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A microscopic theory is proposed for orientational phase transitions in systems consisting of two magnetic 
sublattices. One sublattice is magnetically ordered, while the magnetic moments of the second (paramagnetic) 
interact only with the magnetic moments of the first. Two physical mechanisms of the orientational phase 
transition are considered: the anisotropy of the interaction between the sublattices and the crystallographic 
anisotropy. The temperature spectrum of the spin waves above the reorientation temperature is found and 
contains a soft magnetic mode in the vicinity of the phase transitions. The equation of state and the threshold 
conditions are obtained for the start and the end of the reorientation. 

PACS numbers: 75.30.Ds, 75.30.Gw, 64.70.Kb 

1. INTRODUCTION 

The existing theory of orientational phase transitions 
(OPT) a re  either based on a phenomenological expansion 
of the thermodynamic potential,' o r  on the use of the 
molecular-field approximation. The f i rs t  approach, 
naturally, does not deal with the identification of the 
interactions in the crystal that a re  responsible for the 
reorientation of the magnetization o r  of the nature of the 
temperature dependence of the anisotropy constants. 
The molecular-field approximation does not make i t  
possible to examine the dynamics of the OPT. 

We consider here OPT in systems consisting of two 
magnetic sublattices, using quantum field theory 
methods. One sublattice is magnetically ordered, 
while the magnetic moments of the other sublattice a re  
coupled only to the magnetic moments of the first. The 
interaction between the moments of the disordered sub- 
lattice a re  assumed to be negligibly small. The mag- 
netically ordered sublattice will hereafter be referred 
to a s  the main one, and the other a s  the paramagnetic 
one. From these points of view, we consider in this 
paper OPT in compounds of a r a re  earth with metals 
of the transition group, for example in the intermetal- 
lies %Corn o r  %Fern. The magnetization reorientation 
will b;, governed by the competition between the crystal- 

a subsystem whose thermodynamics and dynamics have 
been investigated in detail. 4 1 5  We can accordingly ex- 
pect in our problem that when a threshold condition is 
satisfied there exists in the system a phase transition 
that leads to Bose condensation of the magnons, mean- 
ing a spontaneous rotation of the magnetization of the 
main sublattice. The dynamic Singularities of the 
phase transitions should manifest themselves in the 
spin-wave spectrum a s  a soft mode and a s  a Goldstone 
mode below the transition temperature. 

2. THE EQUATION OF STATE 

The Holstein-Primakoff transformation 

Si'=-S+b,+b,, 

S++=(2S)'"(l-br+br/2S) "brf, (2) 
Si-=(zS)"b,(l-b,+b,/2S) ", 

customarily used to effect the change from spin opera- 
tors to spin-wave creation and annihilation operators 
call for an indication of the ground state of the mag- 
netically ordered system, i. e . ,  an indication of the 
magnetization direction in the main sublattice. Con- 
sequently, before representing the magnetically or- 
dered sublattice in terms of spin waves, i t  is neces- 
sary to examine the thermodynamic stability of the 
ground state in the crystal. 

lographic anisotropies of the main and paramagnetic 
In compounds of transition and rare-earth metals, sublattices with the anisotropy of the exchange interac- 

i t  is reasonable to regard the rare-earth ions a s  a 
tion between the sublattices. 

paramagnetic subsystem interacting with a mag- 
We assume furthermore that the temperature of the 

orientational transition is much lower than the temper- 
ature of the magnetic ordering of the crystal 

kT<I, (1) 

where I is the exchange interaction between the magnetic 
moments of the main sublattice. This condition 
simplifies the problem radically, since the magneti- 
cally ordered sublattice can be represented in the 
form of non-interacting spin waves. We arrive thus 
a t  a paramagnetic subsystem coupled with a boson field, 

netically ordered transition-ion sublattice. We shall 
take into account here the following interactions that 
influence the OPT: 1) one-ion anisotropy of the main 
sublattice; 2) crystallographic one-ion first-order 
anisotropy of the rare-earth ions; 3) anisotropy of the 
exchange interaction between the transition and rare- 
earth ions. The f i rs t  two interactions were considered 
in the molecular-field a p p r ~ x i m a t i o n ~ * ~  for RCo, com- 
pounds. Allowance for the anisotropy of the exchange 
interaction between the sublattices seems natural, be- 
cause of the strong spin-orbit interaction in the f shell 
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of the rare-earth ions. '."' 
On the other hand, we disregard in tsis p a p r  the 

following: 1) the antisymmetry of the exchange inter- 
action between the sublattices; 2) the anisotropy of the 
exchange interaction between transition ions; 3) the 
crystallographic anisotropy of second order and higher 
in both sublattices; 4) exchange interaction between the 
rare-earth ions; 5) dipole-dipole interaction between 
the ions of the sublattices, and 6) the influence of the 
phonons on the OPT. By the same token, we disregard 
here the possible magnetostriction anomalies in the 
vicinity of the OPT. Inclusion of these relations in the 
theory considered below does not entail any fundamen- 
tal difficulty. 

