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Hopping electric conductivity of a disordered system with localized states is investigated at a frequency o. At 
sufficiently low temperatures, the conductivity is determined by the zero-phonon absorption of 
electromagnetic quanta by nonresonant pairs of states. It is shown that to calculate the electric conductivity it 
is necessary to take into account the Coulomb repulsion of the second electron of the pair from the first. This 
influences significantly the probability of the pair having only one electron, and consequently the probability 
that the pair can absorb a photon. As a result, ful, in the previously known expressions for the electric 
conductivity should be replaced by e 2 / x  r, when fw <e2/x  r, (r, is the characteristic arm of the pair and x 
is the dielectric constant). Similar changes take place in the formulas for the zero-phonon electric conductivity 
of a one-dimensional metal, in which states are localized over the mean free path. The temperature 
dependence of the zero-phonon conductivity is investigated and the transition from conductivity due to 
relaxation absorption to zero-phonon conductivity with increasing frequency is discussed. 

PACS numben: 72.10.Fk 

1. INTRODUCTION a (o) = (Wnft) e'vfrJo2 ln' ( 1/01 t) . 

In systems with localized states the static conductiv- It seems to us that this formula i s  a particular case of 
ity a t  zero temperature is zero. An important theoreti- a one-dimensional version of the Mott formula. 
cal question is that of the form of o(w) a t  low frequen- 

That these formulas a r e  identical can be easily ver i -  
ties and zero temperature. Mott found that the main 
contribution to the conductivity is made by resonant ab- fied by making the following substitutions in Mott's 

formula: the length a must be replaced by the one-di- sorption by pairs of states, one of which is occupied by 
mensional localization radius, which i s  equal in order 

an electron, and the other is empty. The overlap inte- 
of magnitude to the mean free path I, the density of gral  I between these states decreases with distance r 
states should be replaced by (rAuF)-', while the quantity 

between their centers in accordance with the law I, should be replaced by E/r. The last substitution calls 
I (r) =Ioe-T'a, (1.1) for an explanation. The quantity I, has  the meaning of 

the straggling of the energies of localized states the 
where a is the localization radius and I,, is the pre-ex- distance between which i s  of the order of the localiza- 
ponential factor and depends on the model of the disor- 

tion radius. Therefore in the case of a one-dimensional 
dered system. According to Mott, the most effective 

metal the quantity I, can be obtained from the relation 
pairs a r e  those with an a r m  length 

glI,- 1 ,  whence i t  follows in fact that I,=A/r. Thus, 
T.-aln (2I,lho), (1.2) formula (1.4) describes resonant absorption due to 

transition of an electron between localized states sep- for which tiw = 2Z(r). For a three-dimensional system, 
Mott's result takes the form (see, e.g., Ref. 1) arated from one another by a distance on the order of 

r, = I ln(l/wr), which greatly exceeds the localization 
a (0 )  =aczgzaAozr.', (1.3) radius l .  

where g is the state density on the Fermi level, and a In the calculation of the probability that the pair has 
is a numerical coefficient. According to Mott, a = 3, only one electron, Mott did not take into account the 
but we have obtained a = 7?/3 (see Sec. 2). potential produced by this electron. As shown by one of 

In systems with a different number of dimensions, 
only the coefficient a and the exponent of r, change. 
This exponent is equal to three and two respectively in 
a two- and one- to two. A special case of a one-dimen- 
sional system is the so-called one-dimensional metal, 
where on the one hand the ideal-electron-gas condition 
p,l<< 1 i s  satisfied (p, is the Fermi momentum, 1 
= vpr is the mean free path, r i s  the relaxation time 
for backward scattering, and v, is the Fermi velocity). 
On the other hand, a s  f irst  indicated by Mott, al l  the 
states a r e  strictly localized because the metal i s  one- 
dimensional. The electric conductivity of such a sys- 
tem was calculated by Berezinskii? Gogolin, Mel'nikov 
and Rashba? Abrikosov and Ryzhkin? and by many 
others. Their result i s  of the form 

