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The theory is considered of the nonlinear effects produced in the generation by ion lasers by the action of the 
electric field of the gasdischarge plasma. Stability criteria are obtained for various lasing regimes. It is 
0bSe~ed that one-mode and two-mode lasing regimes alternate in succession because of the acceleration 
effects. The action of plasma fields on the profile of the Lamb dip in the lasing spectrum is investigated. It is 
indicated that the energy repulsion of the lasing frequency can be replaced under the influence of the ion 
acceleration by energy attraction. It is established that the discharge field can split the frequencies of two 
oppositely traveling waves in an ion ring laser. 

PAC3 numbers: 42.55.Bi 

1. It is known that the investigation of the shapes of longitudinal mode reduces to the form 
the ion spectral lines i s  one of the principal means of dG, o niod,, 

plasma diagnostics and permits the study of many pro- -+-Gq=--Pq,  (2.1) 
dt 2 -- 

cesses that occur in the plasma.'* Fock2 and Kagan where d, is the matrix element of the dipole moment of 
and Pere1'5'6 have developed a linear theory of ion the working m-n transition, and Ga = ~~d,,/2Fi a r e  the 
spectra, in which the deformation of the spectral relief 

slowly varying amplitudes of the light field. in the electric discharge field was connected with the 
corresponding change of the ion velocity distribution 
function. 

A prominent place among the sources of continuous 
coherent radiation is occupied a t  present by lasers  us- 
ing noble gases (see, e.g., Refs. 7-9 and the referenc- 
e s  therein). The most widely used lasers  of this type 
use singly and doubly ionized argon, which radiate a 
much higher power than the other cw lasers  in the visi- 
ble and ultraviolet regions of the spe~trum. '~"  Their 
advent has stimulated an intensive study of nonlinear 
phenomena in the emission of atoms. 

Compared with the Lamb theory of the ordinary gas 
laser,12 the ion-laser theory presented in this paper has 
a number of essential features due to the influence of 
the electric field of the exciting discharge on the trans- 
lational motion of the ions. We consider below the ac- 
tion of the discharge field on the spectrum and frequen- 
cy characteristics of the emission of ion lasers. An 
analysis of the action of the acceleration in a stationary 
homogeneous electric field on the dipole-moment r e -  
laxation of a single ion was given earlier,13-l5 and the 
influence of this acceleration on the shapes of both the 
linear and nonlinear spectral resonances (weak satura- 
tion) was revealed. Particular attention i s  paid in the 
present paper, to  the study of the role of strong satura- 
tion and intermode interaction in the evolution of the 
lasing. 

2. We consider an axially symmetrical ion laser 
emitting at a frequency o. The semiclassical theory of 
the laser is constructed in the usual manner on the ba- 
sis of a description of the electromagnetic field E by 
Maxwell's equation and of a quantum-mechanical allow- 
ance for the polarization P of the medium with the aid 
of the kinetic equation for the density matrix.'' After 
introducing the effective conductivity a, which takes in- 
to account the losses in the mirrors,  the abbreviated 
equation for the linearly polarized radiation in the 9th 

The active medium of the laser is a gas-discharge 
plasma containing excited ions. It is described by the 
system of equations for the density matrix pi,, which 
takes in cylindrical coordinates the following form for 
two-level ions ( I  , j  = m ,  n)13-l5 

P,'P,>r P=Pmn, 

where the operator V,,(r, t) takes into account the in- 
teraction of the ions with the light field; a =  e g / ~  i s  the 
acceleration of the ion in the electrostatic field g; q, 
are  the level-excitation functions; r and r j  are  con- 
stants that describe the radiative and collisional broad- 
enings, 

The behavior of the radiation in an ion laser i s  de- 
scribed by the self-consistent solution of Eqs. (2.1) and 
(2.2) with polarization 

P ( z ,  t )  ='l,d,.'(p)+ C.C. (2.4) 

