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The oscillation spectrum of the charged surface of helium (with an arbitrary amount of charge) is investigated. 
In the extreme case of maximum charge on the surface, the general expression for the dispersion law goes over 
to the previously derived asymptotic expressions. If, however, the surface is weakly charged, some new 
asymptotes of the dispersion law arise and permit us to study the effect of surface charges on the oscillation 
dispersion law for a charged helium surface, down to a zero degree of charging. It is shown that separate, 
many-electron dimples may be formed upon development of instability of the helium surface under weak 
charging conditions. Under certain particular assumptions, the various characteristics of many-electron 
dimples are calculated, viz., the radius of the electron spot, the total dimple energy, the critical clamping 
electric field required for the appearance of a hole, etc. The experiment confirms qualitatively the existence of 
many-electron dimples on the surface of liquid helium. [I' Permanent address: Physics Department E-10, 
Technische Universitat Miinchen, West Germany]. 

PACS numbers: 67.40. - w. 68.10.Cr 

lNTRODUCTlON sibility of rapid redistribution of the mobile charges 

The systematic study of the oscillations and stability 
of a charged helium surface began rather recently 
(during the past 3-4 years) .  Nevertheless, within this 
comparatively short  period, many interesting results  
have been obtained regarding the details of the disper- 
s ion law and the development of instability in this sys -  
tem. We a r e  speaking of the researches of Gor'kov and 
~ h e r n i k o v a , " ~  Mima, Ikezi and ~ a s e g a v a ; ' ~  Williams 
and one of the authors of the present paper ( V ; S ~ . ) , " ~  
a?d the experimental studies of Volodin, Khaikin and 
~ d e l ' m a n , ~ " ~  and, finally, Wanner and one of the auth- 
o r s  of the present paper (P.L.).~'- '~ 

It should be noted that practically al l  the experimen- 
ta l  data available at  the present time can be interpre-  
ted within the framework of the so-called metallic ap- 
proximation. In this approximation, the helium s u r -  
face  is asu r f ace  of equal electr ic  potential. Further,  i t  i s  
convenient to u se  the assumption that the external clamp- 
ing electr ic  field above the charged surface of the 
helium i s  entirely cancelled by the electr ic  field of the 
two-dimensional system of charges. Under such con- 
ditions, the theory of oscillations of the charged su r -  
face of helium becomes maximally compact and close 
t o  the classical  theory of oscillations of a surface of a 
conducting liquid in an  electr ic  field that i s  normal to 
the surface of this liquid.14 

However, in the case  of a charged helium surface,  
the metallic approximation i s  not the only one possible. 
The  external parameters of the electric part of the 
problem, namely the clamping field E,, the mean 
charge density n,, the effective m a s s  M and the mobi- 
lity of the charges along the helium surface,  a l l  can 
vary  independently over wide l imits ,  creating combina- 
tions that go beyond the framework of the metallic 
approximation. As a result ,  many interesting addi- 
tional effects appear that meri t  special  attention. 

F i r s t  of al l ,  according to current  ideas ( s ee  Refs. 5 ,  
7 and 8) there a r e  two mechanisms for the onset of in- 
stability of a charged surface of liquid helium. One of 
these (the dynamic channel) exists  because of the pos- 

over the helium surface in places with the largest  de- 
formation of the surface (Fig. l a ) .  The other,  s tat ic  
mechanism leads to instability even in the case  of im-  
mobile charges,  localized on the surface of an  oscillat- 
ing liquid. The action of this mechanism i s  c lear  from 
the scheme shown in Fig. l b .  A r ea l  instability of the 
charged surface of liquid helium i s  a self-consistent 
combination of both types of instability, which make 
equivalent contributions in the metallic approximation. 
So f a r  a s  the separate investigation of each of the 
mechanisms mentioned, it becomes possible outside 
the framework of the metallic approximation. 

The following interesting question pertains to the 
effect of a finite effective m a s s  and mobility of the 
charges,  in their motion along the helium surface,  on 
the dispersion law of the oscillations of the charged 
helium surface. This question i s  significant for the 
case  of oscillations of a charged boundary separating 
the phases of 3 ~ e  and 4 ~ e  in a strat if ied 3 ~ e - 4 ~ e  solu- 
tion. 

