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We construct exact nonlinear solutions which describe the evolution of the Buneman instability. We show 
that under well-defmed initial conditions a self-similar solution is realized with an explosive increase with 
time of the amplitude of the potential; the formation of short-lived double layers which have been observed in 
numerical simulations is possibly connected with this solution. 

PACS numbers: 52.35.P~ 

1. The standard scheme for  studying the nonlinear 
dynamics of instabilities which i s  based upon the weak- 
turbulence approximation is inapplicable in the case of 
the so-called instabilities with stiff excitations even 
when the amplitude of the excited oscillations i s  finite 
barely above threshold. As an example of such type of 
instabilities one can adduce the modulational instability 
caused by the negative pressure of the plasmons (quanta 
of the Langmuir waves). As a result of the instability 
the plasmons a re  localized in cavitons- regions of a 
lowered plasma density. The localization i s  accompan- 
ied by the collapse of the cavitons to sizes where Lan- 
dau damping of the plasmons trapped in the cavitons be- 
comes important (Langmuir collapse1). Another, not 
less  important example of an instability with hard exci- 
tation i s  the Buneman instability which i s  caused by the 
fact that the pressure in an electron current which 
moves relative to the ions at above-thermal velocity 
(u,> ( ~ / n i ) ' " )  is negative.' Closely connected with the 
dynamics of the Buneman instability i s  the problem of 
the formation, in the plasma which i s  penetrated by the 
electron current, of double layers-regions where the 
charges are  separated by distances of the order of the 
Debye radius and in the boundaries of which the electri- 
cal  potential i s  changed by an appreciable amount com- 
parable with o r  larger than the thermal energy of the 
particles. 

For  the occurrence of a double layer it i s  necessary 
that the electrons be accelerated in the direction in 
which the potential increases. This leads to a decrease 
in the electron density from the cathode end of layer to 
the anode end. This i s  possible only in the case where 
the electron current moves with superthermal speed 
(Bohm condition3), which i s  exactly the same as the con- 
dition for the occurrence of the Buneman instability. A 
numerical simulation of the instability4 has shown that in 
i t s  nonlinear stage the formation of short-lived nonsta- 
tionary double layers occurs in which the drop in the po- 
tential r i ses  with time explosively and reaches a magni- 
tude which i s  at least two orders  of magnitude larger 
than the thermal energy. Such behavior i s  well describ- 
ed by some particular self-similar solutions of the ap- 
propriate hydrodynamic equations: but the problem of 
the conditions for  reaching these solutions was not eluci- 
dated. 

The aim of the present paper i s  to obtain exact nonlin- 
e a r  solutions which describe the evolution of the Bune- 
man instability for arbitrary initial conditions. We show 

that under some well-defined initial conditions solutions 
with an explosive growth of the electrical potential in 
time a re  possible and agree with the numerical experi- 
ment and with the self-similar solutions found in Ref. 4. 

2. Fo r  quasi-neutral perturbations the system of 
equations describing the Buneman instability has the 
form4 

Here I ,  i s  the electron current and no the unperturbed 
electron density. 

Since the characteristic time for the development of 
the instability i s  determined by the inertia of the ions, 
the process i s  slow in the scale of electron times and, 
a s  was already noted in Ref. 2 ,  the flow of the electrons 
can be assumed to be stationary for quasi-neutral per-  
turbations : 

Small deviations from stationarity a re  important only 
for non-quasi-neutral perturbations. 

One can interpret Eqs. (1) to (3) as a system of equa- 
tions of one-dimensional hydrodynamics with negative 
pressure (adiabatic index Y=- 2), the solution of which 
can be obtained by means of a Legendre transformation 
(see Ref. 5). Introducing into the discussion the velocity 
potential v = -  a$/ax one can easily integrate the ion 
equation of motion. The integral of this equation is  of 
the form 

where we have used the notation 

T.+Ti nZ 
ln-. 