Taking the foregoing into account, we express the 
Hamiltonian of the intermetallide in the form 

where N and n a r e  respectively the numbers of the 
transition and rare-earth ions, I,,.is the exchange in- 
teraction between the ions of the main sublattice, Zit 
are  the anisotropic parameters of the R-Co o r  R-Fe 
exchange, D, and D a re  the constants of the one-ion 
anisotropy of the ra re  earth and main (Co o r  Fe) sub- 
lattices, and S, are  the spin components of the Co o r  Fe 
ions. Owing to the strong spin-orbit interactions, the 
good quantum numbers in the rare-earth ion a re  the 
values of the total angular momentum J = S ,  + L,. 

The simplest and most lucid way of dealing the ther- 
modynamic stability of the ground state of the model (3) 
is within the framework of the macroscopic description. 
Recognizing that the first  term in the Hamiltonian (3) 
is rotationally invariant, we express the macroscopic 
invariant in the form 

where VkM: is the anisotropy energy of the main sub- 
lattice and V i s  thevolume of the crystal. The exchange 
anisotropy is taken in the simplest form 

the value of gp, is set  equal to unity, and the classical 
components J,, and M, a re  assumed. 

Allowance for  the excited state of the main sublattice, 
which a re  described by gradient terms, will be made in 
83. As shown by Belov et al. ,' the contribution of the 
orientational fluctuations to the thermodynamic poten- 
tial of the system is small. 

The stable directions of the magnetization of the main 
sublattice will be determined from the condition that the 
thermodynamic potential be a minimum. The partition 
function of the model (4) in a spherical coordinate sys- 
tem, with allowance for the constancy of the magneti- 
zation of the main sublattice in the considered temper- 
ature region (I) ,  is of the form5 

Z = d@ sin 0 dB exp(pVkMZ cosZ 8) Q n ( O ,  tD), 

~ ( 0 ,  @ ) = ~ d q d c o s a e x p [ - ~ ( ~ n ~ z r o s z ~ + ~ 4 ~ ~ c ~ s 0 c o s a  (5) 

I 

+BMJsin 0 sin a cos jq-@) ]=4nZ Jdz e x p ( - ~ D , I Z z Z ) c h ( ~ A M J z c o s  0) 

XIo(bBMJ(l-x2)'" sin O), 
(6) 

where Io(x) is a modified B s s e l  function. 

We confine ourselves here to the case f?D,Jz << 1. Ex- 
panding exp(-PDZg) in a series and retaining only the 
terms linear in D,, we obtaing 

where L is the Langevin function. The integral (5) 
takes the form 

The integral in (8) can be exactly calculated in the 
limit a s  n- and a t  constant n/V by the saddle-point 
method. This yields the equation of state for M,: 

Before we analyze this equation of state, however, i t  
is meaningful to consider the case of isotropic ex- 
change, A =B, for which the equation of state is 

Here 

a re  the anistropy energies of the rare-earth and transi- 
tion sublattices, respectively. It is seen from (10) 
that in the absence of exchange anisotropy the threshold 
condition for the OPT takes the form 

If this condition is not satisfied, the thermodynamic 
potential has a minimum at  M,=M a t  all  temperatures. 
When the threshold condition (12) is satisfied, there 
exists a temperature To, defined by the equation 

a t  which the thermodynamic potential 

reverses sign and the magnetization lands jumpwise in 
the basal plane (Fig. la).  It is clear that so  simple a 
behavior of the magnetization is due primarily to the 
fact that no account was taken from the very outset of 
the higher-order crystallographic anisotropies of both 
sublattices. m e n  this analysis, however, makes i t  
possible se t  in correspondence the expansion of the 
thermodynamic potential' 
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FIG. 1 .  Temperature dependence of the orientation of the 
magnetization of the main sublattice (a) and of the magnetiza- 
tions M, and (J,)  6). 

F=K, (T) M.'+K, (T) M: (14) 

with the constants of the microscopic Hamiltonian and 
obtain thus an inverse dependence of anisotropy con- 
stant K, on the temperature 

Allowance for second-order crystallographic aniso- 
tropy in the Hamiltonian (4) adds to the thermodynamic 
potential (10) terms proportional to M: and makes i t  
possible to calculate the temperature dependences of 
K2(T). 

