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An admittance-fluctuation theorem is formulated. The Kubo formula is generalized to the case of a nonlinear 
response. The admittance-fluctuation theorem and the generalized Kubo formula are also considered at 
nonzero temperatures. 
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1. INTRODUCTION H = H ( j ) .  (3 

There is a category of physical quantities for which In such cases we can investigate the influence off i r r e -  
the external action i s  described in the Hamiltonian by an spective of whetherf i s  due to external o r  internal ac- 
operator of the type given by Eq. (123.1) in Ref. 1: tion. 

V=-f 2, It i s  shown in Ref. 2 that in the case of the Hamiltonian 
(2) in which Ho, f, and x a r e  independent of time, and 

where is a generalized force and is the 'perator of additionally Ho and x are  independent o f f ,  the rms  flue- 
a given physical quantity. I t  i s  then possible to estab- tuation x in a stationary state with a wavefunction $,, i s  
lish a relationship between fluctuations and the behavior given by the expression 
of the investigated system under the influence of exter- (A \ 
nal actions (see, for example, $ j  123 and 124 in Ref. 1). \= I 

(AX) ,:= ( X - - Z ) , ~ = ( J ~ ,  I [ X H I  - 1 as,jaf), 
An operator of the (1) type may appear in the Hamil- 

tonian also when there is no external action. In this 
case the Hamiltonian of the system can also be describ- 
ed in the form 

For example, the Dirac Hamiltonian for  a free electron 
can be represented in the form of Eq. (2) where Ho 
=p3m0C?, f =- p,, x = c a n  (C i s  the velocity of light, P, i s  
the projection of momentum along the z axis, m, is the 
res t  mass of an electron, a, and p, a re  the Dirac ma- 
trices). We can also assume that 

In the Hamiltonian of a hydrogen-like atom, we can as- 
sume that 

(or, Ho= - Zea/r, f =iia/2m, x = va). In the polar theory 
Hamiltonian, we can assume 

(ck i s  the kinetic energy, n, i s  the occupation number 
of a state with a wave vector k and a spin projection a), 
f =- s, x =A (s i s  the number of pairs, A i s  an integral 
representing the intra-atomic repulsion of electrons in 
a pair), etc. These examples show that the relation- 
ships established in the investigation of a response to an 
external action may be important in the Hamiltonian (2) 
even when discussing the internal properties of the sys- 
tem (i.e., the properties in the absence of an external 
action). 

We can also have cases when the Hamiltonian depends 
nonlinearly on the generalized force: 

where 
[ x H ] - = x I f + H x .  

In statistical physics the relationship between fluctua- 
tions and the response to an external action i s  usually 
"revealed only after these quantities a re  expressed in 
terms of the temperature of a given body" (Ref. 3). This 
is illustrated by Eq. (124.14) in Ref. 1: 

where k i s  the Boltzmann constant [Eq. (5) i s  derived 
allowing for the fact that ?S,,,=O]. In contrast to Eq. 
(4), the relationship (5) i s  obtained in the temperature 
limit (kT >> Rw) and also assuming that f - 0. 

The following expression for the real part of the stat- 
ic susceptibility i s  obtained from Eq. (5): 

Fluctuations in this case may be thermal. For example, 
in the theory of magnetism an equation of the (6) type i s  
obtained for the differential paramagnetic susceptibility 
x in the limit h = O  (h i s  the intensity of a static and . 
homogeneous magnetic field) when the Hamiltonian is 

provided [p,H0]-=Lp,H]-=O (p ,  i s  the operator of the 
magnetic moment projection). In this case [see, for 
example, Eq. (2.37) in Ref. 41, we have 

8 wz 1- x = -  1 =- - 7 

(8) 
d h  h-o kT h - l  

where ~ ~ , . , = 0 .  Since [ p,H],=O in the case under dis- 
cussion, i t  follows from Eq. (4) that quantum fluctua- 
tions of p, vanish. On the other hand, in the case of the 
Van Vleck paramagnetism when [p,H]- +0, we can ex- 
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pect a contribution of quantum fluctuations to ac/ah. 

