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Static displacements and strains around bounded defects, in crystals consisting of weakly interacting atomic 
layers or chains, are considered. It is shown that in these crystals, the discreteness of the lattice shows up at 
distances r - r , - d / ~ " ~  that significantly exceed the interatomic distanced and depend on the small ratio E of 
the elastic moduli. Allowance for the discreteness of the lattice and for the substantial bending energy of the 
atomic planes or chains leads to a violation of the continuous limiting law u -r-I at distances r Sr ,  and to 
establishment of a different power law for the displacement u(r), with a smaller exponent, in the range of 
macroscopic distances d<r<r,. The angular dependences of the displacement and strain fields are 
investigated. The elastic interaction between defects is considered, and it is shown that in the range r <r,, the 
dependence of this interaction on distance and angle changes significantly, and the sign corresponds to 
repulsion of identical defects. Characteristics of diffuse scattering of x-ray beams and neutrons by defects in 
layer and chain crystals are discussed. 

PACS numbers: 61.70.Ph. 62.20.D~ 

The constants of interaction within chains of atoms of 
quasi-one-dimensional crystals (QlC) o r  within atomic 
planes of quasi-two-dimensional crystals (Q2C) may be 
many times larger than the constants corresponding to 
interaction between the chains (planes). The resulting 
very pronounced anisotropy leads to characteristic pecu- 
liarities of many properties of the crystals, for example 
the oscillation spectrum and phonon specific heat' and a 
number of electronic proper tie^.^ 

ed by the two-dimensional theory of elasticity and de- 
crease a s  l/r. Only at appreciable distances r "r,, 
under the action of added forces from atoms of the plane 
under consideration, do the displacements in adjacent 
planes become almost uniform, a s  they must be accord- 
ing to the usual three-dimensional equations of the the- 
ory of elasticity. In a similar manner, in a Q1C the lon- 
gitudinal displacements of atoms of different chains, for 
?-<<Yo, a re  independent and a re  subject to the one-di- . . 
mensional equation of the theory of elasticity, s o  that 

The static displacement fields produced by defects in 
each half chain, to one o r  the other side of the defect, 

Q1C and Q2C should also have interesting properties. i s  displaced a s  a whole, and the displacement in this 
Such plvperties are due to the pronounced anisotropy of range is completely independent of the distance." 
the force constants and of the elastic moduli. For ex- 
ample, in the hexagonal Q2C graphite c,, = 106, c,,=18, 
c13=1.5, c,,=3.6, c,=0.4 in units 10" erg/cm3 (Ref. 3), 
i.e., the elastic constants related to interaction of atoms 
in a single atomic plane and in different atomic planes 
differ by two orders of magnitude. 

A s  is well known, the displacement field around de- 
fects bounded in all three directions decreases a s  l/r2 
a t  large distances r (significantly larger than the inter- 
atomic distances d and a characteristic dimension R ,  of 
a defect). The pronounced anisotropy of the elastic mod- 
uli and of the forces produced by defects should lead to 
a very strong angular dependence of the coefficient of 
l/r2. More interesting, however, i s  the fact that this 
asymptotic dependence in Q1C and Q2C i s  established 
only a t  very large r>>r,, where yo-d/dh depends on the 
anisotropy parameter & and considerably exceeds d. 
For smallR,, there i s  a range of distances d, R,<<r 
<<Yo within which there i s  established a different power- 
law dependence of the static displacement on r. 

Thus under the action of defect-produced forces lying 
in an atomic plane of a Q2C, the atoms of this plane 
near the defect, at ?'<<Yo, a re  displaced independently 
of the atoms in adjacent planes, because the weak forces 
of interplane interaction a re  insufficient to displace the 
latter. Thus for r <<Yo, such displacements are  describ- 

The components of defect-produced forces that act at 
an angle to the atomic planes of a Q2C o r  to the chains 
in a Q1C produce significant displacements, because the 
restoring forces due to the small elastic constants a re  
in this case very small. For such displacements there 
i s  also a characteristic length r,>>d. It i s  due to the 
fact that a t  small distances, the usual continuum ap; 
proximation i s  inapplicable. Because of the smallness 
of the force constants between the weakly interacting 
atomic planes (chains), in the limiting passage from the 
atomic theory of crystals to the theory of elasticity i t  is 
impermissible, even for comparitively smooth strains, 
to retain only the first  nonvanishing term of the expan- 
sion (which gives the small elastic constants) and i s  
necessary to take account of higher terms, connected 
with the large forces of interaction within the atomic 
planes (chains). A s  follows from the results presented 
below, they lead to significant effects at macroscopic 
distances r 5 r, but >>d, in particular to breakdown of 
the l/r2 law and to a significantly slower change of the 
displacements. 