The next step in getting the solution consists in chang- 
ing to new independent variables, which we take to be v 
and w.  The function y (u, w ) ,  defined by the relation 

plays the role of generating function for that transforma- 
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tion. Using (4) one shows easily that 

d ~ = -  (x-ut)  du+tdw, 

and, thus, we have the equations 

which we can consider a s  the formulae which change the 
old (x, t )  to the new (v, w ) independent variables of the 
problem. 

The equation for the generating function x(u,w) i s  ob- 
tained from the not yet used continuity equation (2), 
changing in it to the independent variables v,w. The re- 
sult has the form 

n 8 % ~  aZx a x + = , , .  
aw d n / d w d w Z  du2 

(6 ) 

The solution of the nonlinear set of Eqs. (1) to (3) has 
thus been reduced to the solution of the linear differen- 
tial equation (6), for once we know the function y (v, W )  

the transformation formulae (5) determine implicitly 
the solution of the problem v=v(t, x ) ,  w =W (t ,  x). 

The solution of Eq. (6) i s  not particularly difficult. 
For the sake of simplicity we restrict ourselves to the 
case where the threshold for the Buneman instability i s  
well exceeded, when 

m.I.2/2n'>T,+T,. 

Then 

r ~ = n , ( U / ( w + U ) ) ' ~ ,  U=m,1.2/2m,nO2. 

In that case Eq. (6) can be written as follows: 

Differentiating (7) with respect to w and introducing the 
function F=ax/aw, we have for it the following equation 
in the variables u =[2 (w + u ) ] ' ~  and vf=iv 

aZF aaF 
du2 av'Z -O. 

The general solution of this equation has the form 

Heref, andf, are arbitrary functions. 

From (8) it follows that 

x= jd~c'(~,[u+i(2(w'+~))'~"]+f,[v-i(2(w'+U))'"]}+G(v) 
0 

One finds the form of the function G(v) from Eq. (7). 
Evaluating d 2 ~ / d v 2  from that equation and integrating 
over v we get the following result for the function ax/av 
in which we are interested and which enters in the trans- 
formation equation (5): 

u*=vzti(2 ( w +  U ) ) ' " .  

The functions f,, f, a re  in each actual problem determin- 
ed using the set of initial o r  boundary conditions. 

In the present paper we consider two such problems. 
One of them, considered in the present section, is the 

time evolution of the oscillation mode which ar ises  from 
an initial harmonic density and ion-velocity distribution. 
In such a solution the reflection of the electrons from 
the region of negative values of the potential, which 
plays the role of a potential energy hump, limits the 
growth in the amplitude of the potential ecp, to values 
comparable to the initial energy of the electron current 
meu;/2. 

In accordance with the above remarks we look for the 
solution of Eqs. (1 ) to (3), linearized in the amplitude of 
the perturbations, in the following form: 

~ ~ = v ~ e ~ '  cos xx, 

6n w Y O  -=--=- ,lze" sin x z ,  
no 2U (217) 

6=w(2u)lh i s  the growth rate of the instability. 

It follows from the solution that in linear stage of 
the instability the following relation i s  satisfied: 

By matching with the given linearized solution we deter- 
mine the functions f,,f, in the nonlinear solution (8), (9). 
As a result we have 

ax 1 u-if u+ if -=- - 
dw 2x(2U)'h(1n vo + l n - } '  Y O  

-- = - E arc s i n 2  
a v  (us+?)'1S ~ ( 2 u ) " 9  

where we have used the notation 

Substituting (11) into the transformation equations (5) 
and inverting them, we get the following solution of the 
required problem: 

(12) 

eq/m.=' / ,  {v.eat sin [w- u?.& (2 U )  'Iz ] - ( ~ u ) x } '  -u, (1 3) 

(14) 

The exponential growth with time of the perturbations i s  
thus conserved also in the nonlinear stage of the insta- 
bility, but for large amplitudes the symmetry between 
the positive and negative phases of the potential is lost 
(see Fig. 1). The limitation on the amplitude in the giv- 
en regime i s  connected with the appearance of electrons 
which are  reflected from the potential energy hump-an 
effect not taken into account in the original hydrodynam- 
ic equations (1) to (3). The condition for reflection of 
the electron current i s  

electrons 

FIG. 1. 
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(u, i s  the unperturbed current speed), and the corre- 
spondirg maximum amplitode of the potential reaches 
the value ecp,,., = im,u;. 