The question arises whether in the limit T=O without 
assuming that f i s  small we can derive a relationship 
analogous in a sense to Eq. (6). Such a relationship 
would allow us, firstly, to apply to a stationary state 
when investigating the influence not only of external but 
also or̂  internal generalized forces; secondly, it should 
make i t  possible to identify the role of quantum fluctua- 
tions and give the limiting value (related to these fluc- 
tuations) of the generalized differential susceptibility in 
the limit T - 0. 

An affirmative response to the above question [natur- 
ally after some modification of Eq. (6), particularly a 
after replacement of kT with the difference between the 
energies independent of temperature] i s  given by the 
admittance-fluctuation theorem formulated in the pres- 
ent paper. 

2. ADMITTANCE-FLUCTUATION THEOREM 

In the case of dissipative processes we have the fluc- 
tuation-dissipation theorem, which relates fluctuations 
of the physical quantities to the Fourier components of 
the imaginary part of the susceptibility [see, for exam- 
ple, Eq. (124.10) in Ref. 1). We shall show that in a 
stationary state when there a re  no dissipative process- 
e s  there i s  a relationship between the generalized differ- 
ential susceptibility, i.e., the admittance 8x/af, and the 
Fourier components of the fluctuations  AX),^. 

Differentiation with respect to f of the average value 

where L i s  the operator of a physical quantity, and al- 
lowance for the fact that, according to Eqs. (11.2) and 
(11.3") in Ref. 5 and subject to the conditions rn * n  and 
Ern*En, 

< m l d H l d f l n >  (1 0) I ..-Em 

gives 

If the dependence of H onf i s  linear, Eq. (11) reduces 
to Eq. (2.6) of Ref. 6. 

For the Hamiltonian (2) we find that if aH,/af =0, 
ax/af =0, and-consequently-a~/af =- x, it follows 
from Eq. (11) that 

Equation (12) can be written in the form 

where w,, = (Em- E,)/Ti, and 2nE i s  the Planck constant. 
The admittance-fluctuation theorem follows from Eq. 
(13): 

where the Fourier components of the rms fluctuations 

( A X ) , . Z - C  I (n lz l rn) lz6(o-om")  
rnlfn) 

satisfy 

The admittance-fluctuation theorem and the fluctua- 
tion-dissipation theorem solve in a sense mutually in- 
verse problems. As i s  known, according to the fluctua- 
tion-dissipation theorem, fluctuations a re  governed by 
the properties of a response to "an external action no 
matter how weak" (Ref. 1). However, according to the 
admittance-fluctuation theorem represented by Eq. (14), 
a differential response to an external action (which need 
not be weak) i s  governed by fluctuations in a stationary 
state. 

Certain properties of the generalized differential sus- 
ceptibility in a stationary state7 follow from the admit- 
tance-fluctuation theorem expressed in the form (12) if 
the Hamiltonian i s  given by Eq. (2): 1 )  this susceptibil- 
ity is  positive in the ground state; 2) if the energy spec- 
trum of the system i s  bounded, then the susceptibility i s  
negative in the most excited state; 3) i f  the spectrum of 
the system consists of a finite number of levels, the 
sum of the generalized differential susceptibilities van- 
ishes; 4) if x does not fluctuate and has a definite value 
in the n-th stationary state, the corresponding general- 
ized differential susceptibility vanishes. 

The admittance-fluctuation theorem in the form of Eq. 
(12) also yields the inequality 

Bf, ! a j G 2 ( A x ) :  l ( E , - E g  ),  (17) 

where E, - Eg i s  the minimum energy of the excitation 
of the system, representing the difference between the 
energies of the first  excited (El) and ground ( E g )  states. 
According to Eq. (17), the maximum possible value of 
the generalized differential susceptibility in the ground 
state, given by the right-hand side of Eq. (17), in- 
crease in the minimum excitation energy of the system. 

