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We consider the motion and pinning of a Josephson vortex in a field produced by random inhomogeneities in 
a long junction. We find the distribution function of the force of vortex pinning on the inhomogeneities. We 
construct the current-voltage characteristic (CVC) of the junction. For inhomogeneities which are weak 
compared to the ohmic losses the CVC has a single hysteresis, in the opposite case it has two. 

PACS numbers: 74.50. + r 

1. STATEMENT OF THE PROBLEM We can choose t h e  c o r r e l a t o r  of t h e  random quantity 

The  a im of the  present  paper  is a study of t h e  behavi- f is the  f o r m  

o r  of an isolated Josephson vortex (soliton) under condi- K ( x - z ' ) =  ( f ( x ) f ( s ~ )  = %ap -- 
t ions of random inhomogeneities in  the  junction which ( ' x ~ x "  I> (6 

include, in part icular ,  random microcontacts  of t h e  where  the  correlat ion rad ius  1 of the  random potential 
junction s ides.  H e r e  the  junction is assumed t o  be one- is assumed t o  be  much s m a l l e r  than the  s i z e  of t h e  vor- 
dimensional and long, i.e., L >> A,, where L is thelength tex  x,," while cu is t h e  so-called Gaussian correlat ion 
of the  junction and A, t he  Josephson penetration depth. parameter .  A s  A- 0 we have f r o m  (6) 

It is well known' that t h e  equation for  the  phase differ- R ( x ~ x ' )  + a 6  ( x - x ' ) .  
ence between the s i d e s  of a n  ideal  ( lossless)  Josephson 

The parameter  a can be expressed  in t e r m s  of the  mean junction has  t h e  f o r m  of the sine-Gordon equation: 
squared fluctuation of the  c r i t i ca l  cur ren t  density of the  

d'cp i d'q slnv 
----=- (1) 

Josephson junction: 
d x b C n z  51' I.,' . 

H e r e  co is t h e  velocity of propagation (Swihart velocity) a=2l(  (6JC)2) /J .1  

of an electromagnetic wave in the  junction. We sha l l  in what follows u s e  a s  s y s t e m  of units 

A sol i tary vortex in an ideal  long junction is describ-  
ed by the one-soliton solution 

H e r e  v is the velocity of t h e  vortex and P = v / c o .  In 
real i ty  such a so l i t a ry  vortex i s  obtained f r o m  a r a r e -  
fied chain of vort ices  in the  l imit  of a low vortex con- 
centration. It can a l s o  occur  in t h e  f o r m  of a "shuttling 
vortexv2 which per forms  a finite motion, periodically 
being reflected f rom the  edges of t h e  junction and r e -  

Bearing (4) in mind and a l s o  t h e  presence of ohmic 
losses  which a r e  unavoidable in r e a l  junctions we can 
wr i te  t h e  equation 

where  q is the  coefficient of t h e  viscosi ty  in the junction 
and is equal t o  

versing in that p rocess  the direction of the  magnetic 
flux quantum contained in t h e  vortex. In both c a s e s  the  where  p is t h e  ohmic resis t ivi ty  of the  Josephson junc- 

difference in t h e  potentials between the  s ides  is equal t o  tion, d the  thickness  of the  dielectr ic  l ayer ,  and J, the  

the velocity of the vortex t o  within a constant factor: c r i t i ca l  c u r r e n t  density. 

V=Q,nvlLc. (3) 

where V is the  potential difference, a. = ~ t i c / e  = 2 X 10" 
G.cmZ is the magnetic flux quantum, v the  vortex vel- 
ocity, n the number of vor t i ces  in t h e  junction (for a 
shuttling vortex n = 1 )  and c  = 3 X 10" c m / s  is the  vel-  
ocity of light in vacuo. 

The  presence of random contact inhomogeneities r e -  
duces in the  equations t o  the  fact that X, together  with 
the factor in front of s in  cp in (1) becomes a random 
function of the  coordinate: 

h , - 2 ( ~ ) = ( h , ) - Z [ l + f ( x )  I ,  (4) 

The  uniformly distributed cur ren t  Jo introduced in (7) 
compensates  f o r  t h e  ohmic energy l o s s e s  of the vortex 
and thus  guarantees  i t s  uniform motion (when f =O).  In 
Refs. 2 t o  4 it w a s  shown that t h e  velocity P of a uni- 
formly moving vortex is connected with Jo a s  follows: 

1 , = 4 q ? / n ( i - ~ ~ ) '  . (8) 

Eq. (8)  is r igorously applicable when Jo << 1, is qualita- 
tively valid when Jo 2 1,  and when Jo 2 1, a s  was shown 
by ~ o d o r o v , ~  it goes over  a s  0- 1 into Aslamazov and 
Larkin 's  formula6 

J,=[J ,+(11v)21'  . 

where (A,) is an average  of A, along t h e  junction, while This  can be  understood f r o m  the  following considera- 

f(x) is the random deviation f rom t h e  average; thus tions. When Jo < 1 the  voltage in the  junction is con- 
nected with the  motion of a s ingle  vortex, i.e., of a lo- 

(f ( + )  ) =O. (5) c a l  region when cp changes by 28, while when Jo > 1 the 
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voltage in the contact is caused by the Josephson gener- 
ation, at which cp changes with time practically uni- 
formly along the whole of the junction. 