The given solution describes quite satisfactorily the 
initial evolution of the Buneman instability in the numeri- 
cal experiment, the preliminary results of which were 
given in Ref. 4. In that experiment we studied the be- 
havior of a plasma in a plane one-dimensional layer of 
size 100 Debye lengths under conditions of continuous 
injection into the layer of an electron current with speed 
uo=l  . 8 ( ~ , / r n , ) ' ~ .  The Buneman instability developed in 
the plasma and led to a growth of micropulsations of the 
electrical field with time. At a sufficiently large ampli- 
tude of the field the harmonic with a wavelength compar- 
able to the length of the computing interval, which can 
be assumed with a high degree of accuracy to be quasi- 
neutral, splits off in the spectrum of the oscillations. 
The amplitude of the potential in this stage grows with 
time exponentially until there i s  a reflection of the elec- 
tron current from the minimum of the potential. The 
maximum value of the amplitude of the potential in this 
stage increases to a magnitude ecp,&,= (5 to 6 ) x  T, , which 
agrees with the analtyical result ecp,,,,,= $ m,u& 

This stage, the main consequence of which i s  the ap- 
pearance of a large number of reflected electrons, plays 
the role so  to speak of a preparation for the main (ex- 
plosive) phase of the Buneman instability. The spatial 
distribution of the potential in this phase i s  typical for 
a double layer, i.e., the region of negative values which 
leads to a reflection of the electron current vanishes. 
The amplitude of the potential increases with time ex- 
plosively, cpoa (to- t)-', to values ecp,,,,," ( 1 0  to 300) 
XT,, followed by a collapse of the instability. As a re- 
sult of this process, a short-lived double layer i s  form- 
ed, at the limits of which the electrons are  accelerated 
up to energies about two orders of magnitude larger 
than the injection energy. 

3. In this section we consider the solution of the or- 
iginal set of Eqs. (1) to (3) in the form of dynamical po- 
tential bursts which have the character of an explosion 
in which the amplitude ecp, increases to values consider- 
ably exceeding the initial energy of the electron current. 
Such a solution i s  possible when there i s  no reflection 
of electrons from the potential energy hump and, hence, 
no negative phase in the spatial distribution of the poten- 
tial. The initial conditions leading to explosive bursts 
of the potential correspond to the presence in the elec- 
tron density distribution of a gap 

In the region of the gap, the electrons a re  accelerated; 
this is due to a local increase in the potential 

m,ueZ n,' m.u,' z 
e V - 7  (z -~)  m T e / c h - .  L 

In the experiment, such regions of local electron ac- 
celeration a re  produced due to pinching in the electron 
current; to obtain this one uses a strong longitudinal 
magnetic field. Double layers just in the pinching re- 
gions occur in the first  place (see Ref. 6). 

tion for the velocity in the form 

Below we show that the main singularities of the solu- 
tion that develops from the initial conditions (15), (15'), 
namely an explosion of the amplitude of the solution with 
time, a spatial distribution of the density and the velo- 
city, and others is the same as  in the numerical simu- 
l a t i ~ n . ~  We turn to obtaining the nonlinear solution. 

It follows from the transformation equations (5) that 
the initial conditions (15), (15') in the case considered 
lead to the following equations for fl,f2: 

(17) 

Using the conditionf,(it)=- fl(- i t )  in (17) and changing 
to a new independent variable (=[2 (w +u)]"' - (2u)lh, we 
get for the function Z ( ( )  which i s  defined by the relation 

I 

Z ( e ) =  j d t f , ( i t ) ,  
0 

the following differential equation: 

The solution of this equation leads to the following 
formulae for the derivatives ax/aw and ax/av:  

ax iL  -=-- ,,JArch ~ - - A r c h  z + ) ,  
aw 2 ( 2 u )  (1 9) 

ax L iu iv 
-= --{ ( I + - ) A , ~ ~ - +  

(2  U )  '" 
) Arch z+ 

au 2 

-- 
2 

arc sin z--'- 2 arc sin z+-' - - 
2 } f", 

where 

z ,= (U/2 )"e [  (2 (w+U))"+ iv -  (2U)'"I-'.  