A decrease of the displacements according to the l/r2 
law i s  a very general consequence of the usual equations 
of the theory of elasticity. The effects mentioned of 
violation of this law a re  actually a manifestation of spa- 
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tial dispersion of the moduli of elasticity, which shows 
up with unusual sharpness in Q1C and Q2C. The indi- 
cated physical considerations lead to the result that the 
relation between the s t ress  tensor 6 and the strain ten- 
s o r  ii i s  nonlocal, and in the k representation the elas- 
tic constant 

significantly depends on k; this dependence manifests , 
itself at comparatively small k-l/r,. Only for suffi- 
ciently smooth fields i s  the usual local relation $ = E G ,  
with the usual macroscopic elastic-constant tensor i? 
=c^(k=O), valid. The sharp manifestation of spatial dis- 
persion i s  essentially due to the fact that in Q1C and in 
Q2C the rigidity of the crystal, in nonuniform strain 
with characteristic length sr,, i s  due to a greater de- 
gree to increase of the bending energy of the atomic 
planes o r  chains than to a change of their weak interac- 
tion energy. This fact shows up also in lattice dynam- 
ics.' 

In consideration of the static displacements around 
defects in the region r s r,, spatial dispersion i s  im- 
portant, and this obviously complicates the problem. 
Even in the absence of such complications, the solution 
of the equations of the theory of elasticity for an aniso- 
tropic crystal, in direct space, i s  a quite complicated 
problem. It is  considerably simpler to do the calcula- 
tion by use of the method of static displacement waves, 
i.e., by transformation to a Fourier re~resentation.~- '  
This method has an even greater advantage in the pres- 
ence of spatial dispersion, and it will be used below. In 
the k representation, the solution of the equations of the 
theory of elasticity with allowance for spatial dispersion, 
a s  well a s  with the simple local relation 6 =EL, reduces 
to solution of simple algebraic equations. It i s  necess- 
ary to remember, however, that the elastic constants 
Z(k) depend importantly on the length and direction of 
the vector k. 

Below, the field of distortions around bounded defects 
in crystals with a small radius of interatomic interac- 
tion ("d <<yo) will be determined by the method of static- 
displacement waves. First ,  in Section 1, the amplitudes 
of these waves will be found; and then, in Sections 2 and 
3, the displacement fields around defects in Q2C and in 
QlC, respectively. Concrete calculations will be car- 
ried out for the simpler case of hexagonal crystals elas- 
tically isotropic in the hexagonal plane. But the qualit- 
ative picture obtained i s  basically correct also for cryst- 
als of lower symmetry, in which there appears only an 
additional (but not anomalously strong) angular depen- 
dence of the displacement field. 

The indicated peculiarities of the displacements in the 
region Y 5 Y, must lead also to peculiarities of the strain 
field, and also of the energy of elastic interaction be- 
tween defects. In particular, it i s  important that the 
sign of the energy of interaction of identical defects for 
Y << r ,  corresponds to a repulsion between them, and i ts  
dependence on distance and on angles changes consider- 
ably. These effects also a re  discussed in Sections 2 and 
3. The peculiarities of the displacement field and of the 
elastic interaction must obviously exert a considerable 

influence on the scattering of x-ray beams and of neu- 
trons in Q1C and Q2C (see Section 1 ), and on the proper- 
ties of phase transitions and of the kinetics of the occur- 
rence of various processes in such crystals. 