3. GENERALIZATION OF THE KUBO FORMULA 

If the fluctuation-dissipation theorem i s  considered in 
the inverse aspect, it yields the dependence of the imag- 
inary part of the susceptibility on the correlation func- 
tion [see, for example, Eq. (126.1) in Ref. 11. A short- 
coming of this dependence i s  that it gives only the imag- 
inary part and not the total susceptibility. This short- 
coming i s  removed by the Kubo formula, obtained for a 
linear response. In the static case this formula i s  Lsee, 
for example, Eq. (126.8) in Ref. 11 

In the derivation of Eq. (18) the wave functions of the 
perturbed states a re  considered in the first  approxima- 
tion of perturbation theory. Therefore, the averaging 
in Eq. (18) i s  carried out over the n-th unperturbed [part 
-fx of the Hamiltonian (2)) stationary state In0). The 
first  perturbation-theory approximation for wave func- 
tions corresponds to the second approximation for en- 
ergy. Therefore, the Kubo formula of Eq. (18) has the 
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same boundedness a s  that expected of the second-order 
perturbation theory. Since the admittance-fluctuation 
theorem of Eqs. (12) and (14) i s  not derived on the as- 
sumption thatf i s  small, we can expect the Kubo formu- 
l a  of Eq. (18) to be generalized also to the case of a non- 
linear response. This generalization i s  indeed possible. 
We shall prove this bearing in mind that, in the same 
way a s  Eq. (126.4) i s  transformed into Eq. (126.8) in 
Ref. 1, the right-hand side of Eq. (12) can be modified 
to 

Equations (12) and (19) yield the generalized Kubo formu- 
l a  

The right-hand side of this formula has the same formal 
structure a s  the right-hand side of the Kubo formula of 
Eq. (18). However, in contrast to the Kubo formula (18), 
In) in Eq. (20) i s  the exact eigenfunction of the Hamilto- 
nian (2) so that Eq. (20) includes all the perturbation 
theory orders and can be applied also in the case of a 
nonlinear response. The formula (20) i s  valid also when 
the average value?, differs from zero for f = O  [the Kubo 
formula (18) is derived on the assumption that Tnb+,=O; 
see for example, $$  123 and 126 in Ref. 11. It follows 
that the admittance-fluctuation theorem i s  equivalent to 
the Kubo formula generalized to the case of a nonlinear 
response. 

4. ADMITTANCE-FLUCTUATION THEOREM AND 
THE GENERALIZED KUBO FORMULA AT T f  0 

Applying the rule for the differentiation of an exponen- 
tial function of an operator [see, for example, Eq. 12.14) 
in Ref. 81, we find that in the case of the Hamiltonian 
(21, 

where 

ZtT)  =e-'n/oze.H/O (22) 

e=kT; (. . .) i s  the averaging over a Gibbs distribution. 
The admittance-fluctuation theorem follows from Eqs. 
(21) and (22): 

where 

Bearing in mind that 

we obtain from Eq. (23) the generalized Kubo formula 

The admittance-fluctuation theorem described by Eq. 
(23) can be rewritten in the form 

Bearing in mind that according to # 124 in Ref. 1 

we find from Eq. (27) that 

If the inequality kT>>tiw i s  satisfied by all the impor- 
tant frequencies, then in the high-temperature limit we 
obtain from Eq. (291, using Eq. (122.6) of Ref. 1 ,  a de- 
pendence of the (8) type: 

i.e., the quantum constant ti drops out and a\x)/af i s  
governed by classical fluctuations. A s  i s  known, the 
same expression i s  obtained from the Gibbs distribu- 
tion in classical statistics (see, for example, Ref. 1). 

