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An analysis is made of the consequence of the experimentally observed exponential fall of the intensity in the 
far wings of lines representing molecular scattering of light in gases and simple liquids. The physical origin of 
the fall is demonstrated to be the dynamics of the initial collisionless evolution of the scattering system. A 
study is made of the additional restrictions on the generalized susceptibilities and Green functions which 
follow from the existence of an initial collisionless stage in molecular dynamics. The restrictions reduce to the 
requirement of special high-frequency asymptotics of spectral functions which determine the frequency- 
dependent kinetic coefficients of the scattering system. A series of model functions possessing all the necessary 
properties is suggested. 

PACS numbers: 51.70. + f, 78.40.Dw, 33.80. - b 

1. INTRODUCTION 

Many experimental investigations of the far  wings of 
lines representing the molecular scattering of light in 
gases and simple liquids have appeared in recent years 
and they have given unexpected results (for earlier work 
see Refs. 1-5; some of the more recent work with the 
relevant literature citations can be found in Refs. 6-9). 
The main results can be summarized as  follows: in a 
very wide range of frequency shifts Aw, tens of thous- 
ands of time greater than the average line width, and for 
all the polarization components the fall of the intensity 
i s  basically exponentia! 

I ( A o ) - l A o l q e x p  ( - z lAu/ )  (1 

with approximately the same value of T and similar val- 
ues of the general coefficient in Eq. (1) for all the po- 
larizations. Therefore, the degree of depolarization i s  
comparable with unity instead of the usual value of 
at low frequencies. There have been no reports of any 
faster fall of the intensity in the line wing than that pre- 
dicted by Eq. (1). The parameter T varies from sample 
to sample, and depends on temperature and pressure, 
but it i s  always comparable with the characteristic time 
of molecular motion which i s  sec for liquids, 
"10-11-10-'0 sec for gases. At low temperatures there 
i s  a considerable difference between the intensities of 
the Stokes and anti-Stokes line wings due to quantum- 
statistical effects. 

These results a re  incompatible with the existing semi- 
thermodynamic relaxation theory of the scattering of 
light, which i s  known to be invalid for short times" and 
which needs revision. Our aim will be to identify and 
consider the nature of the important information provid- 
ed by the new experiments, and to attempt a provisional 
general analysis of the problem. 

Let us assume that A, B, . . . are  the densities of the 
dynamic variables describing the collective motion in a 
medium and contributing to the scattering of light, and 
that X&(o, k) is the dissipative part of the matrix of the 
generalized susceptibilities associated with these vari- 
ables. Then, the intensity of light scattered through a 
certain angle i s  given by the following expression, which 
is accurate apart from a universal factor, 

where Q,(k) are  slowly varying functions of w, which 
are  equal to the products of the mechanooptical coeffi- 
cients and the appropriate functions of the polarization 
angles and of the scattering angle. Equation (2) i s  sim- 
plified by dropping the polarization indices; P= (k,T)-'; 
k is the change in the wavevector a s  a result of the scat- 
tering; o=- Aw. In terms of the above equation, the ex- 
perimental results reduce basically to two items: 1) the 
functions ~" (w,  k )  have high-frequency asymptotes of the 
type 

,-(,,k)-,,t ,..--( I + " + . . . ) ,  ~04, 
0 

(3) 

at least at sufficiently low values of k; 2) all the main 
terms in the sums of Eq. (2) are  of the same order of 
magnitude in the range of validity of the asymptote (3). 

2. DYNAMIC INTERPRETATION OF THE 
PARAMETER r 

The identity of the law (3) describing the high-frequen- 
cy behavior of the functions ~" (w,  k) in the case of liquids 
and gases means that this law must be based on general 
statistical relationships independent of the selection of 
the model of thermal motion of the medium o r  the mech- 
anism of the scattering of light. The following considera- 
tions demonstrate the nature of the necessary general 
relationships. 