Equation (8), when (3) i s  taken into account, is the 
current-voltage characteristic (cvC) of the junction de- 
scribed here when there a r e  no random inhomogenei- 
ties. 

We shall examine what changes in the CVC result 
from the presence of the random quantity f in (7). When 
f +  0 the vortex is slowed down through friction against 
the random inhomogeneities, and for a uniform motion 
of the vortex it is necessary to introduce a current J ,  
additional to Jo in the junction. We must thus add a 
term J, to  the right-hand side of (7). 

2. VORTEX MOTION IN THE FIELD OF A RANDOki 
POTENTIAL 

To isolate in a pure form the role of the random in- 
homogeneities in the junction we neglect temporarily the 
ohmic losses in the junction (q =0) and the current Jo 
which compensates for these losses. The initial equa- 
tion then takes the form 

Let If I<< 1. We look for a solution of the equation in 
the form 

where cpo i s  given by Eq. (21, and I cp, I << 1 cp, I << 1. 
Equation (9) linearized in cp, will then, in the coordinates 
5 and 7, which move with the vortex, take the form2' 

Hence we find 

where f,,,, is the Fourier transform of.f(x) with wave 
vector - o y / P ,  while G , ( ( ,  5') is the Fourier transform 
of the Green operator L, with respect to time and i s  
known from Ref. 7: 

The upper sign corresponds to the case 5 > 5' and the 
lower one to the case 5 < 5'. 

To second order in f we have from (9) 

~ , ' ( I , T ) +  I , .  (11) Lsq2(E. r )= f  ( ~ ) C O S T ~ ( E ) W ( E ,  2 

We change in (11) to the frequency representation and 
perform the averaging (f,.f,,) under the integral signs, 
using the condition I << 1. We get 

io'f' slnvo(E) 1 f~~ (:, k r ) e , i J  s ~ n q ~ ( : ' ) d : '  1') Z X ~ ( @ ) ~ I .  -- 
2 - m 

(12) 

We used the fact that (f,  f,,) = 2n6(k + k')K, where 

Requiring that cp, be finite, which corresponds to a 
uniform motion of the soliton, we get the following ex- 
pression for J,: 

do' X d *  -2 
-. -- 

iu'f' x (7) $ 5 .  (13) 

After cumbersome calculations the integral J ,  takes the 
form 

where 
1 0 

b* = 9,-q* -, q =(o=-I) 'b.  
ch (nqJ2 )  ' k' 

We emphasize that the change from (13) to (14) was 
made without any approximations. 

We give in Fig. 1 the result of a numerical integration 
in (14) for different values of the correlation length I. It 
i s  clear from these curves that J ,  reaches a maximum 
for some P and that the J,(P) curves a r e  practically in- 
sensitive to a change in 1 at I < 0.1. 

When 0 << 1 we can estimate expression (14) using the 
steepest descent method: 

We shall now discuss the results. 

From the very start ,  the problem was to  find a cur- 

FIG. l .  Current compensating for radiative losses vs.  the 
potential difference on the junction for different values of 1 .  
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rent J, that would guarantee the motion of a vortex in a 
uniform junction with a constant velocity 0. It i s  well 
known7 that when a vortex moves along a junction with a 
periodically varying critical current it emits electro- 
magnetic waves which have a plasma dispersion law w2 
= k2 + 1, which i s  easily obtained from (1) when << 1. 
This means that the emission of such a vortex s tar ts  
from a threshold frequency w = 1 in the coordinate sys- 
tem of the vortex. The vortex emits therefore starting 
from some threshold velocity. It is clear that if the 
vortex moves along a junction with randomly distributed 
inhomogeneities it must emit not a monochromatic 
wave but noise. Correspondingly, it has a velocity 
distribution of the emission thresholds. As a result the 
intensity of the radiation of such a vortex will increase 
with increasing vortex velocity, since ever newer fre- 
quencies will take part in the emission. 