The most curious and qualitatively new possibility 
that a r i s e s  in the study of the instability of a weakly 
charged helium surface is the appearance of separate 

FIG. 1. Channels of instability of a charged helium surface: 
a-dynamic, b-static. The instability in the case  b a r i se s  
because of the appearance of forces of Coulomb origin, di- 
rected along the normal to the surface of the helium and in- 
dicated by arrows. 
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FIG. 2. Set of photographs of the helium surface under conditions of appearance of periodic structures. The diameter of the 
electrodes of the cell - 8 cm. The period of the structure is of the order of the capillary length - lo-' cm. 

dimples containing a large number of charges. Such 
dimples appear upon development of the instability of a 
weakly charged surface of liquid helium and their  
number i s  proportional to the degree of charging 6 of 
the free surface of the helium (the degree of charging 
6 is defined a s  the ratio of given mean charge density 
on the helium surface to the maximum possible value of 
this density: 6 =n,/ ny in the case  of a liquid half- 
space, ny 1 2  - lo9 cm-'). The successive increase in 
the number of dimples with increase in the parameter  
6 is demonstrated in the two photographs shown in Fig. 
2.2' In the region 6 G 1, the s e t  of multicharged dimples 
is built up into a crystalline structure,  the existence 
of which was predicted by Gor'kov and chernikov3 and 
studied in great  detail by ~ k e z i . ~  The f i r s t  observations 
of the crystal  of multi-electron dimples on the inter- 
face of the phases in a 3 ~ e - 4 ~ e  solution was performed 
by Wanner and one of the authors." 

The space between the two plates of a plane-parallel 
capacitor i s  filled with liquid helium. The symbols d,  
a and b denote the distance between the capacitor plates, 
the vacuum gap, and the thickness of the liquid helium 
layer in the capacitor. The  z axis is directed along the 
normal to the liquid surface,  the origin of the coordi- 
nates coincides with the position of the undisturbed 
liquid surface,  the region z < 0 corresponds to the 
liquid phase. F o r  simplicity, we neglect the effect of 
finite thickness of the helium fi lm, i.e., we assume 
that b i s  sufficiently large;  V is the potential differ- 
ence applied to the plates of the capacitor, c is the di- 
electr ic  constant of liquid helium, u,=en, is the su r -  
face charge density. 

B. In the ca se  of sma l l  oscillations, the shapes of the 
liquid helium surface 

Thus, the extension of the studies of the properties 
of charged helium surfaces into the region of a weak Metal 
degree of charging is quite promising. The aim of the 
present work i s  the description of certain simple prop- 
e r t ies  of weakly charged liquid helium surfaces. 1-0 

b 

1. OSCILLATIONS OF AN ARBITRARILY CHARGED 
Liquid He 

, /,/, ,; , 
SURFACE OF LIQUID HELIUM Metal 

A .  We first  consider the system shown in Fig. 3.  FIG. 3. Schematic diagram of the experimental cell. 

93 Sov. Phys. JETP 54(1), July 1981 V. El. Shikin and P. Leiderer 93 



the potentials 6, and 6, above and below the charged 
helium surface, and also the electric fields E, = V6,, 
E, = V@, can be written in the form 

@.=E.OZ+F,~-~' cos qz, z>Eq cos qz, 

@b=Eeoz+G&q' Cos qz, zCEq cos qz, 

o=ao+oq cos qz, (1) 
EqL=Eeo-qFqcos qze-", z>Eq cos qz, 

EiL=EbO+qG&qz cos qr, z<fq cos qz. 

The boundary conditions on the curved helium surface 
z =  5 q c o s q ~  

leads to the following definition of the coefficients from 
(1): 

E.o-eE~=hoa, 

The quantities E: ,E: a r e  expressed in terms of V ,  o,, 
&,a,b ,d:  

The added pressure 6 P  on the liquid helium surface, 
arising because of forces of electrostatic origin, can 
be obtained by variation of the energy 

that ar ises  upon displacement of the charged interface 
from the position of equilibrium. 