Let us assume that A&) i s  the operator for one of the 
quantities occurring in Eq. (2) and A(t, k) i s  i ts  Heisen- 
berg representation. We shall introduce an autocorre- 
lation function 

where H i s  the time-independent Hamiltonian of the sys- 
tem; V i s  the volume of the system; the angular brack- 
ets represent averaging over an equilibrium Gibbs en- 
semble. The limit V-rn  i s  reached for constant values 
of the density o r  chemical potential. For simplicity, 
the lower indices A, B, . . . and the parameter k a re  
omitted; moreover, i t  i s  assumed that going to the lim- 
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i t  of V i s  included in the definition of the averages. of the products of certain operators taken at a given mo- 

We shall begin by proving f i rs t  a number of points 
which will be needed later. It i s  known (for example 
from the experimental results) that the spectral function 
J(w) has asymptotes of the type 

I ( o ) - A  exp { - z o - Q ( o ) ) ,  a++- ,  

J ( o ) - A  exp { - ( r f p f r )  101-Q(0) ) ,  o+-m,  

with I Q(w)/wl- 0 in the limit we*  -. It then follows 
from simple considerations that the correlation func- 
tions 

on the complex t plane are analytic in the bands (r+Pfi) 
< Imt< 7 and -r < Imt < r +BE, respectively. This guaran- 
tees the existence of moments of any order  of the spec- 
tral  function 

and for high values of n, we obtain 

U 

The second term in Eq. (7) is unimportant in an asymp- 
totic estimate of the integral in this equation, so  that 
we shall assume that 

An! 
N ( n )  - (,+,, ,,,,,)"+~-P {-Q(?) + ?Q, (t)) 

where x, i s  defined by 

In the classical limit it follows from Eq. (7) that the on- 
ly nonzero moments are  even. 

It is clear from Eq. (5) that in the case of sufficiently 
small values of t ,  we have the expansion 

whose convergence radius is 

On the other hand, Eq. (4) and the conditions for the sta- 
tionary nature of the process A(t) yield directly the ex- 
pansion 

where the upper indices in parentheses give the orders 
of the time derivatives: 

i i ' 
~ - - - [ H A ] ,  A ( % ) =  (T) [ H [ H A l ] . e t s .  (11) A'')=A, A' - ti 

Comparing the series (8) and (lo), we find that 
M 2%- --(A(")A+(%)) .~z,+i=-i(A(n+I)A+(")) (12) 

- 
ment, and a re  therefore the equilibrium characteristics 
of the system describing i ts  reversible properties. 
Therefore, the whole ser ies  (8) represents, within the 
limits of its radius of convergence, the initial and time- 
reversible (collisionless) stage of the evolution of the 
system. 

We shall now obtain a result which i s  in a sense the 
reverse of that just obtained. Let us assume that R ,  * 0 
and that this quantity i s  finite. We shall now consider 
what restrictions this imposes on the behavior of J(w) 
in the limit w-*. 

The series representing the function @(+'(t) converges 
if M ( n )  r ises  a s  r ( n  + 1) at highvalues of n. For an arbi- 
t rary  value of n the n-th moment can be represented in 
the form 

The above expression defines (for given values of M,) 
some function n(n) for a discrete set n =0,1,2,  . . . . 
The requirement of a finite convergence radius imposes 
the following restriction on the behavior of n(n) at high 
values of n: 

We shall now extend the definition of the function n(n) to 
values of the complex argument A such that for A=n we 
have Q(A)=n(n) and 

Since Eq. (5) i s  the definition of the direct Mellin trans- 
formation, Eq. (5) permits the inversion 

1 '+'" 
I ( o ) = -  J p.(h)o-"a. 

hi 
c - r =  

(14) 

The integral on the right-hand side of Eq. (14) i s  deter- 
mined easily by the steepest-descent method. The sad- 
dle point A,  i s  found using Eq. (13), and certain trans- 
formations give the asymptotic estimate 

J ( o ) - e x p  { - ~ + + t ( ( = 6 ) )  in the limit as 0 '8. (15) 

The following notation i s  used in Eq. (15): 

We shall now consider the physical meaning of the 
time T .  It follows from the above discussion that 7 de- 
scribes the duration of the prekinetic stage of the evolu- 
tion of the system. During this stage the properties of 
the system can be described by the ergodic theory." 
The main concept in this theory i s  the mixing time in 
the phase space r,, known a s  the stochastization time. 
We can assume that the times rand r, a re  identical?' 
I t  i s  thus possible to obtain information on a fundamen- 
tal phenomenon in statistical physics, which i s  the phase 
mixing in the ergodic theory, by investigating the pro- 
file of the high-frequency scattering wing. 

