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An analysis of the U, problem (which consists, in particular, in the absence of a ninth light pseudoscalar 
meson) from the point of view of quantum chromodynamics (QCD) leads to the conclusion that the theory 
should contain a massiess pole in some of the gauge-invariant quantities. The nature of this pole is new to 
particle physics: it is connected with the periodicity of the OCD potential energy with respect to a certain 
"generalized" coordinate and to the possibility of "free motion" of the system with respect to a certain 
coordinate. Owing to the axial anomaly, mixing takes the place of the ghost with light (pseudo-Goldstone) 
quark-antiquark states; diagonalization gives rise to physical r]  and gh' mesons, and the large mass of the 
latter is determined mainly by the mixing amplitude. The masses of the 7 and r]' mesons are calculated, and 
certain amplitudes of the processes in which they take part agree well with experiment. 

PACS numbers: 12.40.&, 12.70. + q, 14.40.Ka 

1. INTRODUCTION tion of chiral U, symmetry." Yet the 17' mass  (958) i s  

Application of quantum chromodynamics (QCD)' to 
hard hadron processes at high energy has shown that 
QCD perturbation theory describes the experiment ade- 
quately (see, e.g., the reviews2). Perturbation theory, 
however, still apparently does not fully specify the the- 
ory, and we are at present at the stage of accumulation 
of information concerning a "genuine" exact theory, a 
"genuine" vacuum, etc., formulated in terms of QCD it- 
self. Much is already known at present from the pheno- 
menology. In particular, i t  i s  known that the QCD vac- 
uum should contain a quark-antiquark condensate (Gq),3'4 
as  well as  a gluon condensate (Gq, etc .5-7 (Gb i s  the in- 
tensity of the gluon field), and these averages over the 
vacuum do not include the usual zero-point oscillations 
of the field. 

Perhaps the most valuable information on chromody- 
namics outside the framework of perturbation theory i s  
provided by the nonet of pseudoscalar mesons (n, K, 9, 
and 77'). We note that even before the appearance of 
QCD, the low-energy dynamics of the n, K, and g me- 
sons was understood within the framework of current 
algebra and chiral Lagrangian~.~" In this approach, the 
eight pseudoscalar mesons constituted Goldstone bosons 
connected with spontaneous violation of the chiral invari- 
ance of the theory. Nonzero but small masses of the oc- 
tet (we recall that *, K, and 9 are much lighter than all 
other hadrons) are  the result of a patent small violation 
of chiral symmetry in the Lagrangian. 

large and cannot be attributed to nonzero but small 
masses of the quarks. This difficulty of QCD has been 
named the "U, problem.""'12 It turned out to be so seri- 
ous, that for many years it served a s  a stimulus for the 
development of a theory. The formulation of the U, 
problem, its discussion, and solution a re  the subject of 
the present paper. 

Let us review briefly the history of the problem. In 
1975, Kogut and Susskind,13 starting from the analogy 
with two-dimensional electrodynamics (the Schwinger 
model), noted that the necessary element for the solu- 
tion of the U, problem should be the existence of a pole 
at q2=0 in the matrix elements of certain gauge-invari- 
ant operators. In 1976, 't Hooft14 noted that, a s  a result 
of the Adler-Bell-Jackiw axial a n ~ m a l y , ' ~  instant on^'^ 
can lead to the desired solution of the problem. In 1977, 
however, Crewtheri7 has shown that the instantons, when 
taken literally, lead to an incorrect dependence of vari- 
ous quantities of the theory on such "parameters" a s  
the number N ,  of the colors, on the number of the flav- 
o r s ,  o r  on the quark masses. Next, in 1979, Witten'' 
explained how the U, problem should be solved from the 
point of view of chromodynamics a s  A',-*. Finally, 
Venez ian~ '~  made Witten's idea more concrete by intro- 
ducing into the theory a ghost state (of the type proposed 
by Kogut and Susskind13), demonstrated i ts  self-consis- 
tency, and pointed to a practical possibility of calcu- 
lating the 17'-meson mass.  

- - 

We regard the Veneziano approach a s  correct and con- 
The advent of chromodynamics as a strong-interaction 

structive. However, the introduction of the pole l/q2 in 
theory did not change this logic; moreover, the only 

the theory i s  so serious a step, that we deem it  impor- 
source of the patent violation of chiral symmetry be- tant to do the following: 1) ascertain whether this pole 
came obvious, namely the mass  term in the QCD La- i s  indeed a necessity from the phenomenological point 
grangian.1° In the limit of zero masses of the u, d, and of view; 2) determine i ts  physical nature in QCD; 3) 
s quarks, the eight pseudoscalar mesons are, by virtue 

demonstrate that i t  leads to observable consequences 
of the spontaneous violation of the chiral symmetry and compare them with experiment. (which is due to formation of the (qq) condensate) a r e  
massless Goldstone bosons. In this case, however, the In Sec. 2 we recall briefly the principal ideas on which 
ninth meson 9' (singlet in SU,) should apparently also be the discussions of pseudoscalar mesons a re  based: the 
massless, inasmuch as in QCD the spontaneous viola- small quark masses, the approximate chiral symmetry 
tion of the chiral SU, symmetry brings about also viola- of QCD, and its  spontaneous violation. We also formu- 
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late the U, problem on a qualitative level. In Secs. 3 
and 4 we do this more precisely and demonstrate that in 
order to ensure an q'-meson mass the theory should in- 
deed have a ghost pole at q2=0 in some of the correla- 
tors of the gluon currents, and that this pole should in- 
cidentally be separated from physical (observable) quan- 
tities. 