On the other hand, it was shown in Ref. 7 that the 
emission of a vortex moving along a junction with per- 
iodic inhomogeneities tends to zero  a s  0- 1. It i s  thus 
clear that also when the vortex moves along a junction 
with random inhomogeneities the emission by the vor- 
tex will be damped a s  0- 1. It i s  clear from (14) that 
the emission occurs at all frequencies w 3 1 and the 
mode with frequency w had a radiation amplitude pro- 
portional to  f,,,,. 

It now remains to  connect the vortex radiation with the 
current J,. This can easily be understood. Indeed, to 
sustain the vortex velocity at a constant value it is nec- 
essary to compensate for the radiative energy losses of 
the vortex at the expense of the energy of the current 
source. Therefore J, increases with 0 for small values 
of 0 and J, - 0 a s  0-0 1. 

3. PINNING OF A VORTEX BY RANDOM 
INHOMOGENEITIES 

We consider an unperturbed vortex at rest  and local- 
ized in the vicinity of a point xo; it i s  thus described by 
the formula 

(P ( x - x , )  =4 arctg esp ( r - J , ) .  (16) 

The equation with a random f ,  which in the case of a 
vortex at rest  has the form 

corresponds to the Hamiltonian 

- 1 a c p x  
If= [T (z) + 1 - ( l+ . f )coscp  1 dx,  

which for  f << 1 [with allowance for (1611 is equal to 

-- 
The force acting upon the vortex in this case i s  equal 

to 

d H  F=----- d z .  

We find the distribution function of the quantity F 
corresponding to different realizations of fk) .  To do 
this we shall consider F a s  a function of y ,  the upper 

limit of the integral: 
Y s h ( z - r , )  

F ( y ) = - 4  f ( x )  d z .  -. c h W ( z - x , , )  

We write further 

The distribution function W ( F , ~ )  of the force F pro- 
duced by all  inhomogeneities with coordinates less  than 
y and W@,y +Ay) a r e  obviously connected, a s  follows 
from the last equation, by the relation: 

Y+AY sh ( x - x , )  
W ( F ,  g - k l y )  = ( w ( ~ + 4  

f ( x )  chJ (x- x. ) (1 9) 

The averaging in the right-hand side of (19) i s  done 
over the random force f in the interval y < x < y + Ay . 
We choose I << Ay << 1 and, expanding the right-hand side 
of (19) in a ser ies  in Ay, we get after averaging and 
using (6) 

The solution of this equation has the form 

W ( F !  y )  - - [ 2 x @  ( y ) ] -  '. esp ( -F' /2@ ( y )  ). 

s h 2 ( x - z , )  
@(y)= 16a dx .  

- % 

r!!' [r- -z<)  

For the quantity W(F)" W ( F ,  -) in which we a r e  inter- 
ested we have 

i.e., the force acting from the random inhomogeneities 
on the vortex has a Gaussian distribution with a mean 
square deviatior. of the order  One shows similar- 
ly that in a random potential the vortex energy U which 
is added to the energy Eo = 8 of the unperturbed vortex 
[see (1 7)] also has a Gaussian distribution: 

IT'(C*)dL.= ( 3 / 8 x ) "  esp (-3CT2/8a) d r .  (21) 

It follows from (17) and (18) that the characteristic 
scale of the changes in the field of the random potential 
(not to be confused with the correlation radius l ! )  in 
which the soliton moves is of the order of unity or,  in 
dimensional notation of order X,. 

It is clear from (20) that the characteristic pinning 
force which constrains the vortex is of order and 
fluctuates around that value according to  (20). 

4. CVC OF CONTACTS WITH RANDOM 
INHOMOGENEITIES 

We discuss the form of the CVC of a long junction with 
random inhomogeneities. The dependence of the total 
external current on the average voltage across the junc- 
tion can be obtained by simply adding the current Jo (8), 
which compensates for the ohmic losses in the junction, 
and J ,  [see (15)], which compensates for the radiative 
losses of the vortex at random defects. Thus, 

l ( f l ) = J o ( P ) + l L ( f l ) ,  (22) 

where according to (3) P = L C V / @ ~ C ~  = V / v 0 .  

The shape of this CVC is shown in Fig. 2. Whether or 
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FIG. 2. CVC of a junction with random inhomogeneities; the 
continuous curve corresponds to rj << a, the dashed curve to 
a = 0, and the dash-dot curve to 1) = a. 

not 40)  is monotonic depends on the relation between the 
damping q and the force a! of the random defects. In 
particular, if q << a! (in dimensional units qh, a a )  the 
CVC will be non-monotonic (Fig. 2, continuous curve). 
When 7)>> a! the CVC is monotonic and differs little from 
the case a! = O  shown by the dashed curve in Fig. 2. 
When q =  a a characteristic plateau is formed on the 
CVC (Fig. 2, dash-dot curve). As the value of Jl(P) i s  
exponentially small when 0 << 1 and the current Jl(/3) - 0 
a s p  - 1, it is clear that in those extreme regions the shape 
ofthe CVC i s  determined by the currentJ, that compensates 
for the Ohmic losses. 