We proceed now to the analysis of the equation of 
state (9) with allowance for the exchange anisotropy, 
A # B .  In this case, if the threshold condition 

2BzM'DN/n-2AaJ'D. < 
JBM (Bz-A') 

is satisfied, the projection of the magnetization on the 
z axis of the main sublattice changes from zero to M 
in the temperature interval T, -( T -( T, (Fig. 1, curve 
2). The variation of M, with temperature includes then 
two second-order phase transitions-the beginning and 
the end of the reorientation. Accordingly, the tempera- 
tures of the phase transitions a re  determined by the 
equations 

Using the saddle-point method, we can obtain the tem- 
perature dependence of (J,): 

d 
<J'> - I-lnQ($, M.). 

dB 

In the approximation with BD,J2 << 1 we have expres- 
sion (7) for Q(8, M,). The plot of the temperature de- 
pendence of (J,)  for this case is curve 4 of Fig. 1. The 
temperature dependence of (M,) is shown by curve 5. 

If the condition (15) is not satisfied, but the condition 

1 32 Sov. Phys. JETP 54(1), July 1981 

2AzdPDN/n-2BaJ'D. < 1 
JAM (B-A')  (18) 

is ,  there is no phase transition a t  the lower tempera- 
tures, and the magnetization of the main sublattice does 
not reach the basal plane (Fig. 1, curve 3). A com- 
parison of (16) and (17) shows that the existence of two 
successive phase transitions is due to the anisotropy 
of the exchange interaction between the main and para- 
magnetic sublattices. 

The foregoing analysis, carried out within the frame- 
work of the classical description of a magnetically 
ordered crystal, shows that when condition (18) is sat- 
isfied there exists a temperature region T 2 T, in 
which the ground state of the entire system is deter- 
mined only by the constants of the main sublattice. 
This result can be easily understood by recognizing 
that with increasing temperature the magnetization of 
the paramagnetic sublattice decreases and accordingly 
i t s  contribution to the orientational state of the entire 
system decreases. 

3. DYNAMICS OF HIGH TEMPERATURE PHASE 

In the high temperature phase T 2 T, the magnetiza- 
tionof the main subsystem in the ground state is directed 
alongthe z axis. We canuse therefore the transformation 
(2) in the Hamiltonian (3), and the angular momentum 
of the rare-earth ion can be represented in terms of the 
Ferrni operators 

jjz = 2 Ma,+ a,,, I,+ = 2 [ J ( I + I ) -  M (M+I) l'i'a$+*ajn? 

M - - J  M--J 

J 

1,- = x [ J ( J + I ) - M ( M - I ) ] " ~ ~ : - , ~ ~ ~ .  
Y--I 

Taking the Fourier transforms of the Bose operators 
(2), we obtain 

H - x o ( k )  bk+b. +x eyajMc aju 

(20) 
o ( k )  =2SD+ I p. I He+ak2=A+ I p. I Ho+akz, 

E*,=(I pRIHo-A (O)S)M+DnM", (21) 
A ( q )  = A (r) e-'*'. B ( q )  = B (r) ciqr. 

We have left out of the Hamiltonian (20) the terms that 
describe scattering of spin waves by one another, 
since they can be neglected in the considered tempera- 
ture region (1). lo 

We introduce the magnon Green's functions and the 
fermion Green's functions of the rare-earth angular 
momenta J (Ref. 11): 

P 

GM,. (r, o.) = je".' ( T { a j M ~ ( r ) ~ , M + ( 0 ) ) )  dry (22) 
0 

om-2nmkT, o,=(2n+l)nkT,  m, n=O, * I ,  *2,. . . . 

S. N. Martynov and A. F. Sadraev 132 



FIG. 2. 

The respective Green's functions will be designated in 
the diagrams by wavy and straight lines. 

It follows from the Hamiltonian ( 2 0 )  that the Feynman 
diagrams contain two types of bare vertex functions 

=B(l i )  (S/2N)'"[J(l+l) -:M(ill+l)]'" exp (ikr,), 

( 2 3 )  

--A (k-k') N-'M exp [i(k-k')r,] , 

where the first  diagrams describes magnon absorption 
by a RE ion, and the second magnon scattering by the 
RE angular momenta. 