Such a pole means that the theory contains a gapless 
excitation, and it i s  of interest to understand the physi- 
cal cause of its appearance. Gapless excitations are  al- 
ways a reflection of some profound properties of the the- 
ory; for example, massless Goldstone particles appear 
as  a result of spontaneous breaking of continuous sym- 
metry; the zero photon mass i s  ensured by gauge in- 
variance, etc. In our case, as  we shall show in Sec. 5,  
gapless excitation is a consequence of the periodicity of 
the potential energy of chromodynamics with respect to 
a certain generalized coordinate. For the system to 
move along this coordinate, an arbitrary low energy i s  
sufficient, and in this sense the corresponding excita- 
tion i s  gapless. 

Without allowance for this phenomenon, the singlet 
pseudoscalar meson (the prototype of the q' meson) is a 
massless Goldstone particle (in the limit of massless 
quarks). Owing to the axial anomaly,15 however, a mix- 
ing of this Goldstone particle with the aforementioned 
gapless excitation (ghost pole) takes place. It i s  their 
diagonalization which results in the massive g' meson, 
a s  will be demonstrated in Sec. 6. A simple formalism 
then makes it possible to calculate in fair agreement 
with experiment not only the masses of the q and g' me- 
sons, but also the amplitudes of various processes in 
which they take part, (Sec. 7 ) .  Some conclusions are 
summarized in Sec. 8. 

2. MASSLESS OR PSEUDOSCALAR MESONS 

The characteristic mass scale of hadrons i s  approxi- 
mately several hundred MeV. At the same time, there 
are substantial grounds for assuming (see below) that 
the masses of the three light quarks are small in this 
scale: m,=4 MeV, m,= 7 MeV, and rn,=150 MeV. It 
follows therefore that the hadron masses are determin- 
ed not at all by the quark masses, but by some scale 
M,, ,  that is  peculiar to strong interactions, which can 
reasonably be assumed to be the mass of a typical had- 
ron, m,=770 MeV. A good approximation i s  therefore 
the so-called chiral limit: mu =m,  =m,=O. In this lim- 
it, the QCD Lagrangian has high symmetry, namely 
with respect to independent mutual transformations of 
the left-hand and right-hand components (helicities) of 
the quarks u, d, and s separately into one another. 
Since by the same token there exist invariants with re- 
spect to the transformations that mix states with differ- 
ent parity, hadrons with identical quantum numbers 
must be parity-degenerate: e.g., the vector meson 1- 
should have the same mass as  the axial meson I+, etc. 
The real splitting (m, - m,,"400 MeV) i s  too large to be 

J able to associate it w ~ t h  the nonzero masses of the 
quarks. This means that the almost exact initial chiral 
symmetry of the theory i s  violated spontaneously in ther- 
modynamics on account of interactions, e.g., on account 

of formation of a quark-antiquark condensate (&+dd+ss), 
and this condensate should appear also for really mass- 
less  quarks. But if some symmetry is spontaneously 
broken, then according to the Goldstone theorem there 
should exist massless bosons. In fact their masses a re  
not zero, but small: they a re  proportional to the pa- 
rameters of the chiral-symmetry breakingin the Lagran- 
gian, i.e., in this case to the masses of the quarks. The 
role of these so-called pseudo-Goldstone bosons, i s  
played by the octet of pseudoscalar mesons ( r , K ,  77); 
their masses a re  indeed much lower than the masses of 
the remaining hadrons. 

Since the quark masses serve a s  a small parameter, 
i t  i s  possible to calculate the masses of the pseudoscal- 
a r  mesons in first  order in this parameter a s  the ma- 
trix element of the perturbation, in this case of the mass 
mass term in the QCD Hamiltonian, which violates ex- 
plicitly the chiral invarianceZ0: 

&7=m,iiu+mdJd+m,ss+. . . . 
Using the soft-pion theorem (and its generalization to 
mesons that include s-quarks), we obtain 

m,02=- (m,+m.) <dd+Ss)+ O(m.") ; 
I E ~  

f.=132 MeV, fx=155 MeV. 

We note that one of the methods of obtaining the values 
of the quark masses, cited at the beginning of this sec- 
tion, i s  to use these formulas. 

If it i s  assumed that the remaining two isosinglet me- 
sons also acquire mass only on account of the mass 
term in the Lagrangian, then the state with definite 
mass will be 

nr -2-'"(iiy,u+dy5d) nz-Fyss. (2 ) 

Their masses are calculated in similar fashion and are  
equal to 

m?sz - 1 (2m,(iiu)+2md(dd)) =mZZ=0.02 GeV2, 
f l' (3 ) 

which differ greatly from mi=0.301 GeV2 and m$=0.917 
GeV2. In addition, the quark content of 11 and 8' differs 
from (2). This i s  in fact the U, problem formulated by 
weinberg." 