The terms in the formula for ax/av which are propor- 
tional to & are important only in the vicinity of the singu- 
larity, when the amplitude of the solution i s  rather 
large. Hence we can simplify them, assuming that lz;'l 
>>I. In that case 

arc sin z--'=i-' In (2iz--I),  arc sin z+-'=i-' 1n ( i z+ /2 ) ,  

where the branches of the arcsin function are  chosen us- 
ing the condition that the solution must be single-valued 
in x .  This solution i s  determined by the transformation 
formulae which connect the variables x and t with the 
hydrodynamic characteristics of the plasma n and v :  

L t= - i -  
2(2U)'" 

{Amh z--Arch z , ) ,  

iLe z  L 
x- - I n 2  = - {Arch z-+Arch 2,). 

4 z- 2  

Inverting the transformation formulae we get the final 
solution of the problem considered: We choose for the sake of simplicity the initial condi- 
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I 

FIG. 2. 

L e  v 
x'=x- - arctg 

2 ( Z ( w + U ) ) ' " - ( 2 U ) ' "  ' 

The main features of the solution given here i s  the ab- 
sence of a negative phase of the potential (and hence of 
reflected electrons) and the explosion of the amplitude 
of the solution with time. The time of the explosion i s  
t , = r ~ / 2 ( 2 ~ F / ~ ,  and close.to the singularity (x*<< L, 
tz t0)  the solution can be simplified and written in the 
form 

n 
(25) 

L e  x'lL 
x'=x- - arctg 

2 n ( k t )  / 2 t ,  . 
The nature of the solution depends essentially on how 

closely we approach the singularity, i.e., in fact on the 
magnetide of the deviation to - t. When (to - t)/to >> & the 
last term on the right-hand side of Eq. (27) i s  negligibly 
small, i.e., xf"x and Eqs. (25), (26) describe the ex- 
plosive growth of the amplitude of the density variation 
and the velocity with time 

while the characteristic spatial dimension decreases lin- 
early with time 

In the opposite limiting case (to - t)/to<< & the term x* 
in Eq. (27) i s  negligibly small, i.e., 

and we get from Eqs. (25) and (26) a self-similar solu- 
tion with separable variables 

I 

FIG. 3. 

The dynamics of the spatial velocity and potential dis- 
tribution i s  illustrated in Figs. 2 and 3 for the solution 
obtained here and the law for the explosive growth of the 
potential amplitude rp " (to - t)'2 and the spatial distribu- 
tion of the potential agree well both with the results of 
the numerical simulation of Ref. 4 and with the self-simi- 
l a r  solution found there. 

We have shown in the present paper that such a solu- 
tion can be realized, traced the dynamics of reaching 
the self-similar regime, and we found the connection of 
the main characteristics of the solution with the initial 
conditions. 

We must emphasize that the solution (25) to (27) i s  not 
applicable in the immediate vicinity of the singularity 
t - to, since the quasineutrality condition a2p/ax2 << 4ren, 
used in the initial Eqs. (1) to (3), i s  then violated. One 
shows easily, using the solution (25) to (27), that the 
condition for the violation of the quasineutrality has the 
same form 

a s  in the case when this violation occurs in the initial 
phase of the self-similar solution when to - t >> &to; w, 
= (4ae2no/m,)1/2 i s  the plasma frequency. 

Finally, the solution obtained for the potential i s  re- 
versible (cp - 0 as  x- * a). Irreversibility, the jump in 
the potential which i s  characteristic of a double layer, 
ar ises  in those cases when the energy for the particle 
acceleration in the double layer can be borrowed either 
from an external current generator4 o r  from an external 
electrical field (fixed potential difference at the bound- 
ar ies  of the plasma layer). 
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