For simplicity in the following calculations, it makes 
sense to determine 6P in two limiting cases. 

a)  TPe case in which & > 1 ,ao = 0. In this limiting case ,  
the added pressure has the form 

In the case of liquid helium, this pressure is very 
small ,  since & - 1 r0.06. 

b) The case in which & = 1, a, $0. Here 

The general expression for 6P, (6) is divided into two 
terms: 

one of which corresponds to the static pressure on the 
helium surface, the other ar ises  when the charged sur-  
face oscillates. 

In the metallic approximation, when the curved char- 
ged surface of the helium is assumed to be electrically 
equipotential, we have a, = 0 ,  where 

a), cos qz-a). I I-i, ,.. ,, 
whence 

F --E.Ot,, Gq=-EbnEq. 
(7) 

q- 

As a result, 

If in addition to (71, we have the condition E: = 0 (the 
case of complete cancellation of the static electric field 
above the helium surface), we have from (4) V=-4nuob, 
E!  =-boo,  

In the opposite limiting case (immobile charges on the 
helium surface) when oq = 0,  we have 

Comparing the definitions (7b) and (7c), it i s  not dif- 
ficult to see  that in the case of immobile charges, the 
dynamical increment 6Pq has the same structure as in 
the metallic approximation. Consequently, a s  is noted 
above (see the comments in Fig. la) ,  even at zero mo- 
bility of the charges along the helium surface there a r e  
reasons for the development of an instability of the 
charged helium surface. The formal difference 
amounts only to the appearance of an additional numer- 
ical factor $, which increases the maximum density of 
the immobile surface charges ny by a factor of 2''' 
relative to the case of mobile charges. 

C. Taking into account the general expression (6) 
for the electrostatic pressure 6P,(q) and the corre-  
sponding definitions of the electric fields (1)-(3), and 
solving the set  of equations of motion that describe the 
oscillations of the surface and the motion of the char- 
ges on the helium surface: 

we can obtain, in the final analysis, the following ex- 
pression for the dispersion law of the coupled electro- 
capillary oscillations of the charged helium surface: 

Here p and cu a r e  the density and surface tension of the 
liquid helium, g is the acceleration due to gravity, 4 
and A, a r e  two-dimensional and three-dimensional 
Laplace operators, o and q a r e  the frequency and wave 
number of the oscillations of the charged helium sur -  
face, M is the effective mass of the charge in i ts  mo- 
tion along the surface, T is the effective relaxation 
time in the motion of the charge along the surface, D 
is the corresponding diffusion coefficient, which is 
connected with the mobility of the charges p by the 
Einstein relation p = ~ D T " ,  i.e., D =?TM". A dis- 
persion equation similar to (9) was obtained earl ier  ,'la 

but without diffusion terms -D. As will be seen from 
what follows, account of the possible diffusion of the 
charges along the helium surface because D # O  can 
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have a significant effect on the structure of the dis- 
persion law. 

In fact, we introduce the characteristic parameter 

and estimate i ts  scale in the neighborhood of the fre-  
quencies w - 10' sec-t and wave numbers q - 10' cm-', 
which correspond to the region of instability of the 
charged helium surface. For  electrons over helium 
under the conditions "bl =me = g , T8 - lo-' sec  , 
and TI: 1 K,  the quantity ye = lo4 >> 1. In the case of 
ions on the interface of 3 ~ e - 4 ~ e ,  when M i  1:(10~-10~)m, 
and ri  =lom1' sec ,  the typical value of y I: l0-~-10" 
<< 1. 

Taking into account the large scales of the change of 
the parameter y , we can simplify the initial expres- 
sion (9) for w(q): 

Thus, the dispersion relation w(q) depends essential- 
ly on the parameter y .  Thus, in the limiting case y 
>> 1 the relaxation time 7 drops out completely from 
the general expression for w,. In the opposite limiting 
case,  ) << 1 ,  the expression for w, depends explicitly 
on T .  This difference has a simple explanation. The 
fact is that in the case of light and mobile charges,  
similar to electrons, the local density of the electrons 
n,(x)  can follow the oscillations of the shape of the sur-  
face practically adiabatically. In other words, we can 
write down the approximation 

Here @ ( x )  is the self-consistent electrostatic potential 
along the liquid helium surface. Linearization of the 
relations (12) relative to 5 and @ leads in the given case 
to a direct connection between o, and 5,, replacing the 
more complicated connection that follows from the solu- 
tion of the electron equations of motion (8). Taking 
this connection into account and solving the remaining 
equations (a) ,  we can obtain a dispersion law that i s  
identical with the definition of W, ( l l a ) .  

