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The Poisson-bracket method is used to construct nonlinear hydrodynamic equations for smectic A and C 
liquid crystals, for cholesterics, and also for exotic mesophases of disk-shaped molecules, biaxial nematics, 
and the blue phase of cholesterics. 

PACS numbers: 61.30.Cz, 47.90. + a 

I. INTRODUCTION the gradients of hydrodynamic variables,  which a r e  r e -  

In recent years,  much attention has been given to the 
derivation of nonlinear hydrodynamic equations for liq- 
uid crystals  (LC) of various types.'-' This interest  i s  
due above al l  to the fact that LC a r e  very  "soft" sys -  
tems,  and in an experimental situation nonlinear effects 
a r e  actually always important. Fo r  example, in elec-  
t ro-  and thermoconvective instabilities the threshold 
(with respect  to temperature o r  field) i s  significantly 
lower than in isotropic systems. Therefore the motion 
of LC becomes nonlinear even a t  rather small  fields or  
temperature gradients. On the other hand, complete 
treatment of nonlinear effects in  LC i s  quite compli- 
cated. The fact is that in LC the order parameter  i t -  
self, a s  a rule,  has many components, and in addition 
the interaction between different degrees of freedom i s  
substantial. 

Writing down the nonlinear equations of motion simply 
on the bas is  of symmetry considerations1'* i s  not rigor - 
ous, since in such a procedure some nonlinear t e rms  
a r e  arbitrari ly dropped. In the paper of Pleiner and 
Brand: for example, only the nonlinear t e rms  of third 
order  a r e  written in the f ree  energy (the linear theory 
corresponds to allowance for quadratic te rms) ;  this in 
general i s  not sufficient to insure the stability of the 
system. Furthermore,  in calculation of the subsequent 
nonlinear t e rms  it i s  necessary each time to repeat  
anew the complicated procedure of derivation of the 
equations of hydrodynamics for the purpose of satisfy- 
ing a l l  the conservation laws. 

In a paper of ~ z ~ a l o s h i n s k i i  and one of the authors: 
the Poisson-bracket method was  used to obtain the hy- 
drodynamic equations. An advantage of this method 
consists in the fact that the equations of hydrodynamics 
need not be derived, since they a r e  actually prescribed 
a s  Liouville equations for the hydrodynamic variables 
xi(r): 

az1 -= 
at IH, 2.1, (1 

where ( , ) a r e  Poisson brackets (PB). Because the P B  
between hydrodynamic variables a r e  universal, since 
they depend only on the symmetry of the physical laws 
and a r e  independent of the form of the Hamiltonian H, 
making the equations concrete requires expressing the 
energy H in t e rms  of the hydrodynamic variables. In 
the expression for the energy, we may res t r ic t  our-  
selves to those t e rms  of the expansion, with respect to 

quired for solution of the given actual problem. Then 
(1) yields approximate equations of reversible hydro- 
dynamics that automatically satisfy a l l  the conservation 
laws. If it i s  required to take account of higher-order 
t e r m s  in the equations of hydrodynamics, i t  i s  suffi- 
cient to extend the expansion of the energy. In allow- 
ance for dissipation, the same applies to the dissipation 
function R ,  which can be prescribed with the required 
degree of accuracy. 

As an illustration of the P B  method, nematic LC were 
~ o n s i d e r e d . ~  It i s  appropriate to investigate a l so  other 
types of LC. This problem i s  a l so  timely because in 
recent yea r s  new mesophases have been discovered, 
whose hydrodynamics in general  has not been investi- 
gated. Below, this program will be carried out for the 
smectic A and C phases, cholesterics, a mesophase 
of "liquid columnsw (discotic LC), the quite recently 
discovered biaxial nematic LC ,4 and the blue phase of 
cholesterics. 

!I. SMECTIC LC OF A TYPE 

In the method developed earl ier ,3 the equations of mo- 
tion a r e  determined by the P B  of the Hamiltonian H of 
the system with the hydrodynamic variables x,.  Such 
variables a r e  quantities satisfying the usual conserva- 
tion laws: the density p, the momentum density j,  the 
entropy density s ,  etc.; and a lso  the parameters that 
describe the symmetry breaking due to formation of an 
ordered system (in the case  of nematic LC, these a r e  
the two independent components of the unit vector of the 
director n; in the case of crystals ,  the displacement 
vector u: etc.). 

