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The propagation of waves on the surface of a nonuniformly heated incompressible liquid is investigated. It is 
shown that on heating from the free-surface side, there exist in the liquid, besides the usual gravitational- 
capillary waves, "thermocapillary" waves produced by the action of thermocapillary forces and having a 
linear spectrum. When the density of energy flow at the surface of the liquid exceeds a certain threshold value, 
the gravitational-capillary waves become unstable. At sufficiently large flow densities, the instability growth 
rate is maximum in the region of intersection of the modes. 

PACS numbers: 47.55. - t, 47.20. + m, 68.10. - m, 44.30. + v 

1. INTRODUCTION 

Physical phenomena due to excitation in a liquid of 
acoustic and shock waves under the influence of power- 
ful laser radiation have been studied in considerable 
detail both theoretically and experimentally .' In the 
presence of a free surface on the liquid, besides these 
volume waves there also exist surface waves, excita- 
tion of which may change the conditions of reflection 
and absorption of laser radiation at the surface and 
may affect the processes of heat and mass transport 
in the liquid. The last fact i s  especially important in 
laser working of metals, when on their surface a melted 
layer forms, the transport processes in which may sub- 
stantially affect the structure and composition of the 
material. 

The existing experimental data indicate an anomalous- 
ly rapid redistribution of impurities in the liquid phase 
during surface alloying of metals, which cannot be ex- 
plained ~ i t h i n  the framework of ordinary diffusion and 
apparently i s  evidence of the occurrence of hydrodynam- 
ic flows in the laser The present paper in- 
vestigates the stability of a horizontal layer of liquid 
heated from the free-surface side; it is shown that at 
a sufficiently large density of flow o r  radiation, there 
may occur in the liquid, under the influence of thermo- 
capillary forces, a buildup of surface waves. 

2. DISPERSION EQUATION 

a d - T,+v,-T,=xAT,, v-Vcp + rot A 
at dz 

with the boundary conditions a t  z = 0' 

At z=-h, we have T=const,v=O. 

We shall seek a solution of the system (2) in the form 

cp=cp(z) e'"+T1, Au=A (z) e'k'~T1, T,=T,  (z)e'kx+T1. 

Substituting these expressions in (21, we obtain the 
equations for the amplitudes: 

Here k,,, = (k2+ y / v ,  x)'I2; q =pv is the viscosity of the 
liquid. By substituting the solution of the system of 
Eqs. (6) in the boundary conditions (3)-(51, it i s  not 
difficult to obtain a dispersion equation, which, how- 
ever, is  in general extremely cumbersome. There- 
fore we shall hereafter consider certain limiting cases. 

3. WAVES ON THE SURFACE OF A DEEP LIQUID 
(kh>>1) 

We consider a pure liquid, occupying the layer 5 >z In the limiting case kh - a, the dispersion equation 

>-h, on whose free surface, at z = t ( x ) ,  heat is  absorb- has the form 

ed with flow density Q. In a state of res t  we have 5 ---- -- i - oa'+2yvkk, 

30,  and in the layer there is  a constant temperature [ 'k2(k,+k2)  o:+y2+2yv*, 

gradient )] =2k2  - k2-k,2, (7) oo'+2yvkkl 
oa'+yZ+2yvk= 

dT,/dz=Qlx,  x = p c ~ ,  (1) 
where w;=gh + ak3/p i s  the frequency of a gravitation- 

where p i s  the density, c i s  the specific heat, and i s  al-capillary wave. When dT,/dz = 0, (7) reduces to the 
the thermal conductivity of the liquid. usual equation for gravitational-capillary waves with 

We shall investigate the stability of the stationary state damping.' 
of the layer with the temperature profile (11, supposing We shall seek a solution of (7) on the assumption that 
the liquid to be incompressible. For this purpose, we &2/ l Y  I << 1 but pZ v/X - 1. I,, the zeroth approxima- 
linearize in the usual way the Navier-Stokes and heat- tion, neglecting all terms that contain a small param- 
conduction equations; introducing a scalar potential 40 eter ,  we get 
and vector potential A of the velocity, we get the sys- 

(y2+o02) (yt+czk2) =0, tem of equations 
a c ~ = -  I - da - ( f+p$~. ) - l .  d ~ ,  (8) 

Acp=O, -A=vAA, div APO, 
at 

(2) y I dT I dz 
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This equation has solutions y, = iiw, and y2 = *ick; 
y, corresponds to the usual gravitational-capillary 
waves, whereas y, represents the frequency of a new 
surface mode, which occurs only under nonuniform heat- 
ing of the liquid, when dTddz  > 0. With the opposite 
sign of the temperature gradient, c becomes pure imag- 
inary, which corresponds to the aperiodic thermocapil- 
lary instability of a liquid found by Pearson.' We note 
that, in contrast to a gravitational-capillary wave, 
during propagation of a "thermocapillary" oscillation 
with c2k2<< W: no displacement of the liquid surface oc- 
curs  . 