In the case of heavy and only slightly mobile helium 
ions, an adiabatic connection between o(x) and {(x) of 
the form (12) has no time to ar ise .  As a result, it i s  
necessary to solve the complete set  of equations of 
motion (a) ,  which gives the final expression ( l lb )  for 
w(q) in the limiting case y << 1. 

D. We now track the behavior of w, (11) following a 
gradual decrease in the mean charge density. In the 
case when w, ( l l a )  i s  in the region 

the dispersion law has the form 

This expression is  identical with the definition of w, in 

Ref. 5 if we set  E: = (E: + E:)~ in the latter. Under the 
additional conditions 

E.O=O, V=-4noob, Ebo=-4nao 

the expression for w, (14) reduces to the well-known 
definition of W, in the metallic approximation1': 

In reality, however, in the problem with independent 
V and o,, the combination E: + has the following 
meaning according to (4): 

2V 4no,(b-a) 
Eao+Es" - + 

d d . (15) 

The stability criterion for the dispersion of o, (14) 
runs a s  follows: 

(4noo)'+ (E.0+Eb0)2=16n (pga)'" (16) 

o r ,  with account of the definition (15), 

In terms of the variables x = V/d , y = %nuo , x = (b -a) /  
d , L' =2(2710,)' the relation (17) has the form of a 
curve of second order  in the XY plane: 

X ? + ~ J . X ~ +  ( I + A ~ ) ~ ~ = L ~ .  ( 1 7 4  

In the case A = 0 ,  i.e., in the case b = a ,  this curve i s  
a circle of radius L with center at the origin. If A + 0 ,  
then we a r e  dealing with an ellipse 

in the canonical system of coordinates xfl , .  The slope 
k of the canonical xl  axis in the set  of coordinates xy is  
equal to 

It should be noted that not al l  the a rea  of the discus- 
sed ellipse i s  a region of stability of the charged helium 
surface. It is necessary to exclude from this a rea  por- 
tions for which the self-field of the charges over  the 
helium surface exceeds the external field of the capa- 
citor V/d. The boundaries of this region a r e  defined 
by the condition ~f = O  o r  V =-4nu0b. In the variables 
x,y , such a condition corresponds to the straight lines 
x =*2(b/a)y. As a result ,  for example for the cases 
x = O  and x=0.9,  the regions of stability have the form 
shown in Fig. 4 (the cross  hatched portions). A simi- 
lar  picture for the case x = 0 i s  shown in the review, 
Ref. 15. 

It is interesting to note that upon satisfaction of the 
condition ~ d " > >  %noo along with the inequality (13), the 
dispersion law (14) ceases to depend on the charge 
density : 

A similar situation is  maintained with decrease in 
oo until such time that the inequality (13) i s  violated. 
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FIG. 4. Region of stability of the negatively charged helium 
surface upon independent variation of the potential difference 
V, the density of charges n,, and the parameter A =  ( b  -a) /d .  
The graphs are drawn on the basis of (17a) in the relative 
variables 2 =xL-'."yYL-' for two values of A:X= 0,  A =  0 .9 .  
The definitions of x ,  y ,  L are given in the text. 

In the transition to the region q~ < q << (z)", where 
q, i s  defined in (13) and ( 2 )  is the mean thickness of 
the charged layer over the helium surface,  the disper- 
sion law ( l l a )  takes a form that is qualitatively differ- 
ent from (14) and (18): 

The definition (19) of w(q) demonstrates how the effect 
of the finite charge density on w(q) drops out in the 
given problem. 

It must be noted that the inequalities (19) a r e  mutual- 
ly compatible under the condition 4roo << V/d. If we 
deal with the solution of the problem under the condi- 
tions 4noo = V/d, i.e., in the presence of complete can- 
cellation of the external electr ic  field over the charged 
surface of helium by the field of the surface electrons,  
then the inequalities q > q, and q << (z)" cannot be sa t -  
isfied simultaneously. This limiting case  should be 
investigated separately (see  Ref. 16). 