The e r ro r  of the derivation consists in the fact that 
owing to the axial anomaly, the isosinglet currents are  
generally speaking not conserved, so  that it cannot 
be assumed that the isosinglet q and g' mesons acquire 
mass only on account of the mass term. The anomaly, 
however, is in turn a total divergence, and the fact 
that it comes into play i s  quite nontrivial. We proceed 
now to a more precise examination of the question, 
based on the anomalous Ward identities,'' which, on the 
one hand, make i t  possible to duplicate the results (1) 
for nonsinglet currents, and on the other to formulate 
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clearly the condition under which the incorrect masses 
(3) do not arise. 

3. ANOMALOUS WARD IDENTITIES 

We begin with nonsinglet Ward identities. They are of 
the form4'17 

j d l x i ( ~ ~ ( z ) ~ b ( ~ ) ) + < q { p ( ~ m ) ] ~ ) = ~ ,  (4 ) 

where 

i s  the pseudoscalar density (ta a re  the generators of the 
groups of SU, flavors, rn is the mass matrix of the 
quarks, and { ) is the anticommutator). The meaning of 
Eq. (4) consists in the following: the propagator of the 
divergences of the axial currents at zero four-momen- 
tum i s  equal to the quark condensate. The identity (4) 
can be derived either by changing the variables in the 
functional integral [in this case it is necessary to con- 
sider the substitution q(x)'exp[id(x)t"~,]q ( x ) ]  o r  with 
the aid of canonical equal-time commutation relations.17 

We note that according to perturbation theory both 
terms in (4) diverge quadratically because of the free 
quark loop. However, the diverging part i s  quadratic 
in the quark mass. Yet, according to the principal as- 
sumption (see Sec. 2), the non-perturbative part of the 
condensate" (qq) i s  different from zero even at a zero 
quark mass. The propagator of the divergences (tenta- 
tively of the order of - m:), should therefore contain a 
large contribution linear in the quark mass. Such i s  the 
contribution of the a-meson intermediate state. Defin- 
irg the axial coupling constant in the usual manner: 

we have for the a-meson contribution to the propagator 

from which follows relation (1). 

We turn now to the singlet Ward identities. We define 
the currents 

Itn=2-'" (Zywyru+Zyu~,d),  Zwr=Pyvyss, 

aJ,.,=Q'h(m.iiy.u+md~yJd) +ZSQ=P,+2"Q, (6 
aJw-2imJy,s+2Q-P,+2Q; 

Q=a,.GG/&r 

The terms with Q reflect here the presence of the axial 
anomaly. 

The corresponding Ward identities can be derived 
anew by two methods: by replacing the variables in the 
functional integral" o r  with the aid of the canonical 
commutation relations." We recall the second method 
and derive one of the Ward identities. We consider the 
total divergence of the correlator (it vanishes in the 
zero-momentum limit, since there a re  no massless 
hadrons): 

0- lim ~ d 4 x e f ~ a p i ( ~ ~ 1 ~ ( z ) ~ i ( ~ ) > =  ~ d 4 z i ( ~ ~ I ( x ) + 2 + ~ ( z ) ,  ~ ~ ( 0 ) )  
9-P 

The T-product of the operators is understood here in 

Dyson's sense: 
T A  ( x )  B ( 0 )  ==8(xo) AB4-0 ( -x , )  BA.  

Calculating the equal-time commutator in accordance 
with the canonical rules, we find that the last term is 
2m,(ZIu) +2m,(dd). To simplify matters we shall here- 
after express the correlator of two operators in mo- 
mentum space in the following abbreviated form: 

etc. If the momentum q is zero, we shall write simply 
(A@. 

In this notation, the Ward identity (4) for the no-meson 
channel is rewritten in the form 

(Pn~P"9+2m, ( i iu )+2md(dd)=0 ,  (4' 

and the identity (7) in the form 
<P,Pi)+2q*(QP,)+2m,<Iu)+ 2md<dd)=0.  

We can similarly derive four more independent iden- 
tities: 

<P2P,)+2<QPZ>+4m,(fs)=0, (10) 
( P , P , ) + ~ ~ ~ ' ( Q P ~ > = O ,  (11 
C Q P , ) + Z ' ~ ~ C Q Q ) = O ,  (12) 
<QP2)+2<QQ)=0. (13) 

We note immediately that the identity (4'), from which 
relation (1) follows, differs from identity (9) only by the 
correlator (QP,) o r ,  according to (12), by the correlator 
(QQ). If (QQ)=O were to be satisfied, we would obtain 
from identities (9) and (10) the "pseudo-Goldstone" mass- 
e s  (3) just as  we obtained relation (1) from the non-sing- 
let identities (4). Thus, to prevent the appearance of in- 
correct masses (3), the very fact that anomalous di- 
vergences exist i s  not sufficient, and it i s  necessary 
that at zero momentum the correlator (QQ) be differ- 
ent from zero. This i s  a rather nontrivial condition, 
inasmuch as the correlator vanishes in any order  of 
perturbation theory. 

In fact, as  will be shown in the next section, the cor- 
relator (QQ) in the identities (12) and (13) should be tak- 
en to mean the limit q,q,(K,K,), ,,, where K, i s  the 
gauge-invariant gluon current: 

Thus, to ensure masses for the and q' mesons i t  is 
necessary that the correlator (K,K,) have a pole as q2 
-0; e.g., 

This condition seems even more surprising than the 
"equivalent" condition (QQ) # 0. How does this pole 
arise? What i s  i t s  physical nature? To what conclus- 
ion concerning QCD, outside the framework of pertur- 
bation theory, does the "experimental," a s  we see, fact 
of i ts  existence lead? This pole does by itself not ap- 
pear in the real spectrum of the hadrons, since the cur- 
rent K,, is not gauge-invariant, and is therefore not ob- 
servable, but to which observable consequences does it 
lead ? 
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The sections that follow will be devoted to a discus- 
sion of these questions. 