The temperature and density dependences of the 
stochastization time r, for a hard-sphere gas a re  known 
from Ref. 11: 

rs=t0/1n (f) ; 
so that all the moments M,, are the equilibrium averages 
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here to and I are, respectively, the mean free time and 1. If P '1, the ser ies  (8) and (10) converge absolutely 
the mean free path; d i s  the diameter of a hard sphere. for any value of t and the reversibility of the evolution 

- ,  

A comparison of the experimental values of r for rare  
gases with the corresponding values of r, reveals full 
agreement.12 We may assume that in the more interest- 
ing case of a liquid the exponential asymptote of the scat- 
tering wings represents the phase mixing (stochastiza- 
tion) processes in the scattering system. 

of the system i s  retained indefinitely. Obviously, we 
are  dealing here with idealized systems without any in- 
teraction between particles o r  excitations, with systems 
such a s  an ideal quantum o r  classical gas, a perfectly 
harmonic crystal, etc. All these cases have been 
thoroughly studied and, naturally, they give values p 
>1. For  example, if we select A to represent fluctua- 
tions of the density in a classical ideal gas, we easily 

3. DERIVATION OF THE EXPONENTIAL LAW OF THE find p=2, and so on in other cases. 
FALL OF THE INTENSITY 

The above discussion can be reversed and an attempt 
can be made to obtain the exponential law describing the 
fall of the spectral intensity with rising frequency from 
the general concepts of statistical physics. A fully rigor- 
ous derivation meets with considerable difficulties, but 
the qualitative aspects seem to be quite clear.  

First  of all, we note that almost all the approximate- 
ly soluble physical problems relating to nonideal sys- 
tems do not even give an asymptotic expansion of the 
type (4) for the correlation functions. This i s  due to the 
absence of the averages on the right-hand side of Eq. 
(12) resulting from the use of models with nonanlytic 
contributions to the Hamiltonian (particles with hard 
cores and other types of discontinuous interactions in 
the coordinate o r  momentum space) o r  due to unjustified 
extrapolation of the phenomenological form of correla- 
tions from the range of long times to t-0, which makes 
the correlations behave nonanalytically near t=O [factors 
of the exp(- I t1/7) type then appear]. We shall be inter- 
ested in the exact correlation functions of real  systems 
which obviously c a ~ o t  have such properties. 

We shall assume that the Hamiltonian of the system 
under discussion i s  either rigorously analytic in respect 
to the particle coordinates and momenta, o r  it contains 
only such singularities which give rise to commutators 
(11) in a certain class of generalized functions, so that 
all the averages on the right-hand side of Eq. (10) (in- 
cluding those in the limit V-*) are finite. It then fol- 
lows from Eq. (12) that there i s  an infinite sequence of 
moments M,, and the function J(w) in Eq. (5) should de- 
crease in the limits w-*- faster than any negative ex- 
ponent of w. A fairly general estimate corresponding to 
large positive values of w i s  given by 

J(o) -const. oc exp (-ao') 

with certain positive constants a and p. In the case of 
high values of n, i t  follows from Eq. (5) that 

Hence, the convergence radius of the ser ies  in Eq. (8) 
is 

Bearing in mind the reversibility of the evolution of 
the system described by the ser ies  (8), we find that the 
system can behave in three ways depending on the value 
of p. 

In real systems after going to the limit of infinite di- 
mensions, the interaction between particles o r  excita- 
tions results unavoidably in dissipation processes which 
limit the duration of the collisionless stage. According 
to Eq. (17), this imposes serious restrictions on the 
possible values of the parameter p for real systems: p 
GI. 

2. If p = l ,  the reversible collisionless stage of the 
evolution of the system has a finite duration ?=a, and 
i t  i s  followed by a dissipative stage.') We may assume 
that all real systems belong to this "normal" class. If 
we redefine a- r and c - q for p =1, we are  faced with 
the problem already discussed in connection with the ex- 
perimental results. Naturally, the value of T i s  com- 
mon to all the properties A ,  B, . . . of a given system, 
whose dynamic behavior is governed by the same gener- 
al type of interaction (the same group of terms in the 
interaction Hamiltonian). This agrees perfectly with 
the experimental observation of the constancy of the pa- 
rameter r in Eq. (1) for all the polarization components 
of the scattered light. 

3. If p < l ,  the series (8) and (10) diverge for all the 
values t#O and they a re  only asymptotic. The collision- 
l e ss  stage of the evolution of the system i s  not observed 
in the limit V - a .  No real systems exhibit this proper- 
ty, but without a further special analysis we cannot ex- 
clude this possibility.2) 

We can thus see that the exponential asymptotes (3) 
can be regarded, from the theoretical point of view, a s  
a natural and universal property of real  systems reflect- 
ing the occurrence of a reversible collisionless stage of 
the evolution lasting for a finite time. This result can 
be strengthened in the following sense: the simple ex- 
ponent p = l  in the exponential function of Eq. (3) repre- 
sents not only an approximate but also the exact order 
of growth of the function l/J(w). We can easily see that 
the replacement of the simple exponential function with 
theUrefined" form exp[-~u)l(w)], where l(w) i s  any func- 
tion rising monotonically but slowly at high values of w, 
gives R,=-  for the radius of convergence of the series 
(8) if I(w) i s  a rising function, and R,=O if I(w) i s  a fall- 
ing function. It follows that any refinement of the sim- 
ple exponential function takes the system in question out- 
side the normal class, exactly a s  a replacement of P = l  
with p a l ,  and, therefore, it i s  not permissible. 

