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The interaction between two quantum nonlinear resonances is analyzed under conditions when the 
interaction is weak and in the case when the resonances overlap. It is shown that the overlap of resonances 
that span a sufficiently large number of levels increase substantially the rate of growth of the system energy. 
The results are compared with those for a corresponding classical system. 

PACS numbers: 03.65.Ca 

1. INTRODUCTION 

Two limiting cases of resonance of light with atoms 
and molecules can be distinguished, depending on the 
structure of the energy spectrum. The f i rs t  takes place 
when the frequencies of the transitions between the 
levels located in the vicinity of the resonant transition 
differ greatly from the frequency of this transition. 
The principal role in the resonant interaction is played 
then by transitions between two or  several closely ly- 
ing levels. The problem of the interaction of two- or  
three-level systems with an external field has been 
sufficiently well investigated (see, e.  g. , Ref. 1). 

In the second limiting case the difference between the 
distances between the nearest levels is small (weak 
anharmonicity), so  that a large number of transitions 
a re  immediately a t  resonance with the external field. 
This phenomenon, sometimes called quantum nonlinear 

the small parameters of the problem vanish and the in- 
vestigation is carried out numerically. The overlap 
of the resonances causes the correlator of the wave- 
function amplitudes to attenuate rapidly (within a finite 
time) and remain small during the problem calculation 
time. It follows hence also that the off-diagonal ele- 
ments of the density matrix attenuate substantially. 
This makes it possible to describe (with a certain de- 
gree of accuracy) the dynamic picture with the aid of 
statistical methods. In particular, the overlap of the 
resonance and the onset of a stochastic (with a certain 
degree of accuracy) change of the phases of the wave- 
function amplitudes a re  accompanied by a rapid excita- 
tion of the system. The latter can also be of interest 
in connection with investigations of the mechanisms of 
collisionless dissociation of molecules o r  of ioniza- 
tion of atoms. 

resonance, was investigated in Ref. 2. Some of i ts  
aspect were considered also in Refs. 3 and 4. 2. DESCRIPTION OF MODEL. DERIVATION OF 

ABBREVIATED EQUATIONS 
Fundamentally new effects can appear when the exter- 

nal field contains a t  least two frequencies, for each of To study the interaction between a nonlinear quantum 

which there is a large number of near-resonant transi- system (molecule) and an external field containing two 
tions. We shall explain this situation in greater de- frequencies, we consider the following simplified 

tail. model: 

Each nonlinear resonance is characterized by a cer- 
tain width that can be determined by the number of tran- 
sitions that a re  close to the resonant one. In the 
presence of two nonlinear resonances, the dynamics 
of the system is determined by the distance between 
them. It is well known that in classical dynamics the 
presence of two nonlinear resonances in a system can 
lead to the onset of a random (stochastic) motion if these 
resonances overlap.' It is not clear a t  all, however, 
what should take place when two nonlinear resonances 
overlap. Despite the fact that in this case a very strong 
interaction occurs effectively between the resonances, 
the result is far  from obvious. The reason is that the 
quantum character of the object can lead to substantial 
changes in the dynamics of a system that is stochastic 
in the classical limit.6 

We present here an analytic and numerical investiga- 
tions of the features of a resonant interaction between a 
perturbation that contains one o r  two frequencies and a 
multilevel system, under conditions when a large num - 
ber of transitions in the system participate in the reso- 
nance. The main result of the paper relates to an 
analysis of the case of resonance overlap, wherein all 

H=Ho+ V.,, ( t )  , 
Ho=troa+a+A2y (a+a)" V,., ( t )  =A'"j(t)  (ac+a) ,  (2.1) 

f ( t )  =f, cos Q,t+f, cos n,t,  

where w and y are  respectively the frequency of the 
linear oscillations and the nonlinearity parameter; a,, 
fl and a,, f, are  the frequencies and amplitudes of the 
external field. Dipole interaction of the field with the 
molecule is assumed. We assume hereafter for sim- 
plicity that y >O and CZl >a2. 

We represent the solution of the SchrGdinger equation 
with a Hamiltonian H in the form 

The equations for c,(t)  a r e  of the form 

We consider the case when resonances a r e  possible 
in the system between the external field and the transi- 
tion frequencies in the unperturbed system. We repre- 
sent the conditions for the existence of resonances in 
the form 
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Expressions (2.4) and (2.5) determine the numbers nl 
and n, of the levels near which the transitions are  close 
to resonant. We assume hereafter n,, n, >> 1. 