4. CONNECTION BETWEEN THE DIFFERENT 
DEFINITIONS OF THE CORRELATORS AND THE 
VACUUMENERGY 

In view of the fundamental importance of the conclu- 
sion that a pole i s  present in the correlator (K,,K,), we 
shall spend some time on a more detailed determination 
of the correlators, and at the same time ascertain their 
connection with the energy of the vacuum a s  a function 
of the known parameter2) 8. 

We introduce into the QCD Lagrangian the 8-term: 

The energy density & of vacuum can be defined, follow- 
ing Feynman, with the aid of the continual integral 

exp(- ieVT)  = UA,"DijDq exp S (17) 
Taking logarithms of both sides the differentiating with 
respect to 8,  we get 

The right-hand side of (18) i s  the connective part  of the 
two-particle correlator of the densities of the topologi- 
cal charges at zero momentum, and we shall hereafter 
designate it-\QQjW. The superscript W denotes time or-  
dering after Wick. The weak T-ordering (which, gener- 
ally speaking differs from the Dyson T-ordering, see 
below) is  defined with the aid of a functional integral. 
It is  understood, in particular, that all the differentia- 
tion operators are applied after the calculation of the 
convolutions of the fields (the latter is  performed in ac- 
cordance with Feynman's rules). The Wick T-product 
can be understood as an analytic continuation of the 
Green's functions defined in Euclidean space. We have 
thus obtained 

aZe/ae' - - (VQ)w.  (1 9) 

We shall show below that the anomalous Ward identi- 
ties (12) and (13) contain precisely (QQ)W, and note for 
the present only that the difference of (QQ)' from zero, 
which i s  needed for the solution of the Ul problem, 
means automatically a nontrivial dependence of the en- 
ergy density of the vacuum, and also probably of other 
quantities in the theory, on the parameter 8. In view of 
the importance of relation (19) we shall derive it by an- 
other method, which will also enable us to establish the 
connection between the Dyson and Wick T-products. 

We calculate ~ ( 8 ) ,  following Witten,'" by the Hamilto- 
nian method in the gauge A,=O. In this gauge 

where IF' i s  the chromomagnetic intensity. We define 
the canonical momentum 

and construct the Hamiltonian 
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We calculate the vacuum energy density, which we ex- 
pand in a perturbation-theory ser ies  in 8 up to second 
order.  We have 

We obtained here the Dyson T-product, since it i s  pre- 
cisely this (and not the Wick!) product which can be rep- 
resented as  a sum over the intermediate states. Thus, 

This equation i s  the sought connection between the Wick 
and Dyson T-products. 

We shall show now that the Ward identities (12) and 
(13) contain in fact (QQ)W. To this end, we consider the 
total divergence of the density correlator of the topologi- 
cal charge Q with a current made up, e.g., of same- 
quarks: 

lim S dkze'qxl.a,i(TI,,,(z)Q(0))O 
"-0 

= ( l ~ , + 2 Q , Q ) " +  ~d'xi([l,,,(z),~(0)]>6(x,). (25) 

Before we calculate the equal-time commutator, we 
note that I , . , ( x ) = s + ( x ) ~ , s ( x )  i s  a poorly defined object. 
For an accurate definition, we carry  out a gauge-invari- 
ant separation after Schwinger: 

- lim S+ (X + t) 7.. (. - f ) + 2.. 
c-0 

The two terms here are  not gauge-invariant, but their 
sum is.  The commutator of the first  term with Q yields 
obviously zero; the commutator of the second, however, 
can be calculated in the gauge A,=O by using the canon- 
ical commutation relations. We have 

1 d3xi( [ 2Ka  ( z ) ,  Q ( O ) ]  )=-2(  (a.H/Zn)') .  (26) 

Substituting this expression in (25) we obtain in place of 
(13) 

(P2Q)"+2(QQ>"-2( ( a , H / 2 n ) Z )  =O. (27) 

Comparing with Eq. (24), we see that Eq. (13) remains 
in force if the correlator (QQ) in it i s  understood in the 
sense of Wick [the same holds also for Eq. (12)]. 

The connection between the correlators (K,K,) and 
(QQ) (accurate to possible Schwinger terms which con- 
stitute a polynomial in q2) is of the form 
q,qv(K,K,)qD=-iq,(K,Q)qD=(QQ),D-((a.H/2n)2)=(QQ),W. (28) 

This relation is ,  on the one hand, almost obvious from 
the definition of the Wick T product, and on the other it 
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can be obtained by a canonical method similar to the de- 
rivation of Eqs. (25)- (27). 

We have thus confirmed the statement made at the end 
of the preceding section, that the masses of the isosing- 
let mesons can differ from their pseudo-Cioldstone val- 
ues (3) only if the propagator ( K , K V )  has a pole. At the 
same time, relation (19) shows that the residue of this 
pole depends seriously on the quark masses. In fact, 
in a theory with at least one massless quark all the 
quantities, as  i s  well known, do not depend on the pa- 
rameter 6 ,  so  that a2&/a Ba - 0 as ma - 0. Therefore the 
residue of the poles should vanish as ma- 0. 