is,5 this potential a l ters  the form of the ~ott- ust tin 
formula for the conductivity connected with the relaxa- 
tion absorption (with allowance for the phonons; for 
details see Sec. 4). We shall show below that a correct 
allowance for the interaction of the electrons in the 
problem of resonant absorption at T =  0 leads to the 
conclusion that formula (1.3) i s  valid only a t  very high 
frequencies Aw >: ~ / X Y ,  (n is the dielectric constant), 
and a t  Ew << e2/nr, we have 

n'e4 
o (o) = - g2aor.'. 

3 x  (1.5) 

To allow for the electron-electron interaction we must 
therefore multiply (1.3) by the large ratio e2/nr,Aw. 
We assume that the same holds true also in the case of 
the one-dimensional system discussed above, so  that a t  
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4 
ho<eZ/l In - 

0 7  

formula (1.4) should be replaced by 
2e' 1 

o ( m ) = - ~ ~ o l n - .  
nR2 OT 

(1.6) 

In the next section, to be definite, we shall consider 
a concrete model of a disordered system with electron- 
electron interaction, and derive formula (1.5). It i s  
known6 that the electron-electron interaction produces 
a state-density Coulomb gap in the vicinity of the Fermi 
level. In Sec. 3 we shall  show that formula (1.5) i s  
valid only when the energies of the s ta tes  that take part 
in the conductivity a r e  outside the Coulomb gap. In 
this region, multielectron effects a r e  inessential and 
the state density contained in (1.5) can be regarded a s  
a nonzero constant. This region i s  bounded by the con- 
dition e2/v.r, >: A ,  where A is the width of the Coulomb 
gap. At exponentially low frequencies this  condition i s  
violated and this, a s  shown in Sec. 3, leads to a change 
i n  the powers of the logarithms in (1.5). 

In Sec. 4 we discuss finally the temperature depend- 
ence of the conductivity connected with the resonant ab- 
sorption. At nonzero temperature,  there  exists  also a 
conduction mechanism based on relaxation absorption. 
It consists in the fact that the transition of the electron 
between different s ta tes  i s  due to phonons, and the 
electric field a l t e r s  the equilibrium population of the 
levels and causes a relaxation that leads to energy dis-  
sipation (see Ref. 7). In Sec. 4 we compared these two 
mechanisms and ascertain in which temperature r e -  
gions each of them dominates. 

2. ALLOWANCE FOR TWO-SITE CORRELATIONS 
IN RESONANT ABSORPTION 

For  the sake of argument we consider a concrete 
model of a disordered system. It consists of s i tes  with 
concentration N, randomly distributed in space. At 
each si te  there can be one electron or  no electron. The 
total energy of the system i s  of the form 

Here r,, i s  the distance between the s i tes  i and j ,  
n, = 0 and 1 a r e  the occupation numbers. The energies 
3, a r e  randomly and uniformly distributed in a large 
interval (4 ,A). They can be connected with random 
violations of the short-range order in the system. We 
shall assume that this  scat ter  is much la rger  than the 
energy of the Coulomb interaction a t  neighboring si tes,  
i.e., thatA >: e2/n~-1'3. 

At low temperatures, the occupation of the s i te  i i s  
determined by i t s  energy 

so that n, = 0 if c t >  p and n, = 1 if E, < p,  where p i s  the 
Fermi  energy. Since the non-Coulomb scatter  of A is 
large,  the second t e rm in (2.2) i s  a s  a rule la rger  than 
the f i r s t ,  s o  that we can obtain a good approximation 
by putting 

The state density g(&) obtained in this approximation is 
shown by the solid line in Fig. 1. In a wide energy in- 
terval ,  it equals g = N / 2 ? ,  which simply describes the 
distribution of the energies @,. 