The change of variables 

~ = ' / , M u ? + e V ( r ) ,  p=r-u, sin rp, 

where 

and V ( r )  decreases monotonically from the axis to-the 
walls, yields a simpler expression than (2.3) for2': 

a a P=v, cos cp - +a, - . 
dr du,  

The first  term in (2.5) corresponds to  transit effects 
upon acceleration of the ion in the radial field of the 
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discharge. Typical parameters of a high-current dis-  
charge in an Ar* laser  R - 1 cm and v,- lo6 cm/sec. 
The indicated t e rm can then be of the order of lo6 
sec-l,  which i s  much lower than the relaxation con- 
stants  (r,r,- 10'-10' sec") (i.e., the time of flight 
of the ion from the axis  to the wall i s  much longer than i t s  
emission time). The influence of these effects can 
therefore be accounted for  here by perturbation theory. 
The second te rm of (2.5) i s  always of the order  of a,/; 
<<r, r, ( E  i s  the mean thermal velocity of the ion). On- 
ly in narrow regions that correspond to Bennett dips in 
the ion velocity distribution i s  this  t e rm of the order of 
k . a / r ,  which may turn out to be comparable with the 
relaxation constants r and r,. 

We assume hereafter that the excitation r a t e s  of the 
levels q, a r e  Maxwellian: 

3. The Coulomb interaction of the excited ions can be 
taken into account in the kinetic equations by using the 
method indicated in a preceding paper.16 To produce 
inversion in the active medium of ion l a se r s  o r  of ion 
quantum amplifiers, one usually chooses a pair of 
levels with greatly differing relaxation constants, 
namely: 

We obtain below an expression for the population dif- 
ference in the field of a monochromatic standing wave, 
neglecting the f irst  te rm of (2.5) and under the condition 
x 1 (strong saturation). It i s  convenient to use for 
this purpose the approximate procedure proposed by 
Germogenova and Rautian for solving the quantum kin- 
etic equation." 

We integrate the second equation of the system (2.2), 
assuming i t s  right-hand side known and substituting the 
expression for p in the right-hand side of the f i r s t  
equation of the system (2.2) a t  j = rn. On the character-  
is t ics  

we have 
(dldt-kr.)  p. 

=q.-zne V..:(t) dt' e r p I P ( t r - t )  I V..(tr) (pm-pn) ). (3.2) i 
- m 

If the condition (3.1) and the inequality 

1 V,"" I e , r .  (3.3) 

a r e  satisfied, then the population of the lower level can 
be replaced by the stationary value p, = q,/r,, and the 
population of the upper level by the value a t  t' = t. Us- 
ing (3.2), we obtain an expression for the population 
difference: 

where 

f 

g ( t )  -2Re [ v.: ( t )  j dt'e'(l'-q V.. ( I1)  ] . 
-- 

In the case of a standing wave, the matrix element of 
the interaction of the radiation with the active medium 
is 

V,,=Ge-'Ot sin kz, (3.7) 

where S2 = w - w,, is the detuning of the field from the 
frequency of the working transition. After discarding 
the t e r m s  with the fast  spatial oscillations, we obtain 
the following expressions for the auxiliary functions f 
and g: 

The integrals K,(t) a r e  expressed in t e r m s  of the proba- 
bility integral of complex argument. Some properties 
of integrals such a s  I(a, 5 , z )  a r e  considered in Refs. 
14 and 15. 

Using expressions (3.6), (3.8), and (3.9), we obtain 
an equation for  the population difference: 

In the case  of approximately excitation r a t e s  9,-q,, 
which is of practical interest ,  we can neglect the sec-  
ond t e rm of (3.12) by vir tue of the inequality (3.1). 
Then the population difference N i s  determined by the 
population of the upper level m,  owing to the rapid de- 
cay of the lower level n. The velocity dependence of N 
i s  then given by the integral I, and by the velocity de- 
pendence of the function q,. If the condition 

i s  satisfied, the expression under the integral sign in 
(3.9) oscillates rapidly and I, = I .  The function N(v) 
therefore duplicates the form of q,a W(v). 

