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Multiphoton processes in undulators with plane polarized magnetic field are considered. It is shown that the 
use of strong magnetic fields in the undulator, for beams with relatively low energy (5-15 MeV), makes it 
possible to increase substantially the frequencies of the amplified electromagnetic waves without noticeably 
decreasing the gain. 

PACS numbers: 42.55.Bi 

1. INTRODUCTION 

The operating principle of free-electron lasers  i s  
based on the interaction of a beam of relativistic elec- 
trons with the stationary periodic magnetic field of an 
undulator. The development of lasers  of this type was 
reported in a number of papers.'-4 One of the reasons 
interactions of the free-electron laser  i s  a possibility 
of regulating the lasing frequency by varying the elec- 
tron energy. This also raises hopes of advancing into 
the ultraviolet region. 

At high frequencies, however, the gain obtained by 
perturbation theory in relatively weak fields of the undu- 
lator decreases with increasing frequency w of the am- 
plified wave like w-, (Refs. 5,6). Therefore any method 
of increasing the gain in the infrared, optical, and ultra- 
violet bands i s  of interest. In particular, it makes 
sense to consider multiphoton processes, when the un- 
dulator field parameter [=e~ ,X, / rnc~21  (H, i s  the am- 
plitude of the undulator magnetic field, A, i s  its period, 
and m i s  the electron mass). 

a r  polarization); A, and A, are  the corresponding ampli- 
tudes; k,= (O,O, O,q,) and k = (w, k) a re  the 4-momenta of 
the undulator field and of the wave respectively, q, 
=2n/A,. We use in (1) the usual notation for the scalar 
product of 4-vectors: kx= (kx)= w t  - k. r. 

As the basic equation, neglecting small  spin correc- 
tions, we use the Klein-Gordon equation in fields A,,,(x). 
The dimensionless parameter 5= eA,/m, which charac- 
terizes the intensity of the interaction of the electron 
with the undulator field, i s  assumed to be 21 and, ac- 
cordingly, we take into account the field A,(x) in all or-  
de r s  of perturbation theory. We assume the field of the 
wave A,(x) to be weak enough and consider it in f irst  or-  
der  of perturbation theory. 

The undulator field modulates the \k function of the 
electron in  accordance with the equation 

The solution of Eq. (2) i s  given by a function of the types 

The saturation of the intensity of the amplified elec- y = , - . ~ y ( ~ , ~ ) = ( ~ ~ ~ ) - ~ l p r p  
tromagnetic wave in the case of a helical magnetic field -- - - 

of the undulator was considered by McIver and Fedorov.? p=p + - eZA? 
4(pkO 

(3 ) 
In the present paper, the gain i s  calculated within the 
framework of a quantum-mechanical description of the 

where 7, i s  the average kinetic 4-momentum of the elec- behavior of the electrons in  specified classical fields. 
tron; p= (c, p) i s  the 4-momentum of the free electron The wave function of the electrons in a strong magnetic 
(when the field i s  turned off). The function (3) corre- 

field i s  obtained without using perturbation theory; the 
sponds to normalization of the wave function of the free field of the amplified wave is regarded as weak, and the 
particle to one particle in the volume V. 

probabilities of the induced radiation (absorption) are 
calculated in first-order perturbation theory with re- It should be noted that the function (3), in contrast to 
spect to this field. In the derivation of the equations it the solution of the relativistic equation for a traveling 
i s  assumed that the one-electron approximation cri ter-  wave,' i s  an approximate solution of (2). When (3) was 
ion is satisfied, so that the considered effects are  pro- substituted in (2), we left out small terms "eA,p,/p; 
portional to the first  power of the electron density N, in and q,/pl,, where P, and PI ,  are the components of the 
the beam. electron momentum p perpendicular and parallel to the 

undulator axis. The solution (3) does not contain the re- 
2. BASIC EQUATIONS flected wave that ar ises  when the particle enters the 

magnetic field of the undulator. In the case of collinear We consider the motion of a relativistic electron situ- 
geometry, which will be considered from now on, the ated in the spatially periodic magnetic field of an undu- 
reflected wave can be neglected if the criterion 1'/y2 

lator and in the field of a traveling electromagnetic 
<< 1 i s  satisfied (Y =c/m). 

wave. We define the 4-potentials of the fields by the 
equations (E= c=  1) In the case of an helical undulator field the function 

A,  ( x )  =(O, 41 cos qoz, 0 , 0 ) ,  
(eA,)' does not contain a spatial dependence, and allow- 

('' ance for the corresponding term in (2) leads only to a 
A2 ( x )  ='/,A,[e2e-*+c.c.], renormalization of the electron mass. In the case of a 

where el = (0, ex, 0,O) and e,= (0, e) are  the unit vectors of plane-polarized magnetic field this function contains a 
the polarization of the fields of the undulator and of the periodic dependence on the coordinate, which i s  in fact 
wave, respectively (we are  considering the case of plan- the cause of the multiphoton effects in strong fields. 