1. AMPLITUDES OF STATIC DISPLACEMENT WAVES 

We consider f i rs t  a crystal with a Bravais lattice, con- 
taining a certain number of defects of a definite type 
(and of a definite orientation) with dimensions "d, for 
example point defects o r  dislocation loops of very small 
radius. We shall define the position of a defect in the 
crystal by an index t ( t  may be interpreted a s  the number 
of the elementary cell that contains the center of the de- 
fect o r  the point defect itself) o r  by a radius vector R,. 
The distribution of defects in the crystal can be uniquely 
characterized by giving a number c , ,  which assumes the 
values c ,=l  o r  0, depending on whether a defect is  pres- 
ent o r  absent at position t. On introduction of defects, 
the equilibrium positions of the atoms of the crystal no 
longer a re  located at si tes of the ideal lattice, with ra- 
dius vectqrs Rs (s i s  the number of the atom), and static 
displacements us occur with respect to the sites of the 
"average" crystal. 

It i s  convenient to expand the quantities c, and u, a 
Fourier series: 

Here c i s  the concentration of defects, and the summa- 
tion extends over an elementary cell of the reciprocal 
lattice. Since the displacements a re  caused by defects, 
the amplitudes of the static displacement waves uk can 
be expressed in terms of the amplitudes of the fluctua- 
tional waves of defect concentration ck. For small de- 
fect concentrations, uk and ck a r e  related by the linear 
relation given in formula (2). 

The displacements u,, are  determined by the equilibri- 
um conditions of lattice statics o r  by the conditions for 
a minimum of the free energy F, considered a s  a func- 
tion of y and c , .  By using the harmonic approximation 
of the Born lattice theory and neglecting the change of 
the force constants on introduction of defects (for more 
details see  Ref. 8, 861, one can write F in the form 

where the force constants V and W depend (in the ap- 
proximation considered) only on the distances between 
s and S' o r  between s and t. Here and below, summa- 
tion i s  understood over twice-occurring indices i, j, 1, 
m ( = x ,  y, 2 ) .  The quantities W,, have the meaning of 
forces exerted on atoms of the crystal by a defect. 

The equilibrium conditions */au,,=O with use of (3) 
reduce to a system of 3N linear equations (N is  the num- 
ber of atoms). But if we substitute for c ,  and us the 
Fourier expansions (21, then we can separate the 3N 
equations into systems of three equations, determining 
Ak for each k [see the derivation of formula (6.3) in Ref. 
81: 

Qk,,At,=Pk,, Ak=?tilPk.. 
(4 
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In the long-wave limit, the values of Q and P can be 
expanded in powers of k. Since 

the expansion of Q begins with quadratic terms and that 
of P with linear. By use of the known relations between 
the force constants Vs,lij and the components of the elas- 
tic-constant tensor cij,,? and also the formulas for the 
tensor pi, of force doublets produced by a defect (or fo r  
the characteristic strain L,, corresponding to unit con- 
centration of defects), it i s  easy to find an expression 
for the first  nonvanishing t e rms  of the expansions of Q 
and P: 

Here v i s  the volume of the elementary cell. In QlC 
and Q2C, the tensor Pi, may also be strongly anisotrop- 
ic. 

From formulas (4)-(6) it i s  seen that Ak " l / k  for 
small k; in ordinary crystals, with elastic anisotropy 
parameters " 1, the long-wave approximation i s  applic- 
able over the whole range kc< */d - k,. But in Q2C o r  
QlC, allowance for the quadratic terms (5) in the ex- 
pansion of Q turns out to be insufficient even at compara- 
tively small k, and it i s  necessary to take account of 
terms of the fourth order. Thus in Q2C, if the interac- 
tion between atoms of different layers, perpendicular to 
the Z axis, i s  much smaller than the interaction within 
layers, then the values of QP;, a r e  determined by small 
elastic constants and are  much smaller than QP,; with i 
= x ,  y ; j = x ,  y. But the fourth-order terms in  the expan- 
sion of Qk, a re  due specifically to the large force con- 
stants V,.,, for pairs of atoms s, s' within a layer, and 
therefore in layered crystals they must be taken into 
account along with QP:~, even at small k: 

(7 ) 

Here k, i s  the projection of the vector k on the plane of 
a layer (k, LZ). The main contribution to the sum over 
s' comes from terms for which V,,t,, a re  large, i.e., s 
and s' lie in the same plane (%,tlZ). The estimate giv- 
en for the parameter p i s  correct  if the radius of inter- 
action "d." From symmetry considerations it follows 
that Vs,~,z=V,,~y,=O when RdLZ; that is ,  in Qk.. and Qk 
Qkya the terms containing k4 a r e  small when kc< k,. 