If in the case f -0, we find that (x)- 0, Eq. (29) gives 

where 
1 (9) Rw 

a. (0) = -----!I tll - . 
nB o 28 

It follows from Eq. (32) above and from Eq. (122.6) of 
Ref. 1 that 

n j  A w < z ~ > , , ~  = - ma.(O) cth- dm. 
2 

-= 26 

This expression, obtained from the admittance-fluctua. 
tion theorem (29) in the limit f - 0 and on condition \x),-, 
=0, can be related to the fluctuation-dissipation theor- 
em. In fact, in the limit f -0, when the response i s  
linear, we can use the Kramers-Kronig relationships 
[see, for example, Eq. (123.15) in Ref. I], which yields 

a. (0) =a.'/no, (34) 

where aU' i s  the imaginary part of the susceptibility. It 
follows from Eqs. (33) and (34) that 

which i s  identical with the fluctuation-dissipation theor- 
em given by Eq. (124.10) in Ref. 1, Thus, in the limit- 
ing case considered here, we find that the fluctuation- 
dissipation theorem follows from the admittance-fluc- 
tuation theorem expressed in the form of Eq. (29) and 
from the Kramers-Kronig relationships. 

In considering the limit 8-0, it i s  convenient to re- 
write Eq. (23) in the form 

(26) where (x, x )  i s  a scalar product (see, for example, Ref. 
9): 
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In the limit 8- 0, the first  term on the right-hand side 
of Eq. (36) tends to zero. Therefore, 

According to Eq. (371, 

Equations (38) and (39) yield 

where ali$af i s  determined by the admittance-fluctua- 
tion theorem of Eq. (12). It therefore follows from Eq. 
(36) that the generalized differential susceptibility con- 
sists of two parts, one of which is "thermal" and tends 
to zero in the limit 8- 0, whereas the other is related 
to quantum fluctuations and reduces in the limit 8-0 to 
the admittance-fluctuation theorem (12) for the ground 
stationary state. 

It should be noted that in the case of a two-level sys- 
tem and a negative temperature, the first  part of the 
admittance-fluctuation theorem (36) also tends to zero 
in the limit 8- - 0, in the second part reduces to the 
admittance-fluctuation theorem (12) for an excited sta- 
tionary state. 

According to Eq. ( l l ) ,  in the case of the Hamilbnian 
(2) in which aHo/af =0 and ax/af =0, the admittance-fluc- 
tuation theorem for a physical quantity y different from 
x and satisfying the condition 8y/af =0, has the following 
form at T=O: 

8<nlyln) 
-= 

<nlzlm)(mlyln) 
Em-E. 

+ C.C. 

af ",<+", 

In this case the rule for the differentiation of an expo- 
nential function of an operator gives not Eq. (21) but 

From Eqs. (42) and (22), we now have the admittance- 
fluctuation theorem in the form different from Eq. (23): 

(43) 

This equation can be written in the form 

where the scalar product is 

The scalar products (x,x), (y,x), and (Y, Y) satisfy the 
Cauchy-Bunyakovskii-Schwan inequality: 

(2, 5)  (Y, y ) a  I(=, Y) la. (46) 

Equations (46), (45), and (36) yield the corresponding 
inequality for the generalized differential susceptibility. 

The Cauchy-Bunyakovskii-Schwarz inequality gives 
also (see, for example, Ref. 10) 

According to Eqs. (47) and (36) when 8'0, then 

If we add and subtract (x2)/8, to and from Eq. (26), 
we obtain 

The last two terms on the right-hand side of Eq. (49) 
represent the deviation of the generalized differential 
susceptibility from the expression withthe structure of 
Eq. (30) o r  from the Kirkwood formula in the form of 
Eq. (8). Equation (49) and the inequality (48) lead to 

( s E ) - ( z ) ' ~ <  (AZ) "9, (50) 

which also follows directly from Eq. (47). 

Applications of the results obtained above will be pub- 
lished elsewhere. 
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