We shall find corrections for  the discarded terms in 
the frequencies y,,,. Substituting in (7) y, =-iwo+6,, 
where l6,I << w,, we get 

It follows from (9) that when w,> ck, for waves with a 
prescribed value of k there is  a threshold value of the 
density of heat flow, such that when it i s  exceeded the 
wave becomes unstable. The minimum threshold cor- 
responds to an oscillation with k =kc= (5a)'lf2 and w, 
= w,&,), where a2 = cu/pg, and is equal to 

Near the threshold of instability, 

In this case, an expression for the growth rate (9) can 
be obtained from simple energy considerations. Name- 
ly, we assume that on the surface of the liquid there is  
propagated a gravitational-capillary wave described by 
the velocity potential 

The propagation of the wave is accompanied by a slight 
change of temperature of the liquid, T, = T - To, which 
is determined by Eq. (6) and the boundary condition 
(5): 

With such a distribution of temperature, the surface of 
the liquid is heated nonuniformly, and there ar ises  a 
thermocapillary force acting on the liquid 

da ar, -- 
d~ a~ ' 

The change of mechanical energy of the liquid under 
the action of this force is given by the expression 

On substituting (10) and (11) and allowing for the usual 
viscous damping, we find for xk2<< w, 

It is  easy to see  that the expression for the instability 
growth rate that follows from (12) agrees with (9) when 
czkZ<< w;. 

Substituting in (7) y,  = -ick + €5, we get 

As follows from this expression, the surface thermo- 
capillary mode is weakly attenuated a t  small k ,  i. e. , 
IRe6, J << ck; and in the region where 2k2 > w;, it be- 
comes unstable. 

In the region of intersection of the two modes, when 
o;=c2k2, the expressions (9) and (13) a r e  no longer ap- 
plicable. The instability growth rate increases abrupt- 
ly on approach to resonance, and for wt =c2k2 i t  i s  given 
by the expression 

The wave spectrum and growth rate in this case a r e  
shown in Fig. 1. The branches of the oscillations that 
have the larger frequency a r e  unstable. 

4. WAVES IN A LIQUID LAYER OF FINITE DEPTH 

In the long-wavelength range, when kh S 1, the gener- 
a l  dispersion equation can be simplified in the same way 
a s  was done in the preceding section for h - .c. AS- 
suming that ( ~ k ' / ~  )' / '<< 1 and ( d h Z y  )'/*<< 1, we get in- 
stead of (7) 

k 
- -(r2th kh+2vk2y th khf  

k, 

where w2 = wttanhkh. 

We seek a solution of (15) in the form y = -iw + 6,. 
For Re6, we get the expression 

from which we can find the threshold value of the den- 
sity of heat flow for excitation of a wave with wave 
number k: 

Hence it follows that when 

FIG. 1 .  Frequency (a) and instability growth rate Fb) of sur- 
face waves for large excess of the density of energy flow above 
the threshold value. 
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the minimum value of the threshold is attained when k 
= O  and i s  

We note that under the conditions of applicability of the 
approximations made, i. e. , ( ~ / h ~ w ) ' / ~ < <  1, the value of 
Q,(O) exceeds the value of the threshold power Om for an 
infinitely deep liquid. This i s  due to an increase of 
dissipation near the bottom. When 

the minimum value of the threshold power corresponds 
to a finite value of k,  determined by the expression 
(17). 

With increase of the density of heat flow, the frequency 
of gravitational-capillary waves may become less than 
ck; in this case Re& < 0, but the thermocapillary waves 
a r e  unstable. The instability increment in the limit 
c2k2>> wttanhkh i s  given by the expression (13) with w, 
replaced by w .  

5. NONLINEAR STAGE OF DEVELOPMENT OF 
INSTABILITY 

For small excesses over the instability threshold, 
it may be supposed that only one surface wave i s  formed 
and that the growth of i ts  amplitude is described by the 
equation 

The value of the growth rate y in this expression can be 
expanded in powers of the amplitude5 : 

In order to find the coefficient 8 ,  we shall use an ener- 
gy method and shall calculate the difference between 
the workper unit time of the thermocapillary forces 
acting on the nonlinear wave and the power of the energy 
being dissipated. We consider the case kh>> 1. 