In similar manner, in Q1C consisting of weakly inter- 
acting chains parallel to the Z axis i t  i s  necessary to 
take account of terms -k4 in Qkij with i, j + z :  

Here the main contribution to the sum over S' comes 
from terms with &,llZ. Formulas (7) and (8) take into 
account corrections to the theory of elasticity due to de- 
pendence of the elastic constants c i j l m ( k )  on k, i.e., to 
spatial dispersion. 

In crystals with several (v) atoms in the elementary 
cell, the coefficients A k y  for different sublattices Y a r e  
different, and the equations of type (4) form a system of 
3v equations. But it can be shown that in crystals with a 
center of inversion (not necessarily located a t  a site of 
the lattice), for small k, for calculation of the ampli- 
tudes of the displacements of the centers of gravity of 
the cells Ak it i s  possible, as  before, to use equation 
(4), in which the expressions (5) of the theory of elas- 
ticity o r  the expressions (7) and (8), which take account 
of spatial dispersion, a r e  valid for Qki  ,. It must only be 
borne in mind that the last  expressions, in the general 
case of many-atom crystals, a r e  exact only if one of the 
two terms in the sum for Q k i j  considerably exceeds the 
other. If, however, both terms are  of the same order  
of magnitude, then in the general case formulas (7) and 
(8) must be regarded a s  interpolation formulas. Only in 
crystals of a definite symmetry (when the si tes are  cen- 
t e r s  of inversion for the layers o r  chains and when Qki j  
and p fo r  different layers o r  chains a r e  the same) a re  
these formulas exact, a s  they are  in one-atom crystals. 
Formulas (2)-(8) may be applied also to nonideal cryst-  
als with several types of defects, since in the linear the- 
ory the displacements produced by them combine addi- 
tivity. 

We note that for large displacements of the atoms in 
the crystals considered, effects due to higher-order 
terms in the expansion (3) in powers of the displace- 
ments may be important. In this case, we may include 
in the defect a certain number of greatly displaced 
atoms of the crystal, and we may interpret pi, a s  the 
force-doublet tensor produced by such a generalized de- 
fect. 

In hexagonal crystals, the elastic properties are  iso- 
tropic in the plane perpendicular to the sixth-order axis 
2, and in (7) the coefficient C( i s  independent of the di- 
rection of the vector k,. As a result, for defects pos- 
sessing axial symmetry, the system of three equations 
(4) reduces to a simpler system of two equations, which 
determine Aka and the projection Akl=n,Ak,(q=kl/k) of 
the vector Ak on the XY plane (see Appendix I1 in Ref. 
8). For Q2C, these equations, with use of (5)-(7), have 
the form 

I 
( ~ , , k , ~ + c , , k , ' ) d t , +  (c,,+c,.) k,!i ,A~, =-p, , l i , ,  

(9) 

r and their solution i s  

li : 
A t .  = 3 [p3(kL'+e,lZI') -p,~~k,'], 

In QlC, in accordance with (a), in the first  equation 
(9) a term c,,pk,4Ak, appears, and in the second the 
term c, ,pk~Ak, disappears. The solution of the re- 
sulting system has the form 
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k  
A k ,  = -k [ p ,  (k,'+e,k,') -p3e2kZ2],  

D 

D= (klzCe,k, ' )  ( e , k , ' t e , k , ' + ~ ~ k , ' )  - ~ ~ ~ k , ~ k . ' .  

In Q2C the constants c,,, c,, and c,, a re  small in com- 
parison with c,,; and in QlC, c,,, c,,, and c,, a re  small 
in comparison with c,,. Therefore c,, c,, and C, (which, 
like P ,  PI, and P3, have different meanings in QlC and 
in Q2C) are  dimensionless small parameters. Accord- 
ing to (10) and ( l l ) ,  in hexagonal crystals Ak depends 
only on the angle 8 between k and the Z axis. 