At low frequencies, the resonant absorption i s  deter- 
mined by pa i rs  consisting of an amply and occupied site 
with energies that a r e  very close t o  each other. In ad-  
dition, these energies should be close to the Fe rmi  en- 
ergy. Because of the large average scat ter ,  these soft 
pa i rs  a r e  very r a r e  and allocated far  from one another 
in space. The overwhelming majority of s i tes  that su r -  
round a given pair have high energies, and their occu- 
pation can be described by expression (2.3), which ne- 
glects  the Coulomb interaction. (The condition for the 
applicability of this  approximation is discussed in de- 
tail in Sec. 3. I t s  gist i s  in fact that the energies of the 
s i tes  that form a soft pair should l ie  outside the Cou- 
lomb gap.) However, a s  we shall show now, i t  is ne- 
cessary to take into account the Coulomb correlation of 
the occupation numbers of the s i t e s  of the softest pair. 
In this  approximation we ar r ive  a t  the following two- 
si te  ~a 'mi l tonian:  

where r i s  the distance between s i tes  1 and 2; a,+ and 
a i  a r e  the creation and annihilation operators; ni  
= a,'a,, I ( r )  i s  the overlap integral defined by (1.1), and 

ez 
, = @ l + - n o ,  'p2=@2+z "4". 

Xrrj 
(2.5) 

i e t . 2  j-1.2 xru 

The last  t e rm in (2.4) describes the quantum state 
overlap necessary for the calculation of the probability 
of the resonant transition. It is clear  that since the 
s i tes  that surround the soft pair have energies that dif- 
fe r  greatly from the energies of the s i tes  of this pair, 
the quantum overlap must be taken into account only in- 
side the pair. (In the three-dimensional case this i s  
equivalent to stating that the system i s  f a r  from the An- 
derson transition, s o  that a pair of s i tes  capable of col- 
lectivizing an electron i s  a r a r e  phenomenon.) 

The Hamiltonian (2.4) describes four states. 

1. There a r e  no electrons on the pair. The energy 
E, = 0. 

2. The pair has one electron. There a r e  two s ta tes  
with energies 

FIG. 1. Dependence of the state density on  the energy. The 
dashed line i s  the distribution of the energ ies  0, the sol id 
line i s  the s ta te  density g (w)  in the approximation (2.5), while 
the dash-dot line i s  the Coulomb gap  near  the F e r m i  level. 
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3. The pair has two electrons. There is one state 
with energy 

Resonant absorption is connected with the transition 
of the electron from the state with energy El- into a 
state with energy with El'. The energy absorbed by one 
pair per unit time under the influence of the electr ic  
field 

is of the form 

where ez,(- l r I+)  i s  the matrix element of the transi-  
tion between the states with energies El- and Eli. It is 
easy to find that 

Summing over a l l  the pa i rs  in a unit volume and 
changing over to electr ic  conductivity, we obtain 

A - 
X J' dcp, j drr412 ( r )  6 ( h a - r )  exp ( "-:;'". (2.11) 

v, 0 

We confine ourselves for the time being to the case 
T = 0. It is easily seen that in this case i t  i s  necessary 
to replace in (2.11) the Gibbs exponential by unity, and 
to  integrate over a region satisfying the conditions 

which mean that the pair is in a state with energy El'. 
We introduce new variables x =  (cp, -(p,)/2 and E l - =  (cp, 

+ 'Pz -fiw)/2. Then 

Substituting (2.6) and (2.7) in (2.13) and recognizing that 
fiw = I?, we find that integration with respect  to El-  must 
be carried out within the l imits  

p-ez / lxr-ho<E,- ip .  

Thus, 

Integrating with respect  to x with the aid of the 6 
function, we obtain 

r'12 ( r )  dr 
[R2w'-4P ( r )  ] ' ! a  

' 

From this, accurate to the number under the logarithm 
sign in (1.21, we obtain the final result  

If we discard the second t e rm in the square bracket, 
which takes into account the electron-electron interac-  
tion, then we obtain the Mott formula (1.3) with a = ?/3. 