In the smectic A phase, the hydrodynamic variables 
a r e  the quantities p, j, and s already mentioned above, 
and a lso  the displacement u, of the smectic layer in the 
direction perpendicular to it. In order  to obtain the 
nonlinear equations, which must take account also of 
the change in space of the direction of the normal to the 
layers,  it is necessary to introduce, instead of u,, 
another variable, which describes the deformation of 
the layers  and which has the simplest possible t rans-  
formation properties. This variable is a function @(r) 
such that the equations @(r) = const give a system of 
smectic layers  (compare the variables x1,P, x3 in Ref. 
3,  which gave three systems of deformed crystal  
planes). We denote by W the gradient of this function: 
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In absolute equilibrium, this vector is constant in 
space, thereby prescribing a common direction of the 
normal for all layers and insuring constancy of the dis- 
tance between layers. In a deviation from equilibrium, 
W gives the local direction of the normal, and i ts  mod- 
ulus describes small changes of the distance between 
layers. In the linear theory, 

The equations of hydrodynamics may be written in the 
general form (I) ,  where x, = p, j, s , W, and where H is 
the Hamiltonian of the system, 

to the right side of equation (I), dissipative t e rms  a r e  
added in the standard way, by use of a dissipation func- 
tion R. The equations for p and s have the form com- 
mon to all liquid crystals: 

A difference in these equations can be due only to a 
different form of the dissipation function R in different 
types of LC. In the method being used, this is due 
simply to the fact that the PB of p and s with the liquid- 
crystalline hydrodynamic variables (n, W, etc.) a r e  
zero. 

In order to write the two remaining equations for j 
and W, i t  is necessary to evaluate the PB between 
them. It is simpler first  to calculate {j, a). It was 
shown in Ref. 3 that one can find the P B  if one knows 
the transformation properties of the variables in trans- 
formations of the group corresponding to the broken 
symmetry of the system. In the present case this i s  
the translation group 

(smectic order corresponds only to  translations us, but 
they need not be separated out in the nonlinear theory). 

In these transformations, we have 

a@-=-uAVk@, 

whence follows3 
6@ 

&, @s)= 4-- W A ~ ( I - 2 ) .  
b ,  

Finally, we have from (1) and (7) 
aR 

~ + ~ , ( v l j I ) + j l ~ ~ a + p ~ k ~ + E ~ ) r ~ + ~ ~ ~ ~ a l ) r ~ I K  at (8) 

where o, i s  the s t ress  conjugate to the strain W,, 

The current equation (8), although not expressed in 
the usual way in terms of the momentum-flow tensor 
n,,, nevertheless satisfies the law of conservation of 
momentum. This is easily shown by integrating the 

equation over a volume with allowance for the transla- 
tional invariance of the energy H. In order to write this 
equation in terms of II,,, it is necessary to know the 
structure of the energy density E and, specifically, on 
what gradients of hydrodynamic variables i t  depends. 

Although formally all  the nonlinear hydrodynamics of 
smecticsA is described by the system of equations (5), 
(61, (81, and (9), for actual use of these equations it i s  
necessary to have explicit expressions for the energy E 

and the dissipation function R. The simplest expression 
for the energy & that satisfies the symmetry require- 
ments and insures constancy of the vector W in equilib- 
rium has the form 

e=-jz12p+eo ( p ,  s )  +%a (Wz-1) 2+'/*B (VW)' (11) 

with constant coefficients a and i3. This expression in 
case of necessity may be made more complicated by 
introducing both later terms in the gradients and inter- 
action between the liquid-crystalline variable W and the 
variables p and j of an ordinary isotropic liquid. With 
this choice of E ,  the s t ress  o i s  

a=2aW(W'-i)-gV ( v w ) .  (12) 

In the linear approximation (3), the liquid-crystalline 
part of the energy (11) has the form 

1 
~ a ( - $ - ) ' + ~ ~  ($+d.a)'. ay2 

Equation (8) for the current, with the energy choice 
( l l ) ,  can be transformed in the standard manner (see 
Ref. 3), by using the homogeneity of the energy, to the 
following form, which explicitly expresses the law of 
conservation of current: 

ajk ae aR -+ v I  ( ~ ~ ~ ~ + j ~ v ~ + ~ ~ o ~  +-vkwI) - v I - ,  
at avw av1uk 

where the pressure i s  

In the quadratic approximation, the simplest form of 
the dissipation function R that insures i t s  positive defi- 
niteness and i t s  vanishing in equilibrium is the follow- 
ing : 