The amplitudes Ak of the displacement waves have di- 
rect physical meaning; in particular, they determine 
the intensity of the diffuse scattering caused by the dis- 
tortions, 

I ,  ( K t k )  - (KAh)? 

in the vicinity of si tes of the reciprocal lattice (with re- 
ciprocal-lattice vectors K). It i s  evident from (10) that 
when IPll-lP,I and E, " E,-c,, a s  k- 0 in Q2C, Akl in- 
creases a s  l /k  and depends very strongly on angles, 
varying a s  

in the range of very small 8. The component 

i s  very large at small k (where IAk,l-(~k)-l>>IAk,I). But 
at comparatively small 

(outside the small- 6 range), spatial dispersion leads to 
a significant decrease of IAk,l and to a change of its law 
of decrease with increase of k: Aka-  k -,. Accordingly, 
in this range the diffuse scattering i s  found to be signifi- 
cantly suppressed (I, decreases a s  k-', instead of the 
usual Huang law k m a ) .  If, in Q2C, Ip,I >>IP,I and Ipll &, 
alp31, thenAk, i s  determined by the general formula 
(10). 

In Q1C with IP,I - 1  P,I and E ,  "c, - c,, 

and IAkll>> lAk,l (except in the small-8 range). Here the 
spatial dispersion strongly diminishes Akl and leads to 
the relation 

lit 1 
A k L z p I  T- 7 when i. ~ 0 5 0  b (i)' -e3 1.. 

p k ,  

This picture of characteristic strong dependence of 
Ak on k, as  follows from (4)-(8), remains valid also in 
Q1C o r  Q2C of lower symmetry. But in contrast to hexa- 
gonal crystals, now Ak depends not only on 6 but also on 
the direction of k, in the-plane perpendicular to the dis- 
tinguished axis. 

2. QUASI-TWO-DIMENSIONAL CRYSTALS 

With the aid of the expressions given for Ak, it i s  not 
difficult to find also the displacements us around an in- 
dividual defect. Let the center of the defect be located 
at the origin of coordinates. Then c ,= l  only when & = O ,  
and ck =N"; the Fourier expansion (2), in crystals with 
a Bravais lattice, takes the form 

where r=R, and where the integration extends over the 
volume of an elementary cell of the reciprocal lattice. 
In the range r>>d,  with neglect of corrections "d/r [or 
(d/r)' in the presence of a center of inversion], formula 
(12) i s  applicable also to crystals with several atoms in 
a cell. 

In the limit Y - -, the main contribution to the integral 
(12) comes from the region k- 0, and u(r)- 1/p i s  de- 
termined by the asymptotic expression7 

where n, i s  the projection of n=k/k on the axis r, and 
where the integration over Ji extends over directions of 
n perpendicular to r. But in the cases  of Q2C and QlC 
under consideration, the dependence of kAk on k pro- 
duced by spatial dispersion leads to a more complicated 
~ ( r )  relation in the range d&-'' >>r>>d. 

In order to illustrate effects due to spatial dispersion, 
we consider hexagonal Q2C. Excluding at f irst  the case 
of small r, we may extend the region of integration in 
(12) over all space and determine Ak by formula (10). 
Using cylindrical coordinates 4,  rp, k,, which a r e  con- 
venient in this case, and carrying out the integration 
over rp (Ak, andAkr a re  independent of cp), we express 
u(r )  in the form 

u, ( r )  =u. ( r ) ~ . ,  u, = 2 j ~ d k . ~ l k I A k l J l ( k , r l ) c o s  Xzz, 
4x--= " 

(14) 

Here u,, z ,  y, and r, a r e  the projections of u and r on 
the hexagonal axis and on the plane perpendicular to it, 
el =r,/r, i s  a unit vector in this plane, and J,(x) i s  the 
Bessel function of order  v. 