The integral I, differs substantially from unity only 
in the vicinity of the resonance IS2*kvl sl?, where I, 
describes the profiles of the acceleration-distorted 
Bennett dips. In the case  of weak saturation, when 
x << 1 ,  the Bennett-dip profile i s  al tered by the accel- 
e r a t i ~ n . ' ~ " ~  In this case expression (3.13) yields the 
contour described in these references. In addition, 
expression (3.13) makes i t  possible to obtain an asymp- 
totic expansion of the population difference in the case 
of strong saturation (x>> 1): 
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The coefficients of the ser ies  (3.15) can be obtained by Substituting (4.7) in the system (4.5), we obtain the 
the Laplace method (see Ref. 18). Since the obtained functions Rh. After averaging over the velocities we 
expressions a r e  unwieldy, we present only the equation have 
for the coefficient c,: I T 3 ~  

(RIA>=-iGldN-exp 
k6 

dte-r'cosQt cos (3.16) 
- C r-lr,-l [ I G ~ A ~ ~ z , ~ ( o ) + ~ G ~ - ~ ~ ' z ~ ( ~ ~ )  

If there is no acceleration, (3.16) reduces to the coeffi- I-m.n (4.8) 
(1 +8 

cient of the first  term of the asymptotic expansion of + I G . L I ~ ( z . ( ~  )+zlJi(+)) + I G . - L I ' z , . ( ~ ) ] )  . 
the ordinary Bennett dip. 

4. To analyze the effect of the longitudinal electric 
field $, on the emission of an ion laser,  we consider a 
resonator made up of flat mi r ro r s  and separated by a 
distance d. We write down the expansion of the light 
field in terms of traveling waves: 

1 
E(z, t) = -z 2 Epr exp(-iopt+iAkpz) +c.c. 

.I-*( 
(4.1) 

The boundary conditions on the mirror  surfaces lead to 
the following relations for the amplitudes Epx and the 
wave numbers k, of the modes: 

We confine ourselves next to an analysis of a two- 
mode regime ( p  = 1,2)  so  that we can present concrete- 
ly the main regularities of the intermode interaction. 
The solution of the system of equations for the density 
matrix (2.2) can be sought in the form 

p= Rpi exp (ihkpz-iQpt) ; 
4-*l 

Substituting (4.3) and (4.4) in (2.2), we obtain a system 
of equations for the functions R,, r,, and R,, which 
assumes on the characteristics (2.2) the form 

The difference between the wave numbers of neigh- 
boring mocks q is small compared with the wave vec- 
tors: q/k= n/kd << 1. This allows us to neglect the 
terms proportional to q and assumed that the wave num- 
bers of the modes a r e  equal (k = k, = k,). Neglecting the 
higher spatial harmonics and using the Doppler-limit 
condition 

we write down, accurate to the first-order corrections 
for saturation, the expression that follows from the 
system (4.5) for the population differences N= p, -p,: 

Aka I' 
NnNo [ I -  1 Gp~IzI (---i--, 2, rp,'+iAkat)] , 

1.P.b 
2 (4.7) 

where No = q,/r, - q,/r,,, and the integral i s  given by 
(3.11). 

where 

AN=Na/W (v) , Z,,A=I'I',Z(Aka, r,, 21'-2iQ) ; 

2 = 
cD (z) = - Je-"dt (4.9) 

fi 0 

is the probability integral. The formula for R,, i s  ob- 
tained from (4.8) by interchanging indices 1- 2 and the 
signs of the frequency differences & - -&. 

The nonlinear part of (4.8) contains five terms. The 
first  and second describe the effect of the saturation in 
the mode, and the remaining ones correspond to inter- 
action between the modes. The t e rms  proportional to 
IG,, 1 correspond to the interaction of traveling waves 
of the same direction (k, t t k). They reflect the change 
of population under the influence of the light field and 
the presence of nonlinear interference effects. The 
contribution of the nonlinear interference effects is de- 
scribed by the functions 

The terms proportional to 1G2,12 correspond to inter- 
action of waves traveling counter to each other 
(k, t t h), so  that the nonlinear interference effects a re  
suppressed in them by the Doppler broadening. 