We explain now qualitatively the meaning of the factor 
in the square bracket. Disregarding the electron-elec- 
t ron interaction, Mott has  assumed that the pair has  
only one electron and can consequently participate in 
the absorption only if E,-<P and El+> /-k [Fig. 2(a)]. 
Thus, according to Mott, the only pa i rs  of significance 
a r e  those with C1 - AW < El -<  @, s o  that the integral with 
respect  to El- yields Aw. In fact, the energy of ioniz- 
ing the second electron of the pair to the Fe rmi  level is 
not CL -El' but p - (E, -El-), and i t  i s  precisely this  
last  quantity which should be negative in order that 
there be no second electron [Fig. 2(b)]. The level El' 
can in this  case dip below the Fe rmi  level t o  a depth up 
to e2/nr,  and the level El-  to Aw + e2/xr.  It i s  this 
which explains the resul t s  (2.15) and (2.17). 

Repeating the derivation of (2.7) for a one-dimension- 
a1 system immersed in a medium with dielectric con- 
stant n, we obtain 

A s  stated in the introduction, in the case  of a one-di- 
mensional metal we have g = (TAU,)-' and I,, = A/T. It 
s eems  natural  to us  to assume that in this  case,  at  
large distances x>: I from the localization center, the 
wave functions decrease like exp(-x/a)exp(ipx), and in 
the vicinity of the Fe rmi  level the quantity a can be r e -  
garded a s  constant. We a r e  interested in the overlap 
of s ta tes  whose centers  a r e  separated by a distance of 
the order of r, = 1 l n ( l / w ~ ) ,  and the energies differ by 
Aw. If W T  << 1, the condition Apr,  << 1 is satisfied, 
where Ap = fiw/v, is the difference between the momen- 
t a  of the overlapping states. Then the oscillating factor 
does not play any role in the calculation of the overlap 
integral, and formula (1.1) i s  valid a s  before, where a 
= CI and C is a numerical coefficient. We did not find 
in the l i terature an unequivocal statement concerning 
the quantity C .  We have therefore chosen C such that 
a t  Aw >> e2/nr, formula (2.18) coincides exactly with 
the ~ e r e z i n s k i r  formula (1.4). This yields C = 2, i.e., 
a = 21. For a one-dimensional metal formula (2.18) 
then takes the form 

FIG. 2 .  Energy scheme of resonant absorption by a pair with 
arm length r: a-neglecting the Coulomb interaction; b-with 
allowance for the Coulomb interaction of the second electron 
with the first. As a result of this interaction, the energy of 
the second electron E2- E; exceeds by e2/n r the energy of the 
term E; and can be larger than c(, even though E;  < k .  
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3. TWO-SITE APPROXIMATION AND INFLUENCE OF 
THE COULOMB GAP 

The preceding calculations were  based on the two- 
si te  Hamiltonian (2.4). Two assumptions were made. 

1. We have neglected the correlation between the oc- 
cupation numbers of the soft pair and the other occupa- 
tion numbers. In particular, the probabilities of a pair 
having one electron and two electrons were calculated 
with the same values of the other occupation numbers, 
and consequently with the same values of cp, and cp,, 
whereas the appearance of a second electron in a pair 
could cause a change in the neighboring occupation 
number such that the double occupancy turns  out to be 
more probable than in the considered "hardu version. 

2. For a l l  the s i tes  that do not enter in the soft pair, 
we used the approximation (2.3). This approximation 
makes, in particular, the state density on the Fe rmi  
level a quantity different from zero. 

It is known6 that in the three-dimensional case the 
second approximation i s  patently incorrect in the vicin- 
ity of the Fe rmi  level, since a Coulomb gap i s  present 
with a width A =  e3g'h/x3h, and the state density van- 
ishes at  the Fe rmi  level (Fig. 1). On the other hand, 
a s  shown by one of us,8 a t  energies higher than A the 
Coulomb interaction influences the occupation numbers 
little, and the approximation (M) i s  valid. It i s  
therefore necessary to compare the values of cp, and cp,, 
which a r e  of importance in our problem, with the value 
of A. A s  seen from (2.13)-(2.15), in the most impor - 
tant case e2/xrw> Rw, the condition cp,, cp, >: A i s  of the 
form 

It i s  satisfaction of this  condition which makes i t  possi- 
ble t o  regard the state density a s  constant. 

