 

A most recent paper' reports an unsuccessful attempt 
to observe roton damping in the investigated region. 
Since the damping r connected with the phonon emission 
does not exceed 10 mK according to Ref. 1, the momen- 
tum region in which the roton group velocity can exceed 
that of sound i s  very small. An estimate with the aid of 
(25) yields 

It may be of interest in this connection to repeat experi- 
ments of the indicated type at higher pressures.  With 
increasing pressure, the effective mass of the roton de- 
creases, and the group velocity increases, and this fav- 
o r s  observation of this damping. 

4. SCATTERING OF NEUTRONS BY ROTONS WITH 
EMISSION OF A LONG-WAVE PHONON 

We consider, at T=O, the scattering of a neutron in 
liquid helium with a momentum loss p, whereby the en- 
ergy loss exceeds somewhat the roton energy &(@) at the 
given momentum. A roton with momentum p - q and a 
long-wave phonon q are  then produced. The diagram of 
such a process i s  obtained from the diagrams of the 
main processacat ter ing with production of one roton- 
by adding an external phonon line with momentum q, 
which branches away from the external roton line. 

The probability of the main process i s  

dwo=wob (Ei-E2-e (p) ) V (2nf2)-Wpp,, (31) 

where El,, and R,, are  the energy and momentum of the 
neutron before and after the scattering, and 9 =I& - p,). 
The probability of a process with additional emission of 
a soft phonon, calculated by perturbation theory, is 

where & =El  - E,, and the matrix element V f i  of the pho- 
non-roton interaction operator i s  given by Eq. (24). In- 
tegrating with respect to q in (32), we obtain 

where v= a ~ / a p .  

It i s  seen from (33) that the probability of production 
of an additional phonon i s  larger the larger the energy 
difference & - ~ ( p ) .  Thus, even at T=O, that line in the 
neutron-scattering spectrum which corresponds to pro- 
duction of one roton has a linear wing on the high-ener- 
gy side. The slope of this wing depends on the momen- 
tum transfer p. This dependence i s  determined by the 
function I(p).  Near the roton minimum, when the group 
velocity i s  low, I($) increases linearly with increasing 
v. When Ivl-c, however, the function I (P)  tends to in- 
finity in proportion to (c - / v I ) - ~ .  Perturbation theory 
cannot be used in this region, since it i s  possible to 
calculate dw, as  a quantity of higher order  than dw,. 

At finite temperature, we express the scattering spec- 
trum in the form 

where ~ = n c l ( p ) / p ( 2 n h ) ~ .  The presence of a linear wing 
leads to a shift of the maximum of the line from &(p)  to- 
wards higher energies by an amount c'=Ky3/2. A nu- 
merical calculation shows, however, that this effect i s  
very small at low temperatures. Thus, at Y "1 K the 
shift of C' near the roton minimum does not exceed 1.6 
mK; it becomes of the order of ~ / 2  only at c - 1 vl= 0 . 1 ~ .  

In conclusion, I am deeply grateful to L. P. ~ i t a e v s k i i  
for constant help and advice. 

')States of a system of two rotons with nonzero total momen- 
tum are  classified by the values of the helicity m, i.e., the 
projection of the angular momentum on the momentum direc- 
tion (for details see Refs. 3 and 4). In the questions consid- 
ered here an important role is played by the sign of the inter- 
action in states with m = 0, a s  will in fact be .implied here- 
after. 

') Such a picture of the spectrum can be regarded a s  the re- 
sult of hybridization between bound states of two rotons 
prodr~ced at  gd < 0, and the one-proton branch of the spectrum. 
We note that ~ i i t t i j  and ZawadowskiB believe thatone can speak 
of such a hybridization regardless of the sign of g4, under the 
condition that the quantity g d e f r  = gq + 2&/[&- Eo(p)I is  nega- 
tive. Tiitti5 and Zawadowski s tar t  here from the premise that 
the two-particle Green's function has a pole 1-g4,ffF = 0. 
Such a terminology, however, seems inconsistent to us. The 
point i s  thatatg, *O the poles of the single-particle andtwo-part- 
icle Green's functions coincide, so that a distinction between 
the s ingle-particle and two-particle excitations can be made 
only in the limit as  g3 - 0. But then the condition for the 
existence of a two-particle branch is precisely a negative 
g4. On the other hand the condition gdeff < 0 is automatically 
satisfied for any part of the spectrum close to 2A. 
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