We note, finally, that strictly speaking it would be 
necessary to take into account in (28) the possible 
Schwinger terms whichare not controllable by canonical 
commutation relations. [We note that the Schwinger 
terms appear if terms proportional to the derivatives 
of 6(3)(x) appear in the equal-time commutators; in the 
momentum representation they are  therefore polynom- 
ials in q2.] TO cause them to vanish it suffices to 
choose a reference frame q,= (a, 0). Then relation (28) 
takes the form 

lim oz j d t  e '"' i (TX(t )X(O)  )=-aZElaB2, 
"-0 

(30) 

where 

E = & V  i s  the energy of the vacuum, and V i s  the volume 
of the universe. 

Thus, strictly speaking, to solve the U, problem the 
propagator 

d t e  & ( T X ( t ) X ( O ) ) ,  J 
must have a pole l / w Z  whose residue vanishes as  m,- 0. 
In the next section we discuss the meaning of this re- 
quirement and explain at the same time the physical 
meaning of the pole. 

5. PHYSICAL INTERPRETATION OF THE GHOST POLE 

We digress for a while from the real world and con- 
sider pure gluodynamics (there are  no quarks o r  they 
are  infinitely heavy). In the gauge A:=O, the gluodynam- 
ics  Hamiltonian i s  of the form [cf. (22)] 

and the corresponding stationary SchrGdinger equation 
i s  obtained by making the substitution n'"(x) 

-i6/6A:(x): 

Furthermore, an additional condition, the analog of 

divE=O, must be imposed on the physical wave function, 
(see, e.g., Ref. 22): 

(Pba,+g.ybA; ( x ) )  GYI~IAI) ( I )  =o. (33) 

The meaning of the condition i s  the following: the wave 
function must not be changed by infinitely small gauge 
transformations. This condition allows us to assume 
that the wave function !V, as  well as the potential ener- 
gy 

1 v = - I H ' ~ ~ x  2 

depends on the generalized coordinates X, Y ,  . . . , 
which are  functionals of A4(x) that a r e  invariant to 
small gauge transformations. In particular, special in- 
teres t  attaches to the generalized coordinate 

Under the gauge transformation 

A,+SA,S+- ( i I g )  (8,s) S+ 

the quantity X transforms a s  follows: 

In the last equation we used the remarkable fact (see, 
e.g., Ref. 23) that the integral in (35) i s  either equal to 
zero (for "nontopological" S transformations) o r  to an 
integer n equal to the "topological charge" of the trans- 
formation. At the same time, the potential energy V i s  
not changed by any gauge transformation. This means 
that the potential energy V i s  a periodic function of the 
generalized coordinate X, with unity period.24 We note 
that this i s  true also for chromodvnamics with quarks. 
The remaining generalized coordinates Y, . . . , on which 
V depends are  of no interest to us now-there i s  no per- 
iodicity in these coordinates. 

Thus, the situation turns out to be similar to the prob- 
lem of an electron in the periodic field of a crystal. We 
know that a band spectrum i s  produced, the state energy 
E i s  periodically dependent on the quasimomentum k 
with a period 2n, and at small quasimomenta (e.g., near 
the bottom of the first  band) the electron behaves like a 
f ree  particle (E=k2/2m *) with effective mass m* deter- 
mined by the penetrability of the barriers.  In particu- 
lar, i t s  Green's function corresponds to free propaga- 
tion: 

1 
(36) 

The meaning of this formula i s  the following: after a 
long time the electron can move arbitrarily f a r  away 
(on account of tunneling). 

Formula (36) has a striking similarity with the chromo- 
dynamic formula (30), especially if attention is called to 
the fact that the quantity X in (30) coincides in the gauge 
A,=O with the generalized coordinate (34) with respect to 
which periodicity i s  present! This means that the wave 
function of the vacuum in QCD i s  not concentrated in the 
vicinity of one of the wells with respect to the general- 
ized coordinate X, but is smeared out over all of X- 
space. The pole (30) responsible for the solution of the 
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U, problem means that the system moves freely along X, 
i.e., that the potential barr iers  are  penetrable. 

This should not surprise us, since we know that there 
exist classical below-barrier trajectories with finite 
action (instantons)." The finite character of the action 
means in fact penetrability of the barrier.  We emphas- 
ize, however, that our conclusion that the system 
moves freely along the generalized coordinate X does 
not invoke the quasiclassical approach; we mention in- 
stantons only for the sake of illustration. 

It i s  of interest to note that if we now include the 
quarks and let one of the quark masses go to zero, then 
according to (30) the residue at the pole l / w 2  vanishes 
(the effective mass tends to infinity). This means that 
the barriers become effectively impenetrable. The last 
phenomenon can be traced also in the case of instantons 
as a concrete example of a below-the-barrier transi- 
tion-the amplitude of the transition vanishes because 
of the zero modes of the massless quarks in the instan- 
ton field. It appears, however, that instantons lead 
literally to an incorrect dependence of the transition 
amplitude on such free parameters of the theory as  the 
number N ,  of the colors, of the number of light quarks 
L, and of the mass of the quarks.17 

To conclude this section, we show that the parameter 
8 [see (16)] plays the role of the quasimomentum. We 
recall for this purpose that in the presence of periodic- 
ity the solution of the ~chr6dinger equation (32) is sought 
in the form of a Bloch wave function (k i s  the quasimo- 
mentum ): 