The tensor quantities that occur in (13) must be writ- 
ten with the aid of the normal unit vector v =  W/ I W I 
and the unit tensor 6,,, for example: 

etc.; for positive definiteness of She quadratic form 
(1 3), the conditions 

must be satisfied, In the linear theory, with W of the 
form (3), the system (5), (6), (8), (9) reduces to the well- 
known equations of the linear hydrodynamics of smec- 
ticsA.= 

We note that the unlinearized equations in the form 
(5), (6), (8), (9) describe the dynamics of the system 
even when the equilibrium layers a r e  not planes but, 
for example, a r e  rolled up into coaxial cylinders and 

123 Sov. Phys. JETP 54(1), July 1981 G. E. Volovik and E. I. Kats 123 



the like. In this case, the vector W in equilibrium is 
not constant but is determined by the equation 

The system of equations (5), (6), (8), (9) can if neces- 
sary  be generalized by introducing the nematic variable 
n, attached to the axes of the molecules. The necessity 
for such generalization arises,  for example, if the in- 
teraction of n with W is comparatively weak, s o  that the 
mode connected with oscillation of n with respect to W 
softens and n may be treated a s  an independent quasi- 
hydrodynamic variable. The necessity for introducing 
a separate variable n a r i ses  also in investigation of the 
dynamics of smectics C, to which we shall be turning 
immediately. The equations obtained in the next sec- 
tion may be formally applied also to a smectic A with 
a quasihydrodynamic variable n. 

Ill. SMECTIC LC OF TYPE C 

In this case, in equilibrium the molecules a r e  in- 
clined to the smectic layer by some angle 61 (the angle 
between the director n and the normal v to the layer). 
But the intermolecular forces fix only the polar angle 
of the inclination. The azimuthal angle st i l l  remains 
arbitrary. Therefore we have an additional, a s  com- 
pared with smectic A ,  hydrodynamic variable n x W, 
corresponding to the projection of the director n on the 
plane of the smectic layer. Since the equation for n 
XW can be obtained from the equations for W and n, we 
shall work with the variables W and n. 

Since the Poisson bracket 

no "mixing1' of W and n occurs, and the equations of 
motion in this case a r e  made up additively from parts 
corresponding to a smecticA and to a nematic. The PB 
necessary for the "nematicw part were calculated earl i-  
er.3 Thus we have instead of (8) and (9) 

S ,  n, and W. 

We shall now discuss the possible form of the dissi- 
pation function and the energy. To the dissipative func- 
tion (13) for a smecticA it is necessary to add the ne- 
matic terms 

HerePi j=cpj , ,p i j=  pj,.. The tensorscp,,, pi,, a n d &  
satisfy the transversality condition 

In a pure nematic, they have the following structure: 

where X is a reactive parameter that occurs in the 
equations of the dynamics of a nematic (see Ref. 6), and 
where q and pi a r e  connected with the coefficient of ro -  
tational viscosity by the relation 

In a smectic C these tensors, a s  well a s  qijaI, nil, 
and ti, is made up from the vectors n and v; and i t  
must be taken into account that the state of a smectic C 
is not changed by the substitution n- -n and ih - -a (or 
v- -v). Therefore the tensors qijaI, xi,, pij, q t j ,  and 
A,, must be even functions both of n and of v, while the 
vector 5 ,  must be even in n and odd in v. 

Besides the terms (13) and (18), the dissipation func- 
tion R may contain also mixed terms, for example 

here y,, i s  odd both in n and in v, and yijnj = 0. 

The simplest form of expression for the energy that 
takes account of the nematic contribution and of the in- 
teraction of n with W i s  the following: 

e=j2/2p+eo (p, s) +'/2a(W2-l)'+'/,~ (VW)' 
+'/2y ( [nxW] '-sina 0)'+'/Xijk~V4nkVjnl. 

The tensor K, ,, is even in n and v. We shall not write 
out a l l  the equations (14)-(16) with the concrete coeffi- 
cients that follow from the form of R and E .  We give 
only the equation for n: 
an, 

-+~Vn~+'/~[nrotvl,+e~~ph,~.nb~.-[cpi~+(p-')~lhj-yjiVjV~. (21) 
at 

IV. DISCOTIC LC 

Here h = - 6 ~ / 6  n i s  the molecular field, and s is the 
angular velocity of the molecules. 