We obtain from (2 .3 )  the abbreviated equations that 
describe the motion of the system in the vicinity of the 
resonances (2.4) and ( 2 .  5).  Expanding for this purpose 
the function En in a series in the vicinity of the point no, 
defined by the inequality 

we have 

E,=E., + - 1 (n-4) t7-  
an .-,, I jn-n,).. ( 2 . 7 )  

L dn' .=,, 
We represent cn( t )  in ( 2 .  3 )  in the form 

c, ( t )  =A,  ( t )  exp { - - ;[ E,  + - ~ / , , o m ] t ] ( m - n - n o ) ,  ( 2 . 8 )  

where we have introduced new amplitudes A,(t). Sub- 
stituting (2.8) in (2.3) and excluding the rapidly oscillat- 
ing terms, we obtain an equation for A,(t): 

We have introduced in ( 2 . 9 )  the dimensionless time 
r=52t. In the derivation of ( 2 . 9 )  we used a condition 
that allows us to neglect the fast oscillations. This 
condition can be represented in the form 

In addition, we used the approximation n, n + 1  =no, 
which i s  permissible subject to satisfaction of the in- 
equality 

6nlno<l, (2 .11)  

where 6n is the effective number of levels that take part 
in the dynamics of the system. It will be shown below 
that the conditions ( 2 . 1 0 )  and (2 .11)  correspond to the 
classical condition of moderate nonlinearity. 

We introduce the function p(0, r ) :  

Using (2.9) and (2.12) and taking the condition (2.11) 
into account, we obtain an equation for ~ ( 9 , r ) :  

Equation ( 2 . 1 3 )  with the Hamiltonian (2 .14)  describes 
the interaction of two resonances: the term with Vl 
corresponds to the resonance ( 2 . 4 ) ,  and the term with 
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V, to (2 .  5).  The quantity 2u characterizes the distance 
between the resonances. 

We consider now in greater detail the conditions 
(2 .10)  and ( 2 .  l l ) ,  which were used in the derivation of 
Eqs. ( 2 . 9 )  and (2 .13) .  The characteristic number 6n 
of the levels spanned by the resonance can be estimated 
from ~ q s .  (2 .13)  and (2 .14)  by putting ( a2/ao2 1 - (&a),. 
This yields 

We introduce the dimensionless parameters of the per- 
turbations &, and &, the nonlinearity a: 

E= (fin,) "j,lnoE,~=V,lno, el= (fin,) "fi/noE.,'=Vl/no, 
(2 .16)  

a=noEnoN/En~=2nop. 

Taking (2 .  15 )  into account, the inequality ( 2 . 1 1 )  takes 
the form 

Putting n, - n, - 6n in (2 .10)  and using the definition 
( 2 .  16 ) ,  we get 

( ~ a ) ' " < i .  (2 .18)  

Combining the inequalities ( 2 . 1 7 )  and (2 .18)  we obtain 
for the nonlinearity 0 the condition 

E~~2<a8is<E-% (2 .19)  

at  which the abbreviated equations (2.13) and (2.14) 
are  valid. The system of inequalities (2 .19)  corre- 
sponds to the classical condition of moderate nonli- 
nearity. 

3. ISOLATED QUANTUM NONLINEAR RESONANCE 

To compare certain analytic results with the numeri- 
cal analysis, we consider the particular case of one 
nonlinear resonance. It can be obtained from the ex- 
pressions of the preceding section by putting V, = O  and 
Vl = V. It is also convenient to expand ( 2 . 7 )  near the 
point no = n,. Equations (2 .9 )  and (2.13) then take the 
form 

Expression (3.2) coincides with the equation for 
quantum nonlinear resonance, which was obtained 
earlier. The general solution of (3 .2 )  at  u=0 can be 
represented by an expansion in Mathieu periodic func- 
tions that satisfy the boundary conditions1' 

Using the properties of Mathieu functions, we easily ob- 
tain an estimate for the number On of the levels cap- 
tured in the resonance: 

For  the numerical calculations of the dynamics of the 
system under the condition that one quantum nonlinear 



resonance is present, we used Eqs. ( 3 . 1 ) .  The accu- 
racy of the calculation was monitored against the nor- 
malization condition 