We determine the poles of the magnon Green's func- 
tion ( 2 2 ) ,  analytic continuation of which determines the 
transverse dynamic susceptibility of the ferromagnet. " 
We shall show first  that under condition ( 1 )  it suffices 
to retain in the diagram equations only the bare  vertex 
functions ( 2 3 ) .  Let us take by way of example the dia- 
grams of Fig. 2 .  All these diagrams contain one o r  
more internal magnon lines. Diagram a of Fig. 2  is  
equal to 

The sum over m in ( 2 4 )  converges like m-3 and can 
therefore be discarded. As for the sum over q, it is 
seen from ( 2 4 )  that the principal role i s  played by the 
term with m =O.  

The question of estimating the vertex functions in Fig. 
2 ( a )  reduces thus to an estimate of an integral of the 
form 

The main contribution to the integral is made by the 
region 0  qa -c [ A / ~ S I ( O ) ] " ~ ,  where a is the dimension 
of the unit cell of the cubic crystal. Putting A << 2SI(O), 
we find from ( 2 1 )  that we can confine ourselves to a 
quadratic dispersion law in the spin-wave spectrum 

Integrating ( 2 5 )  with the aid of ( 2 6 )  we readily find that 
the integral a s  well a s  the vertex function (24) a r e  of 
the order of smallness 1/01(0) .  The other vertex func- 
tions a re  similarly estimated. Summarizing these 
estimates, we can state that those diagrams which con- 

tain one o r  more internal magnon lines a re  small of 
the order l /PI (O) .  We note that a like smallness para- 
meter appears when scattering of spin waves by one 
another is considered. lo 

As a result, the Dyson equation for the magnon 
Green's function takes the form 

where the fermion Green's functions coincide with the 
zero functions 

because any mass  operator in a fermion Green's func- 
tion has an order of smallness 1 /@1(0 )  o r  higher. The 
parameter P in ( 2 8 )  i s  introduced to avoid the contribu- 
tion of extra states in the spin states with the aid of the 
projection operator12*13 

P=Z,-' lim [exp(pp) 1, 
jt-m 

( 2 9 )  

where 2, is the partition function of the paramagnetic 
subsystem: 

With the aid of (201,  ( 2 2 ) ,  and ( 2 8 ) - ( 3 0 )  we get 

Equations ( 2 7 ) - ( 3 2 )  yield an equation for the spin-wave 
resonance frequencies: 

Equation ( 3 3 )  has in the general case 25 t 1  roots, 
constituting in Fig. 3  the points of intersection of the 
straight line and the curves. The dashed verticals 
mark the zeros of the denominator in the right-hand 
side of ( 3 3 ) ,  equal according to ( 2 1 )  to 

FIG. 3. Graphic solution of the equation for  the resonant  fre-  
quencies of an intermetallide. 
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FIG. 4. Dispersion spectrum of collective oscillations in an 
intermetallide. 

The oblique straight line is the left-hand side of (33) a t  
q=O. As seen from Fig. 3, i t  is possible to  choose 
directly W - 1 solutions, represented by the points lo- 
cated between the dashed verticals and having weak 
dispersion and temperature dependences (Figs. 4,5). 
There exists one solution represented in Fig. 3 by 
point on the extreme right, with strong temperature 
and dispersion dependences, but not exhibiting a criti- 
cal behavior (hard mode). Finally, the solution on the 
extreme left is critical (soft mode). The appearance 
of a null solution leads to thermodynamic instability in 
the system considered. It is seen already from Fig. 3 
and Eq. (34) that the instability can set  in when the 
temperature is lowered both because of the crystallo- 
graphic anisotropy of the "easy plane" of the %asy 
plane" type in the system, and on account of the aniso- 
tropy of the exchange between the sublattices. 

We obtain the temperature T, of the orientational 
phase transition assuming the crystallographic aniso- 
tropy to be small compared with the exchange between 
the sublattices 

Expanding the denominator in the right-hand side of 
(33): 

where E, =A(O)S- I pR I H,, and using the commutation 
relations for the operators J*, J+,  and J-, we obtain 

.-a 

FIG. 5. Temperature dependence of homogenous oscillations 
in an intermetallide. 

Equation (33) for the spin-wave resonance frequencies 
takes therefore the form 

We put DR=O in (36). The equation for the phase- 
transition temperature T, then takes the form 

where B,(x) is a Brillouin function. In the general 
case, a t  D, #0, the equation for the temperature T, of 
the OPT is 

It is easy to change from this equation to (17) by 
recognizing that a t  J >> 1 

where x=oA(O)SJ. At A = B  we obtain Eq. (10). Thus, 
the existence of a soft mode is a characteristic of an 
OPT of either first  or  second order. 

In the case of the experimentally investigated RCo5 
corn pound^,^^^^*^^ the quantity p D d 2  is comparable with 
unity in the vicinity of the OPT temperature. There- 
fore the temperature behavior of the magnetization 
(J,) of the rare-earth sublattice will differ noticeably 
from a Brillouin behavior, l4 a s  is seen from (21) and 
(35). 