Y [ A ]  =esp  ( i k X [ A ]  ) U , [ A ]  . (37) 
Substituting (37) in Eq. (32) and using the remarkable 
fact that 

6X/6Ai" ( x )  = ( a , / 2 n )  H: (x) , 

we obtain an equation for the amplitude of the Bloch 
function: 

at the same time, we introduce the 8 term in the Lag- 
rangian [see (20)], construct a Hamiltonian [see (22), 
but without quarks], and write down the corresponding 
schrodinger equation: 

We see that the resultant equation i s  identical with (38) 
if we put k= 8 for the quasimomentum. It follows from 
(35) that the potentials V(X,  . . . ) i s  periodic in X with 
unity period. Thus, all the quantities of the theory 
should be periodic in 8 with period 2 ~ .  

We note that the Hamiltonian (22) with the 8 term has 
exactly the same spectrum as the Hamiltonian (31) with- 
out the 8 term, since the corresponding Schrodinger 
equations transform into one another when the wave func- 
tion i s  multiplied by the inessential phase factor (37). In 
particular, with o r  without the 8 term in the Lagrangian, 
the ground state of the system (vacuum) corresponds to 
the bottom of the band. 

In this connection we wish to make more precise the 

meaning of the quantity a2&/a82 calculated in the preced- 
ing section. The quantity c was called there, not quite 
precisely, the energy density of the vacuum, it being 
tacitly understood that the energy of the ground state of 
the system can depend on the 6 term in the Lagrangian. 
We see now that this i s  not the case: the energy of the 
ground state i s  independent of 8. Only the minimum en- 
ergy of the state with given quasimomentum 8, depends 
on this 8. It i s  precisely this relation which determines 

a 2 ~ / a O Z = - ( Q Q ) w  

[see (29)]. In the real world, at any rate, the value of 
the quasimomentum i s  1 0 1 s 10-9.25 

We note finally, by way of a curiosity, that Eq. (32) 
has formally an exact nontrivial solution with zero en- 
ergy: 

Y [ A ] = e x p ( * ( 2 n l a , ) X [ A ] ) .  

Unfortunately, this solution increases along certain di- 
rections in the space of the potentials A:(%), and there- 
fore cannot serve as a wave function of the vacuum. 

6. DlAGOMALlZATlON OF PSEUDO-GOLDSTONE 
STATES 

Thus, the potential energy in chromodynamics is per- 
iodic in the generalized coordinate 

and the potential barr iers  are  penetrable, so  that the 
system behaves like a free particle with respect to this 
coordinate and after a long time it moves arbitrarily 
far  away along this coordinate. This indeed is the phy si- 
cal interpretation of the pole (40) that is the necessary 
condition for the solution of the U, problem. We ask 
now, i s  i t  sufficient to obtain the correct masses of the 
17 and rl' mesons? In this section we describe a Venezi- 
ano constru~t ion '~  (to be sure,  using some*& different 
terms than in Ref. 19, see Refs. 26 and 27), which al- 
lows us not only to obtain the correct masaes of the 17 
and 9' mesons, but also to calculate the amplitudes of 
the different physical processes in which they take part. 

We start  from the imagined pure gluon world (all the 
quarks, if they exist at all, a re  infinitely heavy). We 
note first  that although we know, strictly speaking, on- 
ly that the c o r r e l a b r  (K,K,)  has a pole 1/d fat q=O), 
i t  is natural to assume by virtue of the Lorentz-invari- 
ance that in an arbitrary reference frame the correla- 
tor ( K , K , )  has a ghost pole a s  q2-0, s o  that [see (28)] 

lim q,q,<K,K,)D=(QQ)W=-aZ~/aOZ---A'ZO. 
q-B 

(40 

We emphasize that all the physical result could be de- 
rived also in the system q=O; we have preferred here 
the Lorentz-invariant technique only from esthetic con- 
siderations. 

In what follows it  will be convenient to introduce for- 
mally the ghost in the form of a lower intermediate 
state in the propagator ( K , K , ) .  We write 

1 
( K , K J ,  = ( o I K , I ~ ~ )  - (aplK,IO) + possible gluon contributions, 

- q2 
P (41 ) 

where E, denotes summation over the polarization of the 
ghost. We put ($ is  the polarization vector of the ghost) 
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Then (41) is rewritten a s  follows 
euPerP' 

(~,,K.)=h'z - 9 h'(a,a.),, 
-qZ 

(43) 

where we have introduced the propagator (up,), of the 
ghost. Substituting (43) in (40), we obtain a condition 
on the propagator: 

q,q.(ap.),=--1 or 4.4. ~ e . p e V p . = q a .  (44) 
P 

The actual form of the propagator of the ghost depends, 
naturally, on the gauge of the gluon field [the invariant 
condition is (4411. For  practical calculations it i s  con- 
venient to use a gauge in  which the polarization vector 
of the ghost is of the form3' 

ePP=qJ(q')", (a,a,),=-q,qdq'. (45 

We return now to the real world with three light 
quarks: m, "md<< m,. Without allowance fo r  the annihi- 
lation diagrams (with gluon intermediate states), there 
are  two isosinglet pseudo-Goldstone states n,., with 
masses m,,,, given by Eq. (3). It i s  easily conceivable 
that, because of the axial anomaly, the quark-antiquark 
states n,,, must of necessity have a nonzero amplitude 
of transition into a ghost, with an order  of magnitude 
p " A2/f (for a more accurate value see  below). We in- 
troduce the following transition amplitudes: 