In all  cases the e r r o r  did not exceed The main 
feature of the quantum nonlinear resonance is i ts  satu- 
ration, which manifests itself in the following. If the 
initial conditions correspond to population of several 
levels near the resonant transition, then the nearest 
levels become populated in the course of time and the 
wave packet is spread out. This process continues up 
to a certain time r* ,  after which the spreading of the 
packet stops and the subsequent dynamics is connected 
with transition between the levels captured into the res- 
onance. We present one typical variant of the numeri- 
cal analysis: V =  5  X lo", p  = and A m ( 0 )  = bm0. 
The frequency S Z ,  is chosen to be resonant to the 0-1 
transition; this corresponds to v =  l om3 .  Numerical 
calculation yields T * = 200 and 6 n  = 22 .  At these values 
of the parameters p  and V  we obtain from the analytic 
estimate ( 3 . 3 )  bn - 2 8 .  

We note also that in the case of the classical treat- 
ment of a system with a Hamiltonian corresponding to 
the Schrijdinger equation ( 3 . 2 ) ,  the frequency of the 
phase oscillations is given by a,,= ( 2 p v ) ' l 2 ,  and the 
action return time T ,  at  an initial population I ( 0 )  = 0  is 

T,=n/Pph=n/(21Lv) %. ( 3 . 5 )  

Expression ( 3 .  5 )  determines the characteristic return 
time of a quantum packet if the initial population of the 
null level is A,(O) = 6,. For  the parameters cited 
above, the estimate ( 3 . 5 )  yields T,= 314 ,  in good agree- 
ment with the r,* 360 obtained by numerical analysis. 

In the classical case, the width of a nonlinear reso- 
nance is usually taken to mean the size of the action re -  
gion bounded by the separatrix. To determine the 
"separatrixV of a quantum nonlinear resonance, numer- 
ical calculations were made a t  fixed parameters v, p ,  
and V  and with variation of the initial population of the 
system. The calculation results a r e  shown in Fig. 1 .  
The ordinates a re  the time-averaged values ( / A ~ ( T )  1') 
of the level populations. The averaging time is T = 720  

FIG. 1. Distribution function 
of the population over the 
levels vs. the initial condi- 
tions at V= 5 x and C( "'zkLfi 4 , = a) Single populated 

0. z r 0 level at T =  0 .  a) m =  1 6 ,  b) 

and corresponds approximately to one period of the 
phase oscillations. 

When the number m of the initial population increases 
to a certain critical value m*, a slight restructuring of 
the motion takes place. The time needed to establish a 
quasistationary distribution increases with increasing 
m. The center of the packet shifts towards the region 
of the initial population, and the entire packet is lo- 
cated in the region of the resonant action of the external 
field. At m  2 m * ,  a radical restructuring of the system 
motion takes place. The wave packet does not span the 
broad region of the resonant influence of the external 
field, and the number of spanned levels and the time of 
establishment of the quasistationary state decrease 
strongly. 

The quantity 2m* can be called, by analogy with the 
classical case, the action width of the quantum nonli- 
near resonance. The quantity m* itself corresponds to 
the separatrix of the quantum nonlinear resonance. It 
corresponds to the energy boundary that separates the 
region of capture into the nonlinear resonance from the 
region of the nonresonant interaction. 

By analogy with the classical case, we introduce the 
concept of the frequency width of the nonlinear reso- 
nance. To this end we define the frequency detuning 
from resonance m - m  + 1  for an arbitrary level m :  

The quantity Am*= A w ( m * )  characterizes the anhar- 
monicity a t  which the systems goes off resonance, 
and determines the frequency half-width of the quan- 
tum nonlinear resonance. At the chosen values of the 
parameters p ,  v, and V  a numerical analysis yields 
m *  = 1  2  and AW* = 0 . 0 2 4 .  To obtain analytic estimates 
of m *  and b* we use Eq. ( 3 . 3 )  for 5 n .  We obtain 

in good agreement with the numerical results. 

The results above (both analytic and numerical) 
show that in the quantum case the nonlinear resonance, 
just a s  in the classical limit, has a distinct boundary 
of the capture in energy. This provides the basis for 
posing the question considered below: what is the dy- 
namics of a quantum system if several (say, two) reso- 
nances overlap? 