The same condition allows u s  to disregard the change 
of the surrounding occupation numbers when the charge 
of the soft pair is changed. Assume, e.g., that we have 
changed the occupation number n, of si te  1 belonging to 
the pair. Then a l l  the surrounding s i tes  j will be acted 
upon by an additional potential of the order of d /x l r ,  
-r, I .  At a sufficiently large distance from the si te  1 
there a r e  inevitably s i tes  whose energy goes through 
the Fermi  level when an additional potential i s  added, 
a s  a result of which their charge changes. The d is -  
tance R to the nearest  s i te  of this  kind can be estimated 
from the condition gR3eZ/xR - 1. This yields 

It i s  now necessary to estimate whether the potential 
produced by the charge a t  a distance R from the pair 
influences the characterist ic  energies of the pair. To 
this end i t  i s  necessary to compare e2/xro and 8/ 
HY,. From this we see that when condition (3.1) we can 
disregard the rearrangement of the neighboring occupa- 
tion numbers when the charge composition of the pair 
is changed. 

Let us  discuss briefly the form of the electr ic  con- 
ductivity when a condition inverse to (3.1), i.e., r, 
>: e2/xa is satisfted. In this  case i t  i s  necessary to 

substitute in (2.5) the se t  of occupation numbers corre-  
sponding to the ground state of the system, and to take 
into account the fact that the state density has  a Cou- 
lomb gap and decreases  in the vicinity of the Fe rmi  
level like cp2. Since cp - 8 / x r w ,  and the electr ic  con- 
ductivity contains a product of two state densities, i t  
follows that the expression for  the electr ic  conductivity, 
under the conditions r, >; 81%~ and Rw << 8 / x r w  should 
contain four l e s s  powers of the logarithm than expres- 
sion (1.5). F rom this  we get 

i.e., the dependence turns  out t o  be weaker than linear. 

This result  pertains only to the three-dimensional 
case. In the one-dimensional case the Coulomb gap has 
only a logarithmic character  and i t s  width i s  exponen- 
tially small. It s eems  to us  therefore that formula 
(2.19) (with perhaps a slight modification of the loga- 
r i thmic factor) should be applicable a t  arbi trari ly low 
frequencies. 

4. CONDUCTIVITY AT FINITE TEMPERATURE 

We have assumed so  far  T = 0. We consider now how 
the resul t s  a r e  al tered a t  finite temperatures. We a s -  
sume f i r s t  that e2/xr, << Rw. This case  seems to u s  
the most important. Indeed, for  hydrogenlike localized 
s ta tes  I,= e2/xd and, using the definition (1.2), we 
readily see that the strong opposite inequality 8 /n rw 
<< Rw i s  impossible. 

Formula (1.5) is applicable a t  k T  << Rw. In the region 
Aw <<kT<< 8 / x r ,  the populations of the s ta tes  El' and 
El-  become close to each other, so  that the stimulated 
emission almost  offsets the transitions t o  the upper 
level. This i s  manifest in the fact that the factor 1 
-exp(-Rw/k~) in (2.11) becomes of the order  of f i w / k ~  
<< 1. At the same time, the width of the region of inte- 
gration with respect  to El-, defined by the inequalities 
(2.12), i s  equal to e2/xrw >: k T  and does not become 
smeared out by the temperature. Thus, the following 
formula i s  valid in the entire region kT, fiw << 8/nr , ,  

R' e' 
o ( 0 )  - -[l-e-nm1kr]agz-or.3. 