278 Sov. Phys. JETP 54(2), Aug. 1981 0038-5646181 108027&04$02.40 O 1982 American Institute of Physics 278 



The processes considered a re  characterized by an S- 
matrix element given in perturbation theory in the first  
order of the interaction P=- 2e2(A,A,) by 

Sf.-i eaAIAa'e'ea) J exp[i(fif-fi)x-ia sin fk.x]cos k z  cos k,x d4z, (4) 
(ee') "V 

where PI=(&', p') i s  the 4-momentum of the final state of 
the electron; o! denotes the dimensionless quantity 

a='18e~A,"[l l (pkl)  - l l (p lk , ) ]  . (5 

We assume that the region of interaction of the elec- 
trons with the undulator field i s  infinite o r ,  more accur- 
ately speaking, we assume satisfaction of the condition 
6&/& Wl/N, where N i s  the number of periods of the un- 
dulator and 5&/c  i s  the relative energy spread in the in- 
itial beam of the electrons. In this case the integration 
in (4) is carried out formally with infinite limits, and 
the result, as  usual, constitutes four 6 functions that 
yield the system energy and momentum conservation 
laws. 

We thus obtain from (4) the following expressions for 
the S-matrix elements that describe the processes with 
emission (s;,) and absorption (S;i) of a photon of the 
amplified wave of frequency w : 

S n n - .  eZA,A2 ,; -1- ( 2 n ) ' E  J ,  ( a )  {6'"[fi'*k-p"- (2n--l)kil 
4(ee')"'V 

+ si i )[ j '*k-p-  (2n+l)  k , ] } ,  (6 ) 

where the upper and lower signs correspond respective- 
ly to emission and absorption. In the derivation of (6) 
we used the Fourier expansion 

+- 
exp (-h sin 2k,z) = J. ( a )  exp (-in2k,x), 

"--- 

where J,((Y) are Bessel functions. 

From the conservation laws contained in the 6 func- 
tions of Eq. (6) 

and also from the conditions 

follow the permissible values of n in the sums of (6). 
Thus, in the first sum for the process with emission 
(S;,) we obtain n 2 1, in the second we get n 2 0; for the 
process with absorption (S&) we obtain n 0 and n -1 
in the first and second sums respectively. Taking into 
account the permissible n, expressions (6) can be rep- 
resented in the form 

+ J,(a) ]8(') [fi'-k-fi- (2n+l) k , ] .  

On going to the probabilities of the processes, the 6 
functions of Eqs. (8) determine the three components of 
the momentum p' of the final state of the electron. The 
singularity that remains after integration with respect 
to dp', a s  is customary in problems of induced radiation 
in a given field, i s  eliminated by taking into account the 
real properties of the interacting objects, such as the 

spread of the initial electron beam with respect to direc- 
tion o r  energy, the finite interaction region, the devia- 
tions of the undulator field from periodicity, etc. In 
our case the total probabilities of the processes should 
be averaged over the initial energy distribution of the 
electrons in the beam, given by the distribution func- 
tionf(c). We assume that this function i s  normalized 
to unity by the condition 

and that the half-width of the function 6&<<&. 

Taking all the foregoing into account, the probabilit- 
ies, per unit time dw, and dwa of the processes with em- 
ission and absorption of a photon w of the amplified 
wave are given respectively by the expressions (the up- 
per  and lower signs in this and all the succeeding equa- 
tions correspond to emission and absorption, respec- 
tively) - 

6 (EL,-*o-e) 
dw,. = (~'A,A~)'Z [In+,(a.,.) *l,(a.,.) 1' 

8 
f ( e ) d e ,  (9) 

n=o e ~ ; , ~  

where in accordance with the definition (5) and the con- 
servation laws (7) 

From the conservation laws follow also formulas for 
the frequencies of the emitted we and absorbed w, pho- 
tons: 

In (9) these are  no interference terms corresponding 
to different n. The results that follow indicate that for 
the parameters considered in the present paper the fre- 
quency difference 6 w z  w(n+L) - o(n) i s  less than the 
spontaneous emission line width. 