4. INTERACTION BETWEEN TWO QUANTUM 
NONLINEAR RESONANCES 

The interaction between two quantum nonlinear reso- 
nances is described by the SchrGdinger equation ( 2 . 1 3 )  
with the Harniltonian ( 2 . 1 4 ) .  In the classical case, the 
Harniltonian ( 2 . 1 4 )  is of the form 

%(0, 1, T)  =@IZ+V, COS ( ~ + v T )  +vz COS (0-YZ), ( 4 . 1 )  

where J and 0 are  the canonically conjugate dimen- 
sionless action and phase. 

For  a classical system with a Hamiltonian ( 4 .  I ) ,  the 
conditions for the resonances a r e  

0 (I,) +Y=o, o (A) -Y=o, ( 4 . 2 )  
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where w ( J )  = 2 p J =  0. It is known that the behavior of 
the system ( 4 . 1 )  depends essentially on the value of the 
resonance-overlap parameter K (Ref. 5)  

where Aw is the frequency half-width of the isolated 
resonance, and 2v= w(J,)  - o ( J , )  defines the distance 
between the resonances (4 .2 ) .  For Ao we have from 
(4 .1 )  and (4 .2)  

where &I i s  the half-width of the action resonance [the 
estimate (4.4) was obtained under the condition V ,  = V ,  
= V ] .  Using (4 .4)  we obtain the explicit form of the 
resonance-overlap parameter (4.3): 

In the classical case the interaction of two resonances 
was investigated in detail in Refs. 7 - 9 .  At K << 1  the 
resonances ( 4 . 2 )  a r e  separated in frequency, and the 
interaction between them can be determined by the usual 
perturbation theory. In this case the motion of the sys- 
tem is quasi-periodic. At K 2 1  the resonances ( 4 . 2 )  
overlap, and the behavior of the phase 0 becomes close 
to random, so that the slow action variable J varies in 
diffuse fashion. 

To study the features of the interaction between 
resonances in the quantum case, we integrated numeri- 
cally the system ( 2 . 9 ) .  Just  a s  in the case of an iso- 
lated resonance, the accuracy was monitored against 
the wave-function normalization condition (3 .3 ) .  The 
program provided for an automatic choice of the num- 
ber m of levels in (2.9) for a given calculation accu- 
racy The maximum number of levels used in the 
investigation of the interaction between resonances was 
200. 

The system ( 2 . 9 )  was numerically analyzed under the 
following conditions: the initial population was assumed 
constant, i. e. , A,(O) = b,,, while the distance 2v be- 
tween resonances was decreased until the resonances 
"touched" and subsequently overlapped. Figure 2  shows 
the calculated time-averaged level-population distribu- 
tion function. The ordinates a r e  the time-averaged 
populations ( IA,(r) (2) a s  functions of the level m. The 
points mark the positions of the resonance frequencies 
0, and a, corresponding to the chosen values of the 
parameters. The parameters chosen were V ,  = V ,  
= 0 . 0 5 ,  1 = and the averaging time T = 720.  

It is seen from Fig. 2  that a t  an overlap parameter 
K < 1  the capture of the levels into the resonances ( 2 . 4 )  
and ( 2 . 5 )  does not take place. The distribution func- 
tion of the level populations differs from zero only near 
the initially populated level m = 0 .  At v  = v* = 0.021, 
the resonances come in contact. The population distri- 
bution function is then greatly altered, the number of 
populated levels increases, and the distribution func- 
tion itself becomes close to homogeneous. 

Using the numerical values for m* and v* we can ob- 
tain, in accord with ( 4 . 3 ) ,  the quantum resonance over- 
lap parameter K*: 

( I A m h I l 2 )  

o.:& 

FIG. 2. Distribution function 
of the populations over the 
levels at  various distances be- 
tween the resonance, and at 
differently populated levels r\ with = m =  0 (Vl= V2= 0.05; w 

:L 0 )  Position of levels 
with transitions resonant 
to the frequencies ill and q. 
The values of v are: a)  0.025, 
b) 0.021, c )  0.017, and d) 
0.013. 

u I 70 m 

which is in good agreement with the classical estimate 
that follows from ( 4 .  5 ) ,  K  = 1. With further decrease of 
v  the parameter K increases, but the significant inter- 
action between the resonances takes place in the re- 
gion v* a u > v,, . At v < vmh the motion, just a s  in the 
classical case, degenerates into an isolated resonance. 