(we note that in the SU, symmetry limit, when nl,,,,, 
<< M,,, , we have p,= p , a .  We shall not assume that 
this i s  satisfied). It i s  convenient, after separating the 
polarization vector c$ and assigning it to the adjacent 
ghost propagator, to define the transition amplitude in 
slightly different form: 

(av ln l , z )=- iqv~ , ,2 .  ( n , , 2 1 ~ ) - i q v ~ , , z  (47) 

We add also the bare propagators of the states n,,,: 

The diagonalization of the three states a, and n,,,, 
which corresponds to solution of the coupled Dyson equa- 
tions with bare propagators (48) and (45) and with tran- 
sition amplitudes (47), leads to the following exact prop- 
agators: 

i q  m,'-qa iq, m,'-q2 
(49) 

<a&,) - -  PI^, ( % ~ Z ) = ~ Y Z ~ ,  
q z ( q )  

The roots of the denominator z(q2) determine the masses 
of the physical q and 11' mesons: 

To find the connection between the propagators (49) 
and the observable ones we define 

( 0  I Q I a,) --iq,<O I K. I aJ=-iq,,L2, 

(a"IQl0)-tqAa; 

(in the limit of SU, symmetry we have f,=f,=f,; we, 
however, do not assume this). Using (51), (52), and 
the propagators (49), i t  i s  easy to find the correlators 
of the gauge-invariant quantities: 

(PZPz),=f:m; (mi2+ p,Z-q2)/z ( q 2 ) ,  

(P,Q),=h2f,mIZ~,(m~-q2)/z ( q Z )  , 
(PZQ),=)IZftm2'pz(m11-qz)/z ( q z ) .  

The coupling constants f,,,, p,,, and A2 introduced by 
us are  not independent, but a re  connected with one an- 
other a s  a result of the Ward identities (9)-(13). We ob- 
tain 

2-" ' f lp l=fz~z=2hZ;  (54 
flZn~,~=-2 (m,+md) (iiu+dd)=fn2m,', 

These relations were in fact obtained by Venezianolg 
under the assumption of exact SU, symmetry (fl=f2, 
pl= p,dF, . . . ) . The SU, symmetry i s  actually broken 
quite strongly: we recall, e.g., that fn=0.132 GeV, f, 
=0.155 GeV, fK/f,=1.18, and this turns out to be of im- 
portance for the numerical calculations (see Sec. 7). 

We note that according to (53) 

In the limit of infinitely heavy quark masses (the case 
of pure gluodynamics) we have m:m; =m:mZ_ [see (50)] 
and a 2 & / a O 2 = A 4 .  At small quark masses a2&/a02 van- 
ishes linearly with any of the masses,  as expected. 

7. MASSES AND COUPLING CONSTANTS OF q AND q' 
MESONS 

We obtain first  the coupling constants f,, plS2 and A2 
(f,=f,). To determine f 2  we can use the premises of 
chiral perturbation theory.,' In the linear approxima- 
tion in m,/M,,, we can write 

fi=f,+2(fr-fz)=0.178 GeV, fz/fl=fz/f.=1.35, (57) 

which fixes by virtue of (54) the ratio pl/p2=1 .91. To 
obtain a second relation between p,,, we can specify, 
e.g., the sum m:+m:1=1.218 GeV2 [then the difference 
mi - mil will be obtained from Eq. (50)]. We obtain 

(the quantities in the parentheses a re  the experimental 
masses). We can also find the singlet-octet mixing an- 
gle, defined in accordance with the equations 

qr=cos 01 l)+sinO18), q=-sin01 l>+cos818>. 

It turns out to equal - 9" (- 10" in experiment), the sign 
following from the theory. From (56) we obtain the val- 
ue of a2&/a8 in a world without light quarks, i.e., 

6"e/aB2 [,+.l,=h'=fZZp,'/8= (0.188 GeV) '. (59) 

We note that this quantity can be connected with (G3 in 
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the real world by using certain plausible rea~oning."'~' 
The obtained number i s  then in good agreement with the 
value of (GY obtained from the dispersion sum rules.' 

From expressions (53) it i s  easy to find all the resi- 
dues of the q and q' mesons (all the quantities a re  in 
units of GeV3): 

The quantities in the parentheses a re  the residues in 
the limit of exact (SU,) symmetry, which is realized 
when the quark masses tend to zero (m,,,<< F , = ~ , f i ) .  
In this limit, q i s  a member of an octet with mass (m: 
+mz) /2 ,  and q' is a pure SU, singlet with mass ( ~ f  
+ p22)/2 [see (50)]. We see  that the real  world does not 
differ excessively from such an idealization. 

By way of one of the applications of the obtained resi- 
dues we consider the ratio of the widths of the radiative 
decays $ - q ' ~  and t)'q~. According to the standard log- 
ic, these decays proceed via emission of a photon and 
two gluons in the state 0-, which later go over into q o r  
q'. Then 

The experimentally obtainedzQ ratio is4) 5.9* 1.5. 