The rate of amplification of the wave i s  determined by 
the probability difference 

Averaging over & in (9) and (12) can be easily carried 
out by using the conditions go<< w << & = lpl. In this ap- 
proximation, the 6 functions in (9) and (12) can be writ- 
ten in the form 

where &,,,=Eoi A& are the energies of the electrons that 
emit o r  absorb a photon of given frequency w for a given 
period X,=2s/qo of the undulator; 

~,=iii[o/Zq,(2n+l)]'"; As=o/2. (14) 

After substituting (13) in (12) and integrating with re- 
spect to d&, we obtain for  the difference between the 
total probabilities, per unit time, of emission and ab- 
sorption of a photon of frequency w, 
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we note that in the derivation of (15) we used the inequal- 
ity Idf/d&I>>f(&)/&, which is the consequence of the con- 
dition formulated above on the degree of non-monochro- 
maticity of the beam": 6&/&<<1. 

The difference between the values of the function f (E) 
at the points E, and E,, using formulas (14), is 

(the derivative df/dc i s  calculated at the point &=co). 
Substituting (16) in (15) and using Eq. (11) for w, we ob- 
tain 

The difference &u of the total probabilities of the emis- 
sion and absorption per unit time of a photon with fre- 
quency w determines the gain G at this frequency: 

where N ,  i s  the electron density in the beam; E ,  i s  the 
amplitude of the electric field intensity in the amplified 
wave. 

3. THE GAIN 

Substituting (17) in the definition (18) of G, we obtain 
for the gain per pass the expression 

n%'N.LS2 
G =  ymw (l+bv2) (t)' I J ~ + ~ ( U )  - ~ . . ( a )  la, (1 9) 

where L i s  the longitudinal dimension of the interaction 
region (in our formulation, L coincides with the undula- 
tor  length). It i s  easy to verify that formulas ( l l ) ,  (17) 
and (19) go over in the limit a s  C - 0 into the known per- 
turbation-theory (n =0)  formula^.^'^ 

With the aid of ( l l ) ,  given the frequency w of the am- 
plified wave and the electron energy (Y), we obtain the 
corresponding index no of the Bessel function 

1 oRo (1+c2/2)  
n o + - -  

2 8x7' . (20) 

The energy spread of the electrons in the initial beam 
determines the effective width of the summation 6n in 
(19): 

6e oho(1+c2/2) 6e 6n=2n0 - = . - (21 
e 4ny2 e . 

Bearing in mind the condition no>l ,  we obtain from 
(10) the argument of the Bessel functions: 

t'/2 
a - - n .  

(22) 
1+E2/2 

The parameter 5 at a given value of Y should satisfy the 
inequalities y >> 5 >> 1. More accurately, this parame- 
t e r  should be such as to satisfy the condition 

I a-n I <n'". (23) 

If the condition (23) i s  not satisfied, then the Bessel 
function J,, ( a  <n)  are  exponentially small and conse- 
quently the gain i s  small. To  choose the parameters of 
the problem it  i s  convenient to formulate the condition 
(23) in the form 

(oho)'l1< (8n)'/'y'/s(1+cz/2) %; y,& (24) 

[in the derivation of (24) we used Eqs. (20) and (22)]. 

To estimate G, we use the known asymptotic represen- 
tation of the Bessel functions for n>>l and I a - n l s  n1I3 
(Ref. 9): 

Using this representation, we obtain for  the difference 
of the Bessel functions at a = %  

Substituting (25) in (19) and also using formula (20), 
we obtain for the gain the expression 

0.2 (8n)"snae2NLy'JsS2 
G =  

(26) 
m o ~ ~ ~ ~ ( i + c z / 2 ) v ~  . 

Expression (26) is valid if no>>l. On the other hand if 
no-1, then the gain should be calculated from a formula 
that follows directly from (1 9): 

x=e2N.Lt' 
G =  

ymo (1+5'/2) [ J n o t ~ ( a ) - J n o ( a )  I' (2)' 
Equations (26) and (27) were obtained in an approxi- 

mation in which the undulator i s  assumed infinite, o r  
more accurately, for an undulator and beam with rela- 
tive energy-distribution width satisfying the inequality 
~ E / C  >>l/N. If ti&/& << 1/N, then the derivative df/ds 
" in the equations for the probability difference (17) 
and for the gains (26) and (27) should be replaced bys.10 

In this case the gain should be calculated from the equa- 
tions 

0.8 (8n)  '~'n3e2N.Layr"'c2 d sin' u 
G =  -- 

mw'/%:/~(1+c~/2)"~ du u2 
, n ~ i ,  (28) 