In the case of small & under consideration, one can 
expand 1/D in formulas (10) in powers of C: and trun- 
cate after the linear term of the expansion [in the inte- 
gration of the zero-order term of the expansion, the 
rapidly oscillating function J,(k,r,) may lead to a com- 
pensation that sharply decreases the integral and neces- 
sitates taking the linear term into account]. After this, 
the integrals (14) over k, a r e  carried out explicitly; and 
with neglect of terms of higher order in &, and &, (but 
not in P,&/P,), the expressions for u, and u, take the 
form 
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At sufficiently large Y, the main contribution to the in- 
tegrals in (15) comes from the small - k, range, in 
which kk12 may be neglected along with el, and 

In agreement with (13), in the large - r range ~ ( r ) "  l/r2, 
and lu,l>>lu,l (except for the case of very small Izllr). 
Similar numerical calculations of the displacement and 
strain fields around dislocation loops in the Q2C graph- 
ite (without allowance for spatial dispersion) were made 
in a paper of Ohr." 

At smaller Y -d'/&lh, i t  i s  not permissible in the ex- 
pressions (15) to neglect the terms pk12 along with &,, 

i.e., to neglect the spatial dispersion In this range, it 
i s  not difficult to find u, and u, by carrying out a numeri- 
cal integration in (15). But if r<<d'/&lh, then the inte- 
grals in (15) can be calculated analytically: 

In the range a 51 (y12 s ~zld' /&'~),  the larger component 
U, i s  

Thus with approach to the defect, the displacements u, 
increase considerably more slowly at a distance "d'/cl" 
than at larger distances, and for ~ z l  <<d'/dh, a << 1 they 
vary a s  l/z. We note that in the range under considera- 
tion, namely 12 l<<d'/e1la, when Y, - 121, then always a 
<<I, and formulas (17), (1 9), and (20) simplify. Simi- 
larly, on passage into this range the increase of the 
strain slows down (from a l/r3 law to a 1/z2 law), a s  
does that of the energy of elastic interaction of the de- 
fects. Thus, for example, the large components of the 
strain tensor, u,, and u,,, are  according to (16) and (17) 
determined by the expressions 

du el 'e,zr, 3u 
u,,, = - - P, -- PI 

e,zrl 
8n ( E ~ z ~ + E ~ ~ , ~ ) ' ~ '  8n (z2f  e,r,')''. ' 

The energy E of elastic interaction of the defect under 

consideration with another defect, with force-doublet 
tensor Pi in the case when I P,l >>I P,le and Ip,'l>> I P,'I E , 
has the form, by use of (18) and (19), 

It i s  important that on approach of the defects to each 
other along a straight line at a given angle 0' to the Z 
axis, the interaction energy changes sign in the range 
Y -d'/&lh, if (z/r,p> 2 & , / ~ ~  and r, "lzl. Over almost the 
whole region Y <<d'/&lh (except, perhaps, a small sec- 
tion with 0'-n/2), the sign of E corresponds to repul- 
sion of identical defects. The dependences of the energy 
on r and on the angles for r >>d'/clh and for r < < d ' / ~ ' ~  
differ significantly. 

The displacement field in the plane z = 0  of a Q2C and 
in neighboring planes requires special treatment. In 
this range, an important contribution to the integral (12) 
for q(r) i s  made by large k, -k,, where the longwave 
approximation (10) i s  invalid and it i s  necessary to de- 
termine Ak from the general equations of the type (4). 
We separate Ak=AkO+sAk' for kl2>>&,km2 into a term AkO, 
corresponding to displacements within the atomic plane 
under consideration (perpendicular to 2) and with neglect 
of the interaction between planes, and a term &Ak', 
which takes this interaction into account. The value of 
AkO=AkO(k,) i s  determined by the two equations (4) with 
i = x ,  y for & = O  (or by the analogous system of equations 
for crystals with several atoms in a cell) and depends 
only on k,, whereas A;, depends both on k, and on k, 
and i s  determined by the complete system (4). When k, 
<< k,, we may pass to the macroscopic limit in the equa- 
tions for 4 ' ;  each atomic layer z (z i s  a multiple of the 
interplane distance d,) must be characterized by i ts  own 
force-doublet tensor 

determined by the forces W,, with which the defect acts 
on the atoms of this plane. In hexagonal crystals, for 
k, << k,, in analogy to (lo), &O(k,, z)=p,'k,/k12, where 
pl~=pxx/vc,,. On substituting this expression in (12) and 
taking into account that the integral J'cosk,zdkZ=2n/d, 
when z = 0 and = 0 when z + 0, we find that the displacements 
u,' of the atoms of plane z and E (r) in the zero-order ap- 
proximation with respect to & are  determined by the 
formulas 