In the case  of heavy charged particles, a "metallic" 
asymptote w(q) of the form (14) is also possible. F o r  
th is ,as  is c lear  f rom ( l l b ) ,  satisfaction of the inequal- 
ity 

%neo,q/~~o>r- '  (20) 

is needed. Violation of the inequality (20) upon gradual 
reductior. of the charge density oo takes place much 
more  simply than in the case  of electrons over the 
helium. Thus, for  M =(10~-10~)m, and 7 ,  - 10'' s ec ,  
the inequality (20) does not hold in the density region 
o, 5 0.20, [om is the maximum charge density of the 
electrons over the helium, defined in (I?')]. However, 
the violation of the inequality (20) does not lead in the 
given case  to a change in the value of the cri t ical  in- 
stability field E; ,  since the condition for  the appear- 
ance of the instability, w2 = 0 a t  q + 0, automatically 
equates to zero  the dissipative effect of the charge sys-  
tem on E:. A more  detailed investigation of the effect 
of heavy charged part icles on w(q) is contained in Ref. 8. 

2. MANY-ELECTRON DIMPLES OVER HELIUM 

As has already been noted in the introduction, the 
development of an instability of the charged helium s u r -  

Liquid He 1 
Electron disk 

FIG. 5. Schematic form of the many-electron dimple. 

face can lead to the formation of individual s table dim- 
ples,  filled with a la rge  number of electrons,  N = 1O5- 
lo7 (Fig. 5). S imi lar  dimples appear under conditions 
of a weak charging of the initial, plane helium surface 
(oo << om) and sufficiently strong clamping field E;, 
which exceeds a certain cri t ical  field Ei. 

In contrast to the instability under the conditions oo 
l o , ,  which leads to the formation of a periodic defor- 
mation of the helium surface with characterist ic  period 
of the o rde r  of the inverse capillary constant, and 
which admits  of a description in t e r m s  of nonlinear 
perturbation theory, the instability in the case  oo << urn 
i s  accompanied by a significant rearrangement of the 
electron distribution over the helium surface. As a 
result ,  the formal problem turns out to be much m o r e  
nonlinear in the given case  and the problem of the 
self-consistent calculation of the cr i t ica l  conditions 
necessary for  the formation and stable existence of 
many-electron dimples remains open a t  the present 
time. Nevertheless, using the experimental fact of the 
presence of such dimples with a fixed number of elec- 
t rons on the liquid helium surface,  and also the addi- 
tional information on the uniformity of the electron dis- 
tribution at  the bottom of the dimple, we can attempt 
to find certain important parameters of the individual 
many-electron dimple: i t s  characterist ic  geometric 
dimensions, the effective m a s s  and mobility in motion 
of the dimple along the helium surface and s o  on. 

A. Taking the above into account, we write out the 
total excess  energy associated with the formation of a 
many-electron dimple on the helium surface:  

Here  ((r) is the self-consistent deformation of the 
helium surface under the action of the electron pres-  
s u r e ,  n,(r) is the local electron distribution along the 
surface of the dimple, N i s  the total number of elec- 
t rons in the dimple, p ( r )  is the electrostatic potential 
in the vicinity of the charged dimple. The factor i in 
front of the te rm en,p implies the taking of the integral 
only with respect  to one of the sur faces  of the charged 
disk. The remaining notation in W (21) has been en- 
countered previously. 