The behavior of the vortex in the field of a random Po- 
tential seems t o  us to be as  follows. 

The vortex is at res t  until, in accordance with (201, 
the current supplied in the junction reaches a value J* 
of the order of a!'/', a s  a result of which the vortex 
breaks loose and s tar ts  to move. The vortex will accel- 
erate until it reaches a velocity P at which the Lorentz 
force produced by the external current and accelerating 
the vortex i s  not compensated by the ohmic friction 
force which, .although assumed to  be small, becomes 
important, according to (8), when the velocity has in- 
creased sufficiently. Since the maximum current con- 
nected with the emission J1(B) < a! << 1 (see Fig. 1) and 
the rupture current is P-  e l r2>>  a! [see (2011, a sta- 
tionary regime of vortex motion cannot be reached via 
radiative friction alone, but is established because of 
the ohmic friction given by Eq. (8). 

The process described here has a mechanical analog. 
The vortex i s  at res t ,  pinned by the junction inhomogen- 
eities, until the external current reaches the magnitude 
J*. At that moment the static friction force will be 
overcome by the Lorentz force applied to t h e  vortex, 
which will be accelerated until the Lorentz force is bal- 
anced by the gliding friction force. 

On the section between 0, and B2 in Fig. 2 we have 
a~/av < 0, so  that the CVC on that section shows hys- 
teres is  a s  is shown in the same figure. We estimate 
now the order of the velocity Po for which Eq. (15) is no 
longer applicable. It follows from the above that a vor- 
tex moving in a random field spends energy only on ra- 
diation (we have thus an active resistance to the cur- 

rent) while the effective field of the random forces 
which, a s  we have mentioned, changes over distances 
of the order X,, plays t h e  role of a reactance in the 
sense that the soliton velocity fluctuates, but does not 
decrease on the average during the motion along such a 
relief. The minimum velocity with which the vortex can 
still "roll over the hump" of the effective field of the 
random forces can easily be estimated by equating the 
kinetic energy of the soliton [the mass of which i s  equal 
to  8 according to (I?)] to the height U of the energy bar- 
r i e r  produced by the random potential: 

It is clear from (21) and (23) that the quantity Po has a 
broad distribution, the asymptotic behavior of which 
for Po>> (Po) can be obtained by substituting (23) in the 
form of an equality into (21): 

p ( 6 , )  dp,=AP, exp (-24po"lsO dBa, A-1.  (24) 

We now determine the average stopping power jo. If 
at P-Po the ohmic-loss current (8) dominates in (221, 
the value of jo is a s  to order of magnitude determined 
by substituting into (8) 0 =Po - (u')~"- 

In the case when the radiative losses a r e  more import- 
ant, j, is determined by averaging J,(P) from (15) with 
the distribution function (24): 

When evaluating the integral in (26) it turns out that 6, 
>> a!"2 a r e  the important values. This jilstifies the use 
of the asymptotic formula (24). 

We now discuss the conditions for observing the pre- 
dicted effects. Firstly, the ohmic losses in the junction 
must be sufficiently small, viz., the condition 

must be satisfied. A characteristic value i s  q- (1 to 3) 
~ 1 0 ' ~ .  The quantity a! i s  determined by the mean square 
fluctuations in the critical current density 

(1 is the characteristic size of the inhomogeneities), and 
it depends strongly on the way the junction is  prepared. 
Since q<< 1 ,  the condition (27) can be satisfied when 
Q/X,<< 1,  i.e., in the region where the theory developed 
in this paper is  applicable. Secondly, the length L of 
the junction must be much larger than the characteristic 
size of a vortex XI. 

Recently Ref. 8 has appeared in which the CVC of a 
long (L - 20 X,) Josephson junction with a strongly pro- 
nounced plateau was observed. Such a form of CVC is 
described by our theory when a! - q (Fig. 2, dash-dot 
curve). In conclusion we note that the CVC obtained by 
us contains a "large" hysteresis between the points fro 
and P* and in the non-monotonic case (q << a!, continuous 
curve in Fig. 2) a "small" hysteresis between the points 
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8 ,  and B2. 
The authors are grateful to B.I. Ivlev and K.K. Lik- 

harev for a useful discussion of this work. 

The characteristic value of I is of the order of the size of 
the granules of the superconducting films which make up the 
junctions, i.e., I s lo-' cm. A characteristic value is A j  - cm. Thus I << A,. 

2)Here we neglect the current Ji which, a s  will become clear 
in what follows, is of second order of smallness in f . 
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