We can formulate the problem of reconstruction of the 
functions J(w) o r  ~ " ( w )  from the moments M, found using 
the experimental results. Then, the Carleman theorem 
on the classical problem of moments13 shows directly 
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that the cases when p > l  in Eq. (13) belong to the deter- 
minate problem of moments, whereas the case P <  1 be- 
longs to the indeterminate problem. This provides addi- 
tional support for the physical interpretation of the types 
of behavior considered above. 

We shall conclude by noting that the results of the last 
two sections, given explicitly only for the diagonal ele- 
ments of the matrices J,(o) and x&(o), a re  readily 
generalized to these matrices as a whole and, there- 
fore, can be extended to all the components of the scat- 
tered light in accordance with Eq. (2). 

4. HIGH-FREQUENCY BEHAVIOR OF BREADTH 
FUNCTIONS 

Let us  assume that x,(z, k)  is the matrix of the gen- 
eralized susceptibilities of the same set of quantities 
as  above, considered here as a function of a complex 
frequency z =  w+ip. Omitting again the indices and the 
parameter k, and introducing as usual the susceptibility 
~ ( w ) = ~ ' ( w ) + i ~ " ( w ) ,  we find that 

It follows from Eq. (2) that the above special nature of 
the asymptote of the function J(w) imposes restrictions 
on the class of possible functions ~ ( z ,  k), which are ad- 
ditional to the familiar conditions. The functions x(z,k) 
differ only by the constant coefficients from the retarded 
commutator Green functions in the (z, k)  representation, 
and the latter are  related simply to other types of the 
Green functions in the same representation. Therefore, 
i t  i s  found that the various Green functions for the quan- 
tities A,  B, . . . describing the collective processes in 
the investigated system subject to additional restrictions 
of exactly the same type as  those applicable to the gen- 
eralized susceptibilities. 

It i s  natural to represent the generalized susceptibilit- 
ies of the Green functions in terms of the breadth func- 
tions. Let us assume, for example, that are  dealing 
with the diagonal matrix element x,(z) corresponding 
to some diffusional o r  relaxational mode of motion. We 
then have the standard representation in the form 

In the theory of the scattering of light only the small val- 
ues of k are  important. If we expand r ( z ,  k)  and restrict  
ourselves to the lower powers of k2, we obtain 

for the diffusional and relaxational modes, respective- 
ly, where v and 7,  are  some coefficients whose meaning 
is self-evident. The function A(z ) has a representation 
analogous to Eq. (18): 

and on the real axis this function i s  given by 

The spectral function y0(w) is real, nonnegative, and 

even: yo(- w)= y0(w). Now, these familiar properties 
a re  supplemented by the requirement of an exponential 
fall of increase in w: 

In fact, i t  follows from Eq. (19) that, for example, for 
a diffusional mode of motion 

vkZ ' yo(z)dz '+ , -, 
x f t ( a ) =  v E a y o ( a )  [b -- It f ) " I, '"(a) I-: (24) 

and at high values of w, the required asymptote i s  
v k 2  

%"(a )  - - y o ( a )  - v k ' ~ " - ' e - ~ ~ .  
a 

(25) 

In the case of a relaxational mode of motion, Eqs. (24) 
and (25) should be modified by replacing vk2 with 1/7,. 

Similarly, in the case of the wave mode of motion, we 
have the standard representation 

If we assume that, at low values of k, 

oo(k )  =ck, r(z, k )  =kkzy(z ) ,  y (0 )  =I, (27) 

i t  follows from the previous condition (23) that 

If for the mode in question the functions wok) and r (2, k) 
have nonzero limits for k-0, only the coefficient in 
front of the frequency-dependent factors changes in Eq. 
(28). It should be noted that the functions yo(w) and the 
numbers q will naturally be different for different prob- 
lems. 

At low values of w o r  z, the property y(0)=1 means 
that we obtain the usual results for the generalized sus- 
ceptibilities in the limit of low values of k and w, which 
are  well known from the phenomenological theory. 