The f i r s t  two t e rms  in the energy W arise because 
of the bending of the helium surface,  which has  a finite 
surface tension a, and because of the accompanying 
change in the gravitational energy. The surface t e rm 
is written down for the general  ca se  of not too sma l l  
curvature of the helium surface ,  when the derivative 
V5 can take on values 21. Here the capillary te rm 
ceases  to be a quadratic function of the deformation. 
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The third te rm determines the connection between the 
mechanical and electron parts  of the problem and is 
written in the approximation of a sufficiently strong 
clamping field, when the increments of polarization 
origin, which a r e  important in the general variant of 
the theory, can be neglected. Usually, these incre-  
ments become unimportant in fields EL  2 300 v/cm." In 
our case  we a r e  dealing with clamping fields EL  2 3000 
V/cm. Therefore the absence of polarization t e rms  in 
the interaction between the electrons and the helium 
surface i s  fully justified. St i l l  another detail that needs 
comment i s  the difference between the general  defini- 
tion (6) of the pressure  6P,=$o(Ea +E,) of electrostatic 
origin on the bent charged surface of the helium and 
the particular definition 6P,=oE,, o=en,  that follows 
from (21) when W i s  varied with respect to 5 .  The 
reason for the apparent difference is that in the prob- 
lem of one charged dimple with dimensions R <c a ,  b ,d, 
the values of the homogeneous electr ic  field over (E!) 
and under (E:) the helium surfaces a r e  identical: E \  
=E!=E,. As a result ,  according to (3), the possible 
nonuniform fields above and below the dimples should 
satisfy the condition G ,  = F,. Using this equality and 
the definitions of E, and E ,  ( I ) ,  it i s  not difficult to 
establish the fact that 

'/2(E.+E*) ='/2(E.0+Ebo) =E- ,  

Thus, the general expression for 6P, (6) i s  equivalent 
in the given case  to the definition 6P=oE,. 

We assume that 

This allows us to linearize the surface t e rm in the to- 
tal energy W (21). The validity of such an assumption 
can be verified in what follows. As a result ,  

The variation of W (23) with respect  to t(r), cp(r) and 
n,(r) under the condition 

j n. d ' r - ~  

leads to the equations of mechanical equilibrium for 
f ,  to Poisson's equation for cp and to the connection 
between 5 and cp on the surface of the dimple, which 
has the meaning of the condition that the chemical 
potential be constant along this surface:  

kt-xxt=a-'eE,n.(r) , 
t ' ( 0 ) -0 ,  kt-) -+o, Ascp=0, 

4nert. ( r ) ,  (24) 

The origin of the cylindrical coordinates i s  identical 
with the center of the dimple, A2 and A3 a r e  two-dimen- 
sional and three-dimensional Laplace operators,  x is 
the Lagrangian multiplier which ensures the conserva- 
tion of the total number of electrons N ,  and R i s  the 
assumed radius of the electron spot in the dimple (in 
the region r Rn, > 0). 

Using the Bessel  transform for [ ( r ) ,  cp(r),n,(r): 

0 

w 

n, ( q )  = 2xe J n, ( r )  J ,  ( q r ) rdr ,  
0 

we can rewrite the system (24) in the following form: 

where J,(x) i s  a Besse l  function of o rde r  zero. Thus, 
the problem of the many-electron dimple reduces to 
the solution of paired integral equations in n,(q). The 
methods of solution of such equations have been de- 
scribed,  for example, in Ref. 18. 

Noting that the f i r s t  of the relations (25) is satisfied 
in the region 0 8 r s R , we can define the quantity X a s  
the value of the left s ide of this equation a t  r=O. As 
a result ,  Eqs. (25) take the form 

In the limiting ca se  xR << 1, which is  of rea l  interest, 
the combination f(q) = q / ( u Z ~ '  + qZ) in the f irst  of Eqs. 
(25a) can be simplified to f(q) -q - ' .  Here ,  as i s  easy 
to show, taking into account the limiting behavior 

the integral remains convergent. As a result ,  the s e t  
of equations (25a) becomes nondimensionai. This 
means that if the many-electron dimple exists ,  then 
in the limiting case  xR << 1 the radius of the dimple R 
does not depend on M and, in accord with [25a), it is 
determined by the expression 

R,-ca/ELZ, c=i ,  (26) 

where the constant c depends on the details of the solu- 
tion of the se t  of equations (25a). 

B. In the variational solution of the problem of the 
many-electron dimple, proposed in Ref. 19, an  appro- 
priate, for exampie, Gaussian, distribution of the 
electron density n,(r) i s  postulated on Ute surface of 
the dimple: 

The calculation of the deformation and of the Coulomb 
par ts  of W (23) gives the following final result in this 
case  : 

Here Ei(x)  i s  integral exponential function and Q =eN. 
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The determination of the radius R  now reduces to the 
solution of the equation aW/aR r W' =O under the condi- 
tion W" > 0 .  It i s  not difficult to show that such a solu- 
tion exists only in the region x R  < I .  Using the asymp- 
tote of E i ( x )  at  small  x ,  we find that the definitions of 
R ,  W  and ( ( 0 )  in the region n R  << 1  have the following 
form: 

It is obvious that the variational definition of R ,  in ( 2 9 )  
correlates with the general result for  Ro from ( 2 6 )  with 
accuracy to within a number -1. 