4. ESTIMATES AND CONCLUSIONS 

We shall distinguish between two limiting cases: rela- 
tively low-energy beams with y 5 30, and high-energy 
beams with y" lo3. We consider first  the case with re- 
latively small y .  The conditions (24), for a given pa- 
rameter, determine the permissible value of [, and also 
the limiting values of the electromagnetic-wave frequen- 
cies that can be effectively amplified for the given beam 
( Y )  and the given undulator ( 5 ,  A,). Table I lists the cal- 

TABLE I. 
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TABLE 11. TABLE IV. 

culated limiting frequencies w of the amplified waves 
for different beam and undulator parameters. The last 
column of the table indicates the frequencies w, obtain- 
ed by perturbation theory (L << 1, n = 0) with the same 
values of Y and A, (the upper figure is for A0=3 cm, the 
lower for A0=6 cm). 

Table I1 gives the values of the gain for different val- 
ues of Y and I and of the frequencies w of the amplified 
waves [G is calculated from Eq. (28) with the parame- 
ters  I=10 A, d=0.5 cm, A0=3 cm, and L=3  m]. The 
last column of this table gives the maximum amplitudes 
of the undulator magnetic field intensity HI. 

For comparison we present the result of a calculation 
of the gain G ,  by perturbation theory (5<< 1,  n =0). If the 
beam and undulator parameters are  ~ = 5 0 ,  I =10 A, d 
=0.5 cm, w=0.2 eV, C2=0.1, A0=3 cm, and L=3 m, the 
gain turns out to be G,=14%. 

From Table I and from the presented estimates of the 
gain it i s  seen that the use of strong plane-polarized 
magnetic fields makes it possible to increase substan- 
tially the frequencies of the amplified electromagnetic 
waves, using beams of relatively low energy, without 
a noticeable decrease of the gain. 

We turn now to the case of large Y "lo3. Table I11 
lists fo r  different undulator parameters and for differ- 
ent no the frequencies of the electromagnetic waves that 
can be amplified with the aid of an electron beam in a 
storage ring with Y =7x102 ( ~ = 3 5 0  MeV). The fourth 
column of the table gives the maximum amplitudes of 
the undulator magnetic field intensity. In the last col- 
umn are given the corresponding gains [the numerical 
values of G were obtained from Eq. (29) at 1=100 A, d 
=0.2 cm, A0=3 cm, and L=3 m]. 

For comparison, Table IV gives the gains G,,, for the 
case of an undulator with a helical magnetic field. G,,! 
was calculated from an equation given by Pellegrini," 
with beam and undulator parameters Y = 7 X lo2,  I =I00 A, 
d =0.2 cm, X0=3 cm, and L=3  m. 

Frorn a comparison of the data of Tables I11 and IV it  
is seen that an undulator with planar polarization of the 
magnetic field, in the case of large Y and 5>1, offers 
no advantages in comparison with a helical undulator. 

TABLE 111. 

Thus, the use of undulators with planar polarization of 
the magnetic field i s  advantageous in the case of elec- 
tron beams with relatively small Y (- 10-30), inasmuch 
a s  multiphoton processes can increase in this case the 
frequency of the amplified wave at least to the infrared 
band. It must be borne in mind here that the equations 
obtained in this paper a re  valid only for maximum undu- 
lator field values that satisfy the criterion L2/y2<< 1. 

Although the expressions for  the gain G were obtained 
formally within the framework of perturbation theory in 
the interaction P=- 2eZ(A,. &), the range of validity of 
these equations should be regarded a s  wider.' Using the 
results of McIver and Fedorov,' we obtain an estimate 
fo r  the field intensity E2  at which saturation sets  in (Y 
=20, L=3  m, A0=3 cm, t i w  =0.1 eV, H,=10 kG), namely, 
E2"102 V/cm. 

The analysis proposed in this paper i s  valid when the 
role of the undulator i s  played by a traveling electromag- 
netic pump wave with planar polar izat i~n. '~  In this case, 
when the electron interacts with the wave it can capture 
many photons and emit one photon of the amplified wave. 
The corresponding gain differs from Eq. (19) only by a 
numerical factor. 

In conclusion, the authors thank M. V. Fedorov for a 
discussion of the results. 

')The effective width of the summation over n in Eq. (12) i s  
determined by the energy spread 6& in the beam. For realis- 
tic values 6&S 1% we have 6% < l  [see (21)j, and we shall 
therefore omit hereafter the sign of summation over n. 
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