4. COMPARISON WITH EXPERIMENT 

We did not consider in 82 the magnetization of the 
rare-earth sublattice a t  pDJ2 -1. Equation (37) allows 
us  to fill this gap and compare the results with the ex- 
perimental data not only on the temperature dependence 
of the magnetization orientation of the entire system, 
but also on i ts  value a t  the point T,. 

For  a comparison of the results with experiment, we 
have chosen the well-investigated compound Dy Co,. 
The total angular momentum of the Dys ions is J =  15/2; 
the one-ion anisotropy energy of the Co ions is D,S2 
= 35  atom,, and the magnetic moment of the Co sub- 
lattice per formula unit is 5M =? .  7pB. l5 Recognizing 
that the total magnetic moment per DyCo, cell a s  T - 0 
is 1+! 1. ~ c L , ; ,  we obtain for the moment of the DyS+ ions 
m n 8.8 F ~ .  The transverse exchange between sublat- 
tices can be estimated from measurements of the tem- 
perature a t  which the total magnetization of the ferri-  
magnet vanishes (the compensation temperature) 
T,= 125 K (Ref. 15) under the assumption that the 
magnetization of the rare-earth sublattice a t  this tem- 
perature is close to the Langevin function, which yields 
EM = 133.3 K. The parameters B/A and D, a r e  obtain- 
ed from the equations a t  the temperatures of the s tar t  
and end of the reorientation [ ~ q s .  (16) and (17)] in 
DyCo, in the case when the external magnetic field is 
turned off. Substituting T, 1+! 310 K in (16) and T, 1+! 360 
K in (17) we obtain 
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Knowing now all  the parameters of the spin Hamiltonian 
(3), it i s  easy to determine the temperature dependence 
of the angle between the magnetization of the main sub- 
lattice and the c axis. 

The last stage in the comparison of the theory with 
experiment is the substitution of the obtained values 
of (38) in Eq. (37), which enables us to find (J,) at 
13 =P2. We use here the approximate equality 

which is valid in the considered temperature region. 
We obtain ultimately 

Recognizing that ( JZ) - 15/2 a s  T - 0 (this corre- 
sponds to a magnetic moment m = 8.8 P,), we obtain 
the magnetic moment of the ion a t  T = T,: 

which yields the total magnetic moment per formula unit 
a t  T = T2: 

This result agrees with experiment2 with good accuracy 
and indicates that allowance for the anisotropy of the 
exchange interaction between the ions of the transition 
and rare-earth groups is important for the analysis of 
the OPT. 

5. DISCUSSION 

We did not consider the influence of an external mag- 
netic field on the OPT parameters. It follows from (37) 
a t  first glance that the OPT temperature can be raised 
by directing the external magnetic field H, opposite to 
the z axis and by the same token decrease the gap in the 
spin-wave spectrum. In this case, however, the ground 
state of the magnetically ordered sublattice, in which 
all  the electron spins were directed downward (the mag- 
netic moments, upward) become unstable, since the 
state with lowest energy is realized already for the up- 
directed electron spins. 2' This type of problem per- 
tains to an OPT induced by an external magnetic field, 
is outside the scope of equilibrium thermodynamics, and 
can be solved by the methods of Tomita and Murakami 
a s  well a s  of ~atashinski! and Shumilo. 16'18 

The fact that the analysis of the orientational phase 
transition with the aid of the bare vertex functions (23) 
of the diagram expansion is correct  within the frame- 
work of condition (1) indicates that the condition (1) is 
the criterion for the applicability of the approximation 
of the mean-field theory. The physical reason is that 
in the absence of magnon scattering by one another the 
effective radius of the interaction via the spin waves i s  
limited only by the dimensions of the crystal, i. e . ,  the 
interaction i s  long-range. 

It is easy to transfer the approach developed in the 
present paper to magnetically ordered systems, in 
which the orientational phase transition i s  due to the 

anisotropic interaction of the electron and nuclear 
spins. lg 

It must be emphasized that research into the dynamics 
of the intermetallides &Corn and %Fern can yield val- 
uable additional information on the thermodynamic par- 
ameters of the system. As seen from Figs. 4 and 5, 
i t  is possible to determine directly the angular momen- 
tum of a rare-earth ion, the transition temperature 
the anisotropy constants of both sublattices, and the 
magnitude of the exchange between the sublattices. 

The authors thank V. A. Ignatchenko, G. M. Zaslav- 
ski:, M. I. Kaganov, and A. Z .  ~atashinski! for a num- 
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