Calculating the macroscopic polarization from (2.4) 
and using the relation (4.2) that follows from the bound- 
ary  conditions on the resonator mirrors ,  we obtain 
from (2.1) and (4.8) the abbreviated equations for the 
complex amplitudes of both modes: 

ep= (-I)P+lE, Ap=AOe-"~'f(h~)', A.  = nY8~ldnnl'  
AN.  

hk6 

Resolving (4.11) into amplitude and phase relations 

Gp=Gpo esp (i*,), Im Gpo=Im $,=O, (4.12) 

we obtain the equation for the parameters of the satura- 
tion 

and of the phases qp of the first and second modes: 

x p = ~ P ( a p - ~ p ~ p - ~ p x ~ - p ~ ,  (4.13) 
- I ~ P = O P - P P X P - . C P ~ J - P ~  (4.14) 
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where 

P +P, ep=,a. c-' [z; (5) +z,: (f) +zi ( 3 1  . 

The primes and double primes denote the r ea l  and 
imaginary parts  of the quantities; the subscripts s and 
a denote respectively the symmetrical  and antisymme- 
tr ical  par t s  of the function. In the derivation of (4.13) 
and (4.14) we used the fact that the r e a l  and imaginary 
parts  of the functions I(a, 6 , z )  a r e  evenl4*l5: 

To analyze the one-mode lasing regime we put in 
(4.13) and (4.14) 

This condition i s  satisfied, for example, if O, < r and 
O,> I?. If a < 0, i.e., the loss  exceeds the gain, Eq. 
(4.13) with condition (4.16) has  a stable null solution. 
At cu > 0 the following stationary solution becomes s ta -  
ble: 

The plot of the function %,"(a) = <( -a )  has  a symmetri-  
cal dip against the background of a broad Doppler con- 
tour, which differs in shape from the Lamb dip a t  gg 
+ 0. 

When the acceleration i s  small  enough 

Ikal cT.r,. (4.18) 

the profile of the dip can be approximated by two dis-  
persion curves 

For a laser  using noble-gas ions, where the inequality 
(3.1) is valid, the decisive factor i s  the broadening of 

FIG. 1. Plot of the function z;, at r= 5rj. Curves: 1) at v, 
=O.l, 2) 1.0, 3) 10. 

FIG. 2. Plots of the function 2;: at r= 5rj. Curves: 1) v ,  
=0.1,2) 1.0, 3) 10. 

the long-lived upper level, whose relative value is 
2 ( k ~ / 2 I T , ) ~ .  An estimate for an  Ar' laser  a t  A =  4880 A,  
$,= 10 ~ / c m ,  I-',- 10' sec-l,  and r-  lo9 sec-' yields a 
relative broadening -5%. Plots  of the function Z;,(S2), 
which determines the shape of the Lamb dip, a r e  
shown in Fig. 1 for  various values of the parameter vj 
= ka /2 r r j .  It i s  seen from the figure that in the limit- 
ing case that i s  the inverse of the inequality (4.18) the 
dip becomes l e s s  pronounced and can split. 

In Eq. (4.14) for the phase with condition (4.16), the 
t e rm a, =A, .252/~"~ki (52 <,: kii)  determines the effect of 
the linear contraction of the frequency, while the second 
t e rm corresponds to energy repulsion determined by 
the functions Z!a(S1). Plots of these functions a r e  
shown in Fig. 2. The acceleration decreases  the repul- 
sion, and hence also the detuning 52, a t  which the repul- 
sion is balanced by the locking. In the case of large ac-  
celerations, a s  shown in Fig. 2 ,  oscillations appear in 
the frequency dependence of the effect. These a r e  due 
to interference between different spectral  components 
of the radiation, and a t  smal l  detunings the energy r e -  
pulsion gives way to energy contraction. 