To solve this problem, it i s  convenient to go over to 
variables cp and J ,  (the potential and the stream func- 
tion), in terms of which the coordinates x and z in a 
reference system attached to the traveling wave a r e  
expressed a s  follows7: 

where c =kg,, f ,  i s  the amplitude of the displacement 
of the surface, and up, i s  the phase velocity of the wave. 
In (21 ), terms of order ca have been retained." 

The heat-conduction equation in the variables cp and 
J ,  takes the form 

and the boundary condition at the surface, which ex- 
presses the law of conservation of energy, reduces to 

the expression 

Here we have assumed that outside the liquid, the ener- 
gy-flow vector remains constant. 

The work per unit time by the thermocapillary forces, 
R ,  , and by the viscous forces, R, , can be transformed 
to the form 

where dl i s  an element of length of the distorted sur- 
face of the liquid. The modulus of the velocity Iv I ,  
which enters in (23) and (241, is  expressed in terms of 
the variable cp ($=0)': 

Solving the heat-conduction Eq. (22) with the boundary 
condition (23) and substituting in (241, with the help of 
(25) we get an expression for the instability increment: 

Here Q,(k )  i s  the threshold value of the density of ener- 
gy flow absorbed a t  the surface. For the value k =kc 
= l / a G ,  corresponding to the minimum threshold of 
the heat flow, one can get from (26) 

As follows from this expression, in the system con- 
sidered there occurs soft excitation of a surface wave, 
whose amplitude i s  limited by nonlinear hydrodynamic 
effects (basically in consequence of strong damping 
of the higher harmonics because of viscosity), a t  a level 
tZo-a(O/VI - 1)'". 

It is easy to see  that the development of instability of 
surface waves leads to a lowering AT of the tempera- 
ture of the surface of the liquid; that i s ,  to an effective 
increase of the coefficient of thermal conductivity in the 
surface layer. On averaging the value of the tempera- 
ture along the surface, we find 

We note that the expansion (26), (27) is correct under 
the condition k2g2<< 1, whereas g2w/6 may be arbitrary.  
Solution of the heat-conduction equation with this ac- 
curacy in powers of the surface displacement would re- 
quire summing an infinite number of t e rms  of a ser ies  
of the form Z a , (~~w/xY' /~ .  Transformation to the var- 
iables q and J ,  in Eq. (22) enabled u s  to avoid this. 
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6. CONCLUSION 

We shall give estimates of the threshold for occur- 
rence of instability of capillary-gravitational waves for 
values of the parameters typical for laser processing of 
metals. 2 4  Taking into account that in these experiments 
the thickness of the liquid film i s  usually less  than the 
capillary constant, we shall use the expression (17) for 
estimates of Q,. Thus in the case of iron with h -0 .1  
cm, hk - 1 we get Q,  x 3 kW/cm2, which is  below the 
usually used densities of radiation flow. 

In this paper we have neglected processes of evap- 
oration from the surface of the liquid. As was shown in Ref. 
8, allowance for evaporation leads to instability of the in- 
terference between phases a t  power flows larger than lo6 
W/cmZ (for metals). As is shown by the estimate given, in- 
stability of the liquid surface may occur a t  considerably 
smaller densities of radiation flow. 

We note that formation of capillary waves on the sur-  
face of a metal melt was observed in Ref. 3. We shall 
estimate the values of the wavelengths corresponding to 
the maximum instability growth rate for the conditions 
of the experiment of Ref. 3. The largest growth rate 
corresponds to waves that a r e  in resonance, ck =w,.  
Hence 

for Q - 5 - lo5 W/cm2. The instability growth ra te  cor- 
responding to surface waves of such lengths is  equal, 
according to (14), to Re6 - 5 . lo4 sec-'. The wavelength 
values X = 2 ~ / k  z 3  - cm a r e  close to those observed 
experimentally, while the corresponding instability 
growth rate exceeds the reciprocal of the time of action 
of the laser beam on the metal ~ u r f a c e . ~  Thus we see  
that under the conditions of the experiment3 the instab- 
ility investigated in this paper could occur. 

In conclusion, we note that a t  large excesses over the 
threshold radiation power, there may originate in the 
liquid nonlinear waves o r  turbulence of the surface 
waves. In both cases,  this may lead to a substantial 
change of the conditions of reflection and absorption of 
radiation a t  the surface and may affect the processes 
of heat and mass  transport in the liquid. 

The authors thank A. A. Vedenov for constant atten- 
tion to the research and S. I. Anisimov for useful dis- 
cussion of the results. 

')1n the calculation of dx/drp f rom (21). t e rms  of the order  
c3 a r e  proportional t o  sin 3krp and, with the accuracy under 
consideration, make no contribution to  the integral (24). 
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