Using the residues (60), we can also calculate the 
widths of the two-photon decays q and q' (for more de- 
tails see Ref. 27): 

r(q+2y)  =515(314*46) eV, r (q ' -2y )  =5.1(5.8+1.2) keV. 

8. DISCUSSION 

We see thus that introduction of the ghost pole in the 
gauge-invariant correlator (K, K,) and the subsequent 
diagonalization of the ghost and of the pseudo-Goldstone 
states leads to a perfectly successful description of the 
masses and matrix elements of the q and q' mesons 
(especially if the SU, symmetry assumption is disre- 
garded: f, #f, etc.). Further development of high-en- 
ergy physics of q and q'mesons consists in the construc- 
tion of effective chiral Lagrangians, that describe the 
entire nonet of pseudoscalar mesons and satisfy the ano- 
malous Ward id en ti tie^.^^ 

The presence of a pole a s  q2-0 in the correlator 
(K,K,) is a rather nontrivial property of exact QCD. We 
have shown in Sec. 5 that this pole i s  the consequence of 
the periodicity of the potential energy in QCD. It is the 
mixing of gapless excitation with a singlet Goldstone 
state (-Tiy5u+dy5d +?y5s) which leads to the appearance 
of a massive particle (q' meson) with a mass proportion- 
al to the mixing amplitude. 

It i s  interesting to note that in two-dimensional models 
(massive spinor e l e ~ t r o d y n a m i c s ~ " ~ ~  and the CPN-' mod- 
el3,) the presence of an analogous pole solves not only 
the U, problem, but also the confinement problem. It 
i s  possible that in QCD the color confinement i s  also 
connected with the existence of a pole in the correlator 
(K,K,). 

We find it useful to draw an analogy between the con- 
sidered mechanism and the Higgs mechanism. In spon- 
taneous violation of gauge invariance, the Goldstone 
boson, owing to scattering by the condensate, has a non- 
zero amplitude of transition into the longitudinal compo- 
nent of the guage field. The propagator of the latter 
component has a ghost pole, the origin of which i s  ob- 
vious: the longitudinal component i s  a cyclic degree of 
freedom in gauge theory. As a result of mixing, the 
Goldstone mode vanishes and i s  transformed into a 
massive third component of a vector boson, whose mass 
is equal to the mixing amplitude. In contrast to the 
Higgs model in chromodynamics, the degree of freedom 
connected with the ghost pole i s  strictly speaking not 
cyclic. However, the dependence of the potential ener- 
gy on this degree of freedom i s  periodic, which in our 
case does not play a principal role, since motion along 
the corresponding coordinates i s  at any rate practically 
free, a fact manifest in the existence of a massless 
pole in the correlator (K,Kv). 

At the same time, (Kp K,)  i s  a gauge-noninvariant 
quantity, and i t  would be useful to reformulate all the 
concrete results of Secs. 6 and 7 in terms of gauge-non- 
invariant quantities, etc. 

Let us consider, e.g., the correlator ( QQ)*=q,,qv 
x(K,K,). The dispersion representation for this quan- 
tity calls obviously for two subtractions (at high energy 
s the imaginary part behaves like sa in accordance with 
the asymptotically free gluon loop). The existence of 
the ghost is thus equivalent to the statement that the 
subtraction constant differs from zero, which by itself 
i s  not surprising.5) For  example, in a scalar gluon 
channel an analogous subtraction constant i s  connected 
with the energy density of the vacuum (G2) because of 
the renormalizability of the theory.33 Further, by al- 
lowing a transition of the pseudo-Goldstone states TI,, 

into a ghost [see (46), (47)] we have actually introduced 
a point gauge-invariant transition amplitude6' 

Diagonalization, of course, yields in this case the pre- 
vious formulas (49). 

Introducing also the "direct" matrix elements 

and the correlator (QQ),,, = - X4 a s  the subtraction con- 
stant in a world without light quarks, so that in the real 
world 

we satisfy the Ward identities and duplicate all the re- 
sults without invoking the ghost concept. 

Thus, in the language of gauge-invariant quantities, 
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the ghost i s  simply a method of writing down the contri- 
bution of the intermediate gluon states with very large 
masses. (We can point out here a certain analogy with 
Compton scattering by a nucleon. The Thomson limit 
of the amplitude - e 2 / m ,  i s ,  on the one hand, a subtrac- 
tion constant in the dispersion relation, and on the 
other, the contribution of a one-nucleon intermediate 
state.) 

Despite the formal possibility of getting along without 
mentioning the ghost, this concept seems to us excep- 
tionally useful, since it stems from the most important 
aspects of chromodynamics. 
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 ereaf after , Gq) will be  taken to mean precisely the finite 
nonperturbative part which does not vanish in the chiral  l imi t  
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a s ta te  characterized by a quasimomentum equal t oe , ,  s ee  
the next section. 
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Fortunately, the physical results  do not depend on the  con- 
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older measurements yield for this ratio a value e3 .  
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of the theory at  short  distances was emphasized many t imes  
by V. N. Gribov using various examples of field theory. We 
take the opportunity to thank him for numerous helpful dis- 
cussions. 

"The nontrivial manifestations of the ghost a r e ,  f i r s t ,  in the 
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to this amplitude could be  written in factorized form -xT (0) 
xJ(0)-fi fJ. This, however, is not the factorization tha iwe 
need here,  since Ward's identity leads to (54): fi fjmpipj, and 
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