From (21) it i s  evident that for z=0  and for values of 
I less than the dimension Ro of the defect and its radius 
r0 of interaction with atoms of the crystal (where PIs# O), 
and for Y, <<d/&Ih, the displacements vary according to 
the law u, -l/r characteristic of two-dimensional cryst- 
als. In the range r, 2d/elfh, the displacements are de- 
termined by values of 4 at small k, < &,"2k,, where, as  
i s  evident from (lo), neglect of terms -elk: along with 
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kI2 becomes incorrect, and the relation (21) breaks 
down, transforming for Y, > > d / ~ , ~ ' ~  to the relation (16) 
for y (r). When jzi>Ro, rO, r, <<d/cll": (21) vanishes, 
and the displacements are  determined by &kt; that i s ,  
in contrast to (21), they contain the small factor &. In 
Q2C of lower symmetry, the field ul2(r,) for small z and 
for r , < < d / ~ " ~  is not isotropic, but a s  before it varies as 
1 / ~ l .  

3. QUASI-ONE-DIMENSIONAL CRYSTALS 

In calculating the displacements in hexagonal Q1C at 
not too small r ,  i t  i s  possible to determine Ak from for- 
mula (11) and to extend the integration in (12) over all 
space. Then u, and u, a re  determined by formulas (14). 
As in the case of Q2C, we expand 1/D in (11) in powers 
of c: and truncate after the linear terms. This enables 
us to carry  out the integration over k, in (14) and to re-  
duce the expressions for u, and u, to one-variable inte- 
grals. With neglect of terms of higher order in & (but 
not in p,&/p,), they have the form 

- 
I k / ,  

= {diiz hz k 2 : { p ,  ;;lie T p, % \ E I V ~ : )  
-x- E d -  

where K,(x) [and, below, I,(x)] are  modified Bessel 
functions. 

At large r ,  neglecting pk.2 in comparison with E , ,  we 
get 

In QlC, the large components of the displacement vector 
are  those in the plane perpendicular to the chains (lull 
>> Iu,/ outside the region of very small 8'). 

When r-d'/cl", it i s  necessary to take into account 
terms p k a 2  in the expressions (22). In the range r 
<<d'/&lr2, with neglect of &, together with ~k , ' ,  the re- 
sulting integral for the larger component u, of the dis- 
placement vector can be calculated analytically: 

Formula (24) can be simplified by using the limiting val- 
ues of K,(b) and I , ( b )  at small and large b: 

In the formula for u, relating to the case b >> 1, a term 

has been added that i s  important in this range and i s  
proportional to &P' and logarithmically dependent on r, 
[it was omitted in (24)]. Te rms  have been omitted that 
differ from the first  term by small factors of the type 
(&,z2/dt2b )" (for b >>I) o r  (~'/~r,/d')". 

In QlC, on approach to a defect in the range r, <<dl 
/E'/~, b<< 1, the displacements increase as rrd2, i.e. 
faster than in Q2C but more slowly than at large dis- 
tances. The large components of the strain tensor 
u,,,,. . . and the energy of elastic interaction of the de- 
fects for r, sd'/&lh also change more slowly than the 
usual r-3 law. When ~ P , I > > ~ P ~ \ c ,  and ~p,'l>>IP,'l~,, 

E (r) = -vcIJplr + i, =u'c,,plpi'el Elr l  - 2 c 3 z 2  
-. It r, ) 4neSmJ2 (e l r~+e , i z )*  

The sign of E ( r )  in the range r<<d/clh corresponds to 
repulsion of the defects. 