In general, the arbitrary functions xAB(z, k), which 
may be encountered in the scattering of light, can be 
represented by simple combinations of two typical func- 
tions given by Eqs. (19) and (26). Therefore, we always 
find that the requirement (23) applicable to the width 
functions is necessary and sufficient to ensure the re- 
quired asymptote of the functions ~ ( z ,  k). This i s  thus 
the necessary additional condition that the generalized 
susceptibilities o r  Green functions have to satisfy. 

By way of illustration of possible permissible functions 
y0(w), we may mention all functions of the type 

where I ,(%) are  modified Bessel functions and v i s  a real 
quantity. All of them have the necessary properties and 
are  characterized by the asymptote 

The functions y U ( z )  generated by them from Eq. (21) are 
found to be, after analytic continuation to the half-plane 
Im(z) < 0, transcendental meromorphic functions with an 
infinite ser ies  of simple poles located on the negative 
imaginary half-axis at asymptotically equidistant posi- 
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tions. For v =* ;, the functions y ' ( 2 )  can be expressed 
quite simply in terms of the logarithmic derivative of 
the r function. 

We can show that, in  general, the requirement of an 
exponential fall of the functions ?',(LO) on increase in w 
generates functions ~ ( z )  whose all distant singularities 
approach asymptotically the negative imaginary half- 
axis (or lie on this axis), and have an asymptotic uni- 
form distribution. This means that the functions x(z,k) 
have the same properties, at least at low values of k. 

5. CONCLUSIONS 

The main and direct conclusion of our study relating 
to the spectroscopy of the molecular scattering of light 
i s  that the exponential profiles of the f a r  wings of the 
scattering lines represent the initial reversible and col- 
lisionless stage of the evolution of the scattering sys- 
tem. The exponential line profiles are  not related to 
any specific mechanisms of collisions (or interaction) 
of particles in the medium o r  any specific scattering 
event, and in theoretical investigations they should be 
obtained for any correctly selected model of the process. 
A study of the scattering spectra in the transition region 
with moderately large frequency shifts, correspondingto 
the dynamics of decay during the collisionless stage and 
transition to the hydrodynamic stage of the molecular 
motion, would give more interesting physical results. 
Unfortunately, systematic investigations of this kind 
have not yet been made. 

An equally important conclusion of our work i s  that the 
scattering line profiles should be described by transcen- 
dental meromorphic functions. For comparison it should 
be notedthat in semithermodynamic theories any profile 
i s  interpreted a s  a super-position of real relaxation pro- 
cesses. A comparison with the experimental results then 
frequently gives suchshort relaxation times that they 
clearly lie outside the range of validity of the thermo- 
dynamic approach. 

In the theory developed by us each of the functions 
xAs(z,k) can also be expanded as an infinite ser ies  of 
elementary fractions on the basis of the Mittag-Leffler 
theorem. However, only one characteristic time T o r  
several such times a r e  retained and the ser ies  a s  a 
whole describes one o r  several processes, and not an 
infinite set  of processes. 

It seems to us that the above and related considera- 
tions together with rigorous methods of statistical mech- 
anics, should be sufficient to develop a complete and 
correct  theory of the spectra of the molecular scatter- 
ing of light in gases and liquids with one o r  few atoms 
per  molecule. 

In statistical physics itself the main conclusion follow- 
ing from the above analysis i s  the feasibility of deriving 
simple laws for the asymptotic behavior of the general- 
ized susceptibilities and Green functions in the many- 
body problem at the high-frequency limit. If k-0, then 
fo r  a wide class of systems, i t  follows from the above 
analysis and from the experimental results that the law 
reduces basically to an exponential decrease in the dis- 
sipative parts of the generalized susceptibilities at high 
real frequencies. It would be highly desirable to investi- 
gate asymptotic laws of this kind for arbitrary values of 
k and different classes of the system. The considera- 
tions given in Sec. 3 make it very likely that there should 
be some universal exponential law applicable to all the 
normal systems. 

 ore rigorously, the above analysis shows only that the 
duration of the collisionless stage is  no l e s s  than Rt .  We 
can identify these two times and leave open the question of 
possible pathological cases,  when they differ significantly. 

')The values p < 1 were obtained theoretically in Ref. 2 only 
for a very rough estimate of the "close-collision" effect in 
the case  of depolarized scattering of light in a gas. These 
values a r e  obtained on the basis of the most naive d e s c r i p  
tion of the elasticity of electron shells of atoms with the aid 
of the Lennard-Jones potential, and the results a r e  unreliable. 
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