To assess  the degree of proximity of a system of two 
interacting quantum nonlinear resonances to the stoch- 
astic motion regime we calculated the correlation func- 
tion R,(T) of the amplitudes A,(T)  at  various values of 
the parameters V and p :  

where (. . .) means averaging over the time T', The 
quantity v  was chosen here constant, and the values of 
V and p were varied in such a way that their product 
remained constant. In this case the resonance para- 
meter K is fixed, and the number of captured levels 6n 
can vary. We chose the parameters v = 0 . 0 1 5  and 
V p  = 5  x lo'=, which corresponds to  a resonance overlap 
(K = 1 . 6 ) .  The averaging time T was chosen in the cal- 
culation of R,(r) such that the coordination function was 
determined a t  the specified degree of accuracy. 

Figures 3a and 3b show the correlation function R O ( d  
calculated from Eq. ( 4 . 6 )  using different numbers of 
captured levels bn. The parameters for Fig. 3a a r e  
Vl  = V, = 0 . 0 5  and 1 = lo-', and those for Fig. 3b a r e  
V ,  = V, = 0 . 2  and p  = 2 . 5  X The corresponding 
numbers of the captured levels a r e  6n = 40 and 6n = 175, 
respectively. It i s  seen from these figures that the 

for an isolated resonance: 
x -  56, bn 100. 

I 

0 

275 Sov. Phys. JETP 54(2), Aug. 1981 

a 
FIG. 3. Correlation function 

* R0(7) for two interacting re- 
sonances: a) K = 1 , 6 ,  bn ~ 4 0 ,  

- I  - x - 2 8 ;  b ) K ~ l . 6 ,  bnG175,  

b x r~ 112; c) the function RO(r)  



increase of the number bn of the captured levels that 
participate in the dynamics of the interacting resonances 
alters substantially the form of the correlation function, 
namely, the attenuation of the correlations becomes 
more intense with increasing bn. 

Numerical calculations were made also of the function 
R,(r) a t  m t 0 and a t  different values of the parameters 
V and p. The behavior of R,(T) a s  a function of 6n 
remains qualitatively the same a s  before. The initial 
stage of the attenuation of the correlations a t  large 6n 
is quite similar to their exponential attenuation in the 
classical case. Figure 3c shows for comparison the form 
of the function R,(T) for the case of an isolated reso- 
nance: v=O, V=O. 2, p = 2 . 5 ~ 1 0 - ~ ,  and the number of 
captured levels is 6n = 100. It is seen that R,(T) is a 
quasi-periodic function and an increase of 6n leads in 
this case only to an increase of the oscillation fre- 
quency. 

The qualitative features of the results call for a cer- 
tain discussion. It is necessary to note, f irst ,  that 
the system (2.9) with an infinite number of levels is re- 
placed in the numerical analysis by a system with a 
finite number (-200) of levels with periodic coefficients. 
The motion of such a system i s  therefore quasi-perio- 
dic. In this sense, there is no "genuine" stochasticity 
(one of the conditions for which is the presence of a 
continuous frequency spectrum) in such systems. The 
results for the correlation function Ro(r), which are  
shown in Figs. 3a and 3b, mean therefore that over a 
certain finite time the motion of the system can be re-  
garded a s  random. On the other hand, the question of 
the properties of the system over long times calls for 
a more accurate investigation. In addition, one must 
consider also the question of the "degree of proximity ?' 

of the dynamics of a system with a finite number of 
resonances to a random law. The latter includes also 
an analysis of the degree of proximity of the spectrum 
of the frequencies of the wave-function amplitudes to a 
continuous spectrum. 