3 
(4.1) 

X 

In the region kT>: 8/ny, ,  Rw the s ta tes  El' and El' 
can be higher o r  lower than the Fe rmi  level by an 
amount -kT. In this region 

Substituting (4.2) in (2.11) we obtain 

a (a) =L/s~'e%ag'ho'r~', (4.3) 

which coincides with Mott's formula (1.3) with a! =n2/3.  
Finally, in the region Rw >: e2/xrw, k T  formula (2.17) 
is valid when the t e rm in the square bracket is neglect- 
ed, af ter  which formula (4.3) is obtained. 

As already mentioned in the introduction, a t  finite 
temperatures there exists  also the s o  called relaxation 
mechanism of conduction. It consists in the fact that 
the electron goes from level to level by absorbing and 
emitting phonons with characteristic frequency 
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where v,, is a frequency of the order of the phonon f re-  
quencies (usually 10" Hz). The electr ic  field a l t e r s  
the equilibrium occupation numbers of the s i t e s  and 
causes a relaxation to the equilibrium state determined 
by the instantaneous value of the field. Retardation and 
the associated energy dissipation take place. 

The main contribution t o  the conductivity is made by 
pairs of s i tes  with energy difference -kT and with 
transition frequency 7-' of the order of the field f r e -  
quency w. It follows therefore that the characterist ic  
distance in the pair is of the order of 

The f i r s t  to consider absorption of this  type were Pol- 
lak and Geballe' for the case  of the impurity band of a 
weakly doped semiconductor. For  the model considered 
above with a la rge  scat ter  of levels  of non-Coulomb 
character, which is frequently used to  describe amor-  
phous semiconductors, the formula for  the conductivity 
connected with the relaxation absorption was  derived by 
Austin and M ~ t t . ~  It is of the form 

IT' 
u(w)= -ae2g2kT~r,,". 

24 (4.6) 

(We have presented here  the correct ,  from our point of 
view, numerical coefficient obtained in Refs. 5 and 10.) 

In the derivation of (4.6) no account was taken of the 
quantum splitting of the levels, s o  that th is  equation is 
valid so  long as the distance k T  between the levels ex- 
ceeds the quantum splitting, which equals 21(rf,). At 
w = w,= (k~/21,)' this  condition i s  violated. In the r e -  
gion w, << w << T/li the decisive role is played by pa i rs  
of length r ,  = a l n ( 2 I d k ~ ) ,  for  which 21(r ,) = kT and the 
electric conductivity i s  of the form1' 

IT' 
0 = -eZgZaIo-?vph(kT) 'rr' 

288 

and is independent of frequency. 

One of us5 has  shown that a t  low temperatures k T <  8/ 
x r ' ,  i t  is necessary to take into account the Coulomb 
correlation of the occupation numbers inside the pair. 
Just  a s  in the resonance-absorption problem discussed 
above, this resul t s  in the pair having only one electron 

and contributing to the relaxation absorption only when 
i t s  levels a r e  lower than the Fe rmi  level by an amount 
8 / n r k ,  and not by an amount -kT a s  was assumed in 
Refs. 9 and 10. As  a result ,  a t  w< w, the following 
formula i s  valid5 

and differs  from (4.6) by a factor e2 /x r :k~  and by a nu- 
merical  coefficient. Formula (4.7) should analogously 
be multiplied by e 2 / n r $ ~ .  We then have in order  of 
magnitude 

om ( e ' l x )  ag2vp,l,-Z (kT) 'rTJ. (4.9) 

We consider now briefly the expected form of the ex- 
perimentally observable e lec t r ic  conductivity at  a given 
temperature,  assuming that e2/nr,, e2/nr:, e2/nr, 
>> kw, kT. The stat ic  conductivity goes over into the r e -  
laxation conductivity (4.8), followed by the plateau (4.9). 
The conductivity connected with the resonance transi-  
tions can become larger  than the relaxation conductivity 
a t  kw <<kT o r  a t  kw= kT. In both ca ses  i t  is described 
by formula (4.1). 
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