Equation (17) i s  the equation of motion for an auxili- 
a ry  variable L, which is the internal angular momen- 
tum of the molecules. In this equation L has been set  
equal to zero, because i t  contains an extraneous power 
of the time derivative of n, and in low-frequency dy- 
namics, which is of interest to us, the value of L may 
be neglected. The situation may change if a spontane- 
ous angular momentum of the molecules originates in 
the LC; but no such effect has so  far been observed in 
actual LC, and we shall not discuss it. Equation (17) 
enables us to express the value of w in t e rms  of the r e -  
maining hydrodynamic variables. As a result there r e -  
mains the system of equations (5), (6),(14)-(16) for p, j, 

We consider discotic liquid crystals.' The additional 
hydrodynamic variables here a r e  connected with dis- 
placements of the two-dimensional lattice of liquid col- 
umns. Accordingly we have, instead of a single vari-  
able a, two variables iPa  (a = 1,2),  describing surfaces 
whose intersection forms a liquid column. The defor- 
mation of these surfaces is given by the gradients W: 
=V&,. , 

The role of director in these liquid crystals is played 
by the normal n to the plane of preferred orientation of 
the disk-shaped molecules. If the direction of this vec- 
tor is rigidly fixed by the intermolecular forces, then 
n is parallel to W' XW2, and the nematic hydrodynamic 
equations (connected with n) need not be considered. 
In this case we get simply equations (5), (6), (8), (9), but 
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with an additional index a! that takes into account the 
two-dimensional character of the lattice. But if the 
direction of n with respect to the lattice is not rigidly 
fixed, i.e., if the interaction of n with Wa i s  compara- 
tively small, then n becomes a quasihydrodynamic 
variable, and equations (5), (61, (8), and (9) must be 
supplemented by equations (16) and (17) for n. Then 
the energy contains a term of interaction of the direc- 
tor n with Wa,  of the type (now")', and nematic energy 
of distortion of the n field. The dissipation function R 
is also modified in this case, a s  for smectic C. 

The equation of motion for n must be supplemented 
also in the case when the interaction of n with Wa fixes 
a definite nonzero angle of inclination of n to the line of 
the liquid column. In this case, a s  for smectic C, the 
axial angle of the vector n i s  a soft hydrodynamic vari-  
able, describing a Goldstone mode. 

V. BlAXlAL NEMATICS AND THE BLUE PHASE OF 
CHOLESTERICS 

To describe the hydrodynamics of biaxial nematics, 
it i s  necessary to introduce, instead of the vector n, 
which prescribes the direction of the anisotropy axis in 
a uniaxial nematic, two orthogonal vectors n'l' and n"', 
or three Euler angles describing their orientation. 
Thus three soft hydrodynamic modes a re  formed. In 
terms of n"' and nt2', the equations of hydrodynamics 
a re  constructed in the same way a s  for ordinary ne- 
m a t i c ~ . ~  For  this purpose we introduce an additional 
variable L, the density of internal angular momentum 
of the molecules, which may be set equal to zero in the 
final equations. The nonvanishing PB of the liquid- 
crystalline variables, with each other and with the r e -  
maining variables, have the form 
{L,", n: '")=-ea~~ n:'IT 6 (1 -2 ) ,  {L,", n : 2 ' P ) = - e ~ ~ n ' Z ' T  L 6(1-2)7 

{L,", Lls) =-eaBTL176(1-2), ( i l l ,  L,) =L,V,,6(1-2), (22) 
(1)  (j, , ,  n:ll}=- ( v h n i 1 ] )  6 (1-2)  ; ( j , , ,  n, ) =- (Vhn'")8(1-2). 

These PB, along with the remaining PB for a normal 
l i q ~ i d , ~  give the complete system of equations of the 
hydrodynamics of biaxial nematics, with a suitable 
choice of the energy H and the dissipation function R: 

The orthogonality condition n"' * nt2' = 0 leads to the 
following restriction on the dissipation function R : 

aR aR ,,"',- + - - 
ahu' ah'" -O? 

this must be taken into account in writing down R ,  along 
with the conditions 

that insure that the vectors n'" and n"' shall be unit 
vectors. 