When comparing the quantum and classical treatments 
of systems with finite numbers of interacting reso- 
nances, it i s  natural to introduce in the quantum case 
a parameter that characterizes the degree of the proxi- 
mity of the system to i ts  classical analog. We choose 
this dimensionless parameter x to be the ratio of the 
characteristic values of the change of the action of the 
system, a s  a result of the perturbation, to the quantity 
ti: 

In the case of an isolated resonance, AI is of the order 
of the action width of the resonance. In the case of 
two interacting quantum nonlinear systems AI is of the 
order of double the action width of the isolated reso- 
nance. The parameter x determines in fact the order 
of magnitude of the number of captured levels partici- 
pating in the dynamics of the system. At x Z  1, when 
the number of the captured levels is small, one should 
expect a substantial quantum motion of the system. In 
the case of two interacting quantum nonlinear resonances, 
a motion regime close tostochastic (in the sense indi- 

cated above) should be expected at x >> 1 and under the 
condition that the resonances overlap: K 2 1. We rep- 
resent for this case the parameter x in explicit form. 
To estimate A1 we have from (2.1) and (2.6) 

AZ=4 [f (An,) "171 ", (4.8) 

where we chose f, = f, = f. From (4.8), taking the no- 
tation in (2.9) into account, we obtain for n: 

x12;4(Vlr)'", (4.9) 

which, a s  expected, is of the same order a s  the esti- 
mated number of levels captured in the resonances. 

It is seen from Fig. 3 that the case a corresponds to 
essentially quantum motion ( n  = 2 8 ) X h e  correlation 
function attenuates (within the considered times) insig- 
nificantly, and stochasticity effects, if they exist a t  all, 
a r e  very weak. In case b, conversely, x = 112 and the 
correlation function (within the times considered) atten- 
uates in a nearly exponential fashion. 

One of the important manifestations of the dynamics 
of a classical system in the case of overlap of the reso- 
nances is the rapid growth of the average energy of the 
system with time. ' 1 '  This singularity i s  a direct conse- 
quence of the onset of the stochasticity of the phases in 
the system when the resonances overlap. A similar 
singularity is possessed also by the quantum system 
(2.9). 

We consider now the energy of the system (2.9) 

a s  a function of the parameter H. under conditions of 
resonance overlap (K > I ) .  The result of the numerical 
analysis a r e  shown in Fig. 4, where the quantity 
Vp = 5 x lo-=, which determines the frequency of the 
phase oscillations, was chosen to be the same in both 
cases. It is seen that an increase of the parameter H. 
leads to an increase of the growth rate of the system 
energy E(T) with time. 

It follows thus from the foregoing analysis that the 
system can behave quite differently, depending on the 
degree of interaction of the quantum nonlinear reso- 
nances and on the number of levels captured in each of 
the resonances. Thus, i f  the resonances overlap, an 
increase in the number of captured levels lead to the 
damping, characteristic of a random process, of the 
correlation function of the density-matrix phases. The 
correlation damping itself can here be arbitrarily re-  
garded a s  going through two time stages: 1) rapid ini- 
tial damping, analogous to the exponential damping in 
classical systems; 2) establishment of a residual cor- 
relation level a s  a result of quantum effects. This 

i 

FIG. 4 .  Time dependence of 
the system energy for two in- :m, teracting resonances at K 
=1.5: a)p=4x10-4,  v 
= 0.125, u = 70; b) m =  

0 2uu YOU bW UUU ~ = 0 . 0 5 , ~ ~ , : 2 ~  
7 
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behavior of the density-matrix phase correlat ions 
allows U s  t o  descr ibe  the motion of the sys tem,  over 
finite t imes,  by s tat is t ical  methods followed by allow- 
ance f o r  the contribution of the residual  correlat ions.  

The interaction of quantum nonlinear resonances can 
be observed, f o r  example, in the interaction between 

coherent laser radiation and polyatomic molecules. In 
this  case the spec t ra l  p roper t i es  of the resul tant  radia-  
tion depend substantially on the p a r a m e t e r s  n and K. 
The region x 2 1 at a r b i t r a r y  values of the p a r a m e t e r  K 
corresponds to quasi-periodic motions. At  K 2 1 and 
H. >> 1 the correlat ion proper t i es  of the radiation are 
close to  random. In addition, in  the latter case the rate 
of increase  of the average molecule energy increases  
greatly, and this  may  be of in te res t  in  connection with 
r e s e a r c h  into the phenomena of collisionless ionization 
and dissociation of polyatomic molecules  interacting 
with a laser-radiat ion field. 

"1n the classical case the action I= finl i s  a continuous function, 
so that the parameter v can be made to vanish by a suitable 

choice of I,. In the quantum case, according to (2.4), v is 
close to zero. In the numerical analysis that follows, howev- 
e r ,  we use the exact equations (3 .I). 
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