An investigation of the stability of various stationary 
solutions of the system (4.13) for the two-mode regime 
yields the following results:  The ze ro  solution n,= 0 i s  
stable only when the loss  in the resonator exceeds the 
gain of the medium a,<O. A regime in which one mode 
p i s  excited i s  stable if the effective gain of the second 
mode i s  negative: 

(mode competition). The two-mode regime x , ~ ,  # 0 i s  
stable in the case  of weak coupling between the modes 

If the coupling i s  strong, however, i.e., 8,8,>P,~,, the 
state that becomes stable is the one with only one mode 
of oscillations, the choice of mode being dictated by the 
history of the system. 

The difference between an ion laser  and an ordinary 
g a s  one i s  that the l imits  of the different lasing re- 
gimes a r e  shifted by the discharge field. The weak- 
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coupling criterion (4.20), i.e. that of a stable two-mode 
regime,  is 

By way of example we consider a noble-gas-ion l a se r  
whose active medium sat isf ies  the inequality (3.1). Let 
the l a se r  be s o  constructed that the center of the gain 
lines is equidistant from the frequencies of two neigh- 
boring modes of the empty resonator. In this  case 61, 
= -61, = &/2 and the criterion (4.21) simplifies to  

P lo ts  of the function 2:,,(&/2), which describes the 
nonlinear interference effects, a r e  shown in Fig. 3. At 
zero  acceleration the condition (4.22) i s  satisfied if & 

> E,= I?. The smal l  acceleration (4.18) expands the s t a -  
bility region of the one-mode regime, i.e., increases  
c,  by an amount on the order  of &,v:. Large  accelera-  
tion, as seen from Fig. 3, causes  oscillations of the 
function Z,,,(&/2). It follows from (4.22) that E = 0 cor -  
responds to  a stable one-mode regime,  and the zeros  
of the function Z,,, correspond to an alternations be- 
tween one -mode and two-mode lasing. 

The effects of locking and repulsion of the frequency 
in the stability region of the two-mode regime a r e  de- 
scribed by Eqs. (4.14). The condition for  the effects to 
be equal follows from (4.14) a t  $,= 0: 

5. The expressions obtained in the preceding sections 
a r e  valid a l so  when i t  comes to describing an ion r ing 
laser .  An exception i s  relation (4.2), which follows 
from the boundary conditions on the m i r r o r s  of the 
Fabry-Perot  resonator. The competing power r e so -  
nances of a r ing laser  with a nonlinear absorbing cell,  
with acceleration taken into account, were  considered 
in Ref. 14, where stability c r i te r ia  were  derived for 
the standing- and traveling-wave regimes. These c r i -  
t e r ia  can be obtained from the r e a l  part  of (4.8) by put- 
ting G,, = 0. The imaginary part  of (4.8) makes  i t  pos- 

FIG. 3. Plots of the function Zig at 5= 5r,: curve 1) v,= 0 
2) v,= 100. 

sible to  investigate the frequency pulling and repulsion 
in an ion r ing laser .  In the standing-wave stability r e -  
gion the intensity -dependent increments to the frequen- 
cy have opposite s igns for  opposing traveling waves. 
The acceleration-induced frequency difference between 
these waves is 

The longitudinal electr ic  field t ransforms thus a stand- 
ing wave into one slowly traveling with a velocity 

vph=Polk, (5.2) 

proportional to  the gain (absorption) and to the sa tura-  
tion parameter  x. The frequency dependence of the ef- 
fect is determined by the functions ZYa(SZ), plots of 
which a r e  shown in Fig. 2. 

The nonlinear splitting of the lasing frequency of the 
opposing wave can take place a l so  in an ordinary gas  
r ing l a se r  (e.g., as a resu l t  of diffraction o r  of the dif- 
ferent Q of the resonator  for the two opposing wavedg). 
In contrast to the effect (5.1) of frequency splitting un- 
der  the influence of the electr ic  field, i t  takes place for 
ions only when the intensities of the opposing waves a r e  
unequal because of the difference between the nonlinear 
frequency repulsion. If the detuning 61 is smal l  com- 
pared with the homogeneous width r ,  the beat frequency 
6w va r i e s  in proportion to 52, and this  makes i t  possi- 
ble in principle t o  use the splitting effect to satisfy the 
emission frequency of an  ion l a se r  against the center 
of the gain line. 
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