In some cases, it i s  necessary to describe the dy- 
namics in terms of a complete five-component symme- 

tric,  traceless tensor Q,,. This is necessary, for ex- 
ample, i f  the coefficient B of the cubic invariant in the 
Ginzburg-Landau expansion in nematics i s  anomalously 
small. In this case, non-Goldstone modes, i.e. modes 
not connected with oscillations of n in a uniaxial nematic 
or  with oscillations of n'" and n'2' in a biaxial nematic, 
become soft. Therefore non-Goldstone components of 
the tensor Q,, become quasihydrodynamic variables, 
for which i t  i s  necessary to write the equations of hy- 
drodynamics. All the components of Q,, must be taken 
into account also in describing the dynamics of the blue 
phase of cholesterics (see, for example, Ref. 8), be- 
cause it occurs within a narrow range near the transi- 
tion, where non-Goldstone modes a re  softened. The 
equations of hydrodynamics a re  the same in all these 
cases, differing only with respect to the dependence of 
the energy & on Q,; this dependence insures a t  equilib- 
rium a minimum corresponding to one of the phases. 
These same equations may be applied also to the dynam- 
i cs  that describes transitions between phases, for ex- 
ample the formation of a nucleus of one phase within 
another. 

Thus the equations contain the hydrodynamic variables 
j, p,  s ,  and Q,, and the auxiliary variable L, the inter - 
nal angular momentum, which i s  set  equal to zero in 
the final equations. The equations of hydrodynamics 
a r e  again constructed a s  for n e m a t i ~ s , ~  with Q, instead 
of n. The nonvanishing PB between Q,, and other vari- 
ables a r e  

{ j , , ,  QZaB)-- (VaQB)6(1-2) ,  

. {Lla, Q,@T) =- ( eaBVQ"+eaT'~)  6  (1-Z), 
(24) 

whence a re  obtained the following equations: 

where R satisfies the conditions 

The fundamental problem is to write the terms that 
a r e  necessary for the concrete problem in the expan- 
sion of the energy in Q ,  and i ts  gradients. Since it is 
at  present still not known how these new phases (biaxial 
nematics and the blue phase of cholesterics) a re  con- 
structed, we shall not discuss this question in greater 
detail. 

VI. CHOLESTERIC LC 

A cholesteric is a spiral structure with the following 
field distribution of the director n: 

n ( r )  =n"' cos @+niZ' sin @, (26) 

where n' " and n"' a r e  orthogonal unit vectors. In equi- 
librium, VG = q,l ,  where 1 = n"' xn"' is the direction 
of the axis of the spiral, and where q, is its reciprocal 
pitch. In a choice of the dynamic variables, we must 
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take into account their invariance with respect to a 
change of ih by 6ih in a uniform rotation of n'" and n'*' 
about 1 through an angle 6@. Such variables a r e  1 and 
a distortion v, that vanishes in equilibrium (see Ref. 9): 

The vector W has the same meaning a s  in smectics. In 
the modified form (27), i t  is invariant with respect to 
the indicated transformation. As a result, i ts  curl  is 
nonzero and is connected with the gradients of 1 by the 
Mermin-Ho relation'' 

(rot W).=-'/,etjk1 [V,I,x VJ] . (28) 

The PB of the variables n"', nt2', and ih with the cur-  
rent j and with the auxiliary variable, the angular mo- 
mentum L, a r e  given by formulas (7) and (22), whence 
a r e  obtained the following PB containing W and 1: 

{L;, W2] =l,'V26(l-21, {Lit, 1:) =-e'k1116(1-2), 
{j,,, Wk,)=6(1-2) ( C  kW.-V,Wh) +WiiVhi6(1-21, (29) 

Gil, 12]--6(t-2) VJ. 

Using these P B  and introducing the notation 

we get the following system of nonlinear equations of 
dynamics: 

aw aR aR 
--+V(vW-ol)+[v XrotW]+m,Vl,=V -- 
8t 

efkl - lkVli, avo  ah,  

The dependence of the energy on v, = q o l  - W and 1 
can be found by averaging the Frank energy. A more 
accurate averaging procedure than that carried out 
earlierQ gives 

e (v.,I) =1/zK2(I~,+'/21 rot I)Z+i/&s(2[1X v,] 2+2/z(V1)'+'/2(I rot I)'). (32) 

The s t r e s s  o and the molecular field h a r e  expressed 
in t e rms  of E in the form 

We note that equations (31) a r e  compatible with the 
condition (28). In writing the dissipation function R ,  
which depends on Vu, h, A,&, w -3 curlv,  and VT with 
tensor coefficients made up from 1, i t  is necessary to 
take into account the invariance of the states with r e -  
spect to a uniform substitution 1 - -1, W - -W. In 
other words, a uniform change of sign of 1, h, and 
u must not change ,R .  

In conclusion, one of the authors (G.V.) expresses 
his thanks to Mermin for stimulating discussions of the 
nonlinear theory of cholesterics. 
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