When r , = O  and at small  r,, the displacements u, be- 
come small, and the component u, i s  the largest. To de- 
termine i ts  value in the chain of atoms with r ,=0 (con- 
taining the center of the defect) and in neighboring 
chains, we proceed a s  in the consideration of displace- 
ments near the plane t = O  in Q2C, and se t  A,,=AkO+&&', 
where Ako=AkO(k,) is  determined by equation (4) with i 
=z.  At small k,, for the chain r, 

(the summation extends only over atoms of this chain). 
On substituting this expression in (12) and taking into ac- 
count that the integral ~ ~ o s k , r , d k , = 4 ~ ~ / ~  for r l = O  (A ie 
the a rea  per chain in the XY plane) and when r, + 0 ,  we 
find an expression for the displacements uKrl of atoms 
of the chain r,: 

In QlC at small z ,  the defect displaces a s  a whole the 
sections of the chains that are  located within its radius 
of interaction (in opposite directions). Only at distances 
l z l - d / ~ , ' ~  does the interaction with other chains begin 
to show up, gradually leading to the establishment of the 
U, -v2 law described by formula (23). 

For the longitudinal displacements produced by the 
forces W,,, along the chains, one can obtain also more 
general integral representations, correct  for all Izl>>dt 
(larger than the radius of interatomic interaction "d). 
For example, when p,=O, by substituting the solution of 
equation (4), Aka = Pka Ql;j,, in the important region 1 k,l 
<<k, s k, in (12), one finds that 

in the sum r, sites s' located on the same chain a s  s 
a re  excluded. 

Suppose, for example, that for  point defects, P,(r,) i s  
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nonzero only when r,=O. Then according to (28), in the 
range ~zl<<r , -d/e '~  in the chain containing the defect, 
the strains u,, have the order of magnitude -u,/r,, and 
the displacements u, sign z+u,, z =u, sign z in this range 
are  almost constant [u, sign z i s  the displacement deter- 
mined by formula (27)]. In neighboring chains there are 
displacements u, of order u,z/r,, comparable with the 
displacements of the central chain only for 121-r,. When 
r, >>d, (28) agrees with formula (23) for u,. These 
strains l e d  to a relatively large contribution " c,,(u,#)~/ 
r, to the self-energy of the defect. This contribution 
might be diminished by transverse displacement of the 
defect (this was pointed out by A. M. Kosevich); but at 
sufficiently small lu,l<< (droyh, such diminution cannot 
compensate the increase of the energy of bending and of 
interaction of the chains. 

We note that the characteristic features in Q1C and 
Q2C should carry  over not only around point defects, 
but also near such defects a s  dislocations o r  particles 
of a new phase. If the dimensions of the dislocation 
loop o r  particle R, <<r , -d ' /~ '~ ,  then the results pres- 
ented can be applied directly at distances r>>R,. But if 
R,>>r,, then a significant change of the distortion field 
should occur at distances 5 r, from the dislocation line 
o r  from the edge of a platelike (or needlelike) inclusion. 

') In an isolated chain, the short-range forces exerted by the 
defect displace, as a whole, the entire half-chain r > d or 
x < -d .  The forces of interaction with atoms of neighboring 
chains, deforming the given chain, tend to diminsh the value 
of the displacement. But since these forces a r e  small, their 
combined action is sufficient for appreciable relative diminu- 
tion of the displacement only at  great distances, of the order 
of ro, and only for r Bra do the displacement and strain 
fields acquire three-dimensional character. 

2)At first glance, it seems that the large force constants V,,, 

for R,,, 1 Z should lead also to a large value of @g. But 
the equilibrium conditions in the absence of stresses require 
fulfillment of the equality3 

x ~ . e s , z z R 6 s ~ ~ ~ s 3 ~ *  - E ~ - $ < ~ ; m R * s , * R s S ~ z ~  

from which i t  is  evident that with weak interaction between 
layers, QL% is  actually small. In the central-force model, 
i t  is easy to trace that this is a consequence of cancellation 
of terms V,  ,,R,fIR,t, with different s' in the equilibrium 
state. If only interaction between nearest neighbors is im- 
port, then V,r, = 0 andk = 0; but in layered crystals, the 
interactions in several coordinate spheres must necessarily 
be significant (Ref. 10, 66). 
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