In the region n R  5 1, the asymptotes ( 2 9 )  become in- 
accurate and it becomes necessary to use numerical 
methods for the determination of the corresponding 
quantities. It is convenient here  to represent  the ener-  
gy ( 2 8 )  in the following form: 

where Ro i s  defined in ( 2 9 ) .  Introducing s and con- 
structing the system of equations @(s ,%), we can find 
the position of the minimum X  of this function and i t s  
value a t  the minimum point. This information suffices 
to determine the properties of R ,  and in the vicinity 
of nR s 1 .  Thus,  the minimum of the function @ f i r s t  
appears a t  s = s ,,, r 0 .90  at  the point X,, r 1 .14 .  The 
function w f i r s t  goes to zero  at  s = s * =  1.05 at  the point 
X * = 0 . 7 2 .  The dependence of X on the parameter  1 / 2 s  
= x R o  in the region s a s , ,  i s  shown in Fig. 6. This de- 
pendence gives an  idea of the value of the t rue  dimen- 
sionless radius of the dimple X in comparison with i t s  
asymptotic value x R , .  

There i s  also sense in calculating the total energy of 
the charged surface of helium under conditions of oc- 
cupation by electrons of a l l  the available a r e a  under the 
electrodes of the capacitor. In this ca se ,  we need to 
assume that the gradients V5 a r e  insignificant, that the 
quantity n, does not depend on r ,  that the total a r e a  S 
occupied by the electrons i s  sufficiently la rge ,  S >> x-', 
that the self-field of the electrons i s  smal l  in compari- 
son with the applied field of the capacitor, 2ren, << E, , 

FIG. 6.  Behavior of the dimensionless radius X as  a function 
of the parameter (2 s ) - '=xR0 .  The definitions of X ,  X,,,, x*, 
s, Ro are given in the text. 

and that the charged helium surface i s  located for  s i m -  
plicity a t  the median plane of the capacitor, i .e.,  a = b  
(see Fig. 2 ) .  

The corresponding total energy W turns out here  to 
be equal to 

Equating-the energies W ( 2 8 a )  and ( 3 0 )  leads to an equa- 
tion which can be used a s  the definition of the cri t ical  
field Erl" for  the transition of the electrons from the 
nonlocalized s ta te  to the dimple: 

W (s, J) =-ns/x2S, 

~ ( s  , x )  and s a r e  defined in ( 2 8 a ) .  Under the conditions 
X'S >> 1 ,  this equality reduces to the requirement @ 
1 0 .  As was shown above, the function W vanishes a t  
s = s * r 1 . 0 5  andX*  = 0 . 7 2 .  It can then be concluded 
that the formation of the dimple becomes advantageous 
if 

The definition of E?" ( 3 1 )  becomes literally identical 
with the other possible definition of ELmPx, which follows 
from analysis of the behavior of the dispersion law of 
the charged helium surface under conditions of a smal l  
degree of charging [see the definition of ELm ( 1 7 ) ] ,  but 
the numerical coefficient in the definition of ELm of 
( 3 1 )  is  somewhat la rger .  

Having the definitions of ( ( 0 )  and R ,  ( 2 9 ) ,  it i s  not 
difficult to determine the region of applicability of the 
results  in the sense  of the applicability of inequality 
( 2 2 )  o r  in more  appropriate t e rms  ( ( O ) / R  < 1 .  Written 
in explicit form, this inequality becomes 

At a fixed value of EL the relation ( 3 2 )  i s  bounded from 
above by the total number N  of charges in an individual 
multi-electron dimple. F o r  an electr ic  field E, ZEF" 
[EF" f rom ( 3 1 ) ]  and for the remaining parameters that 
a r e  characterist ic  of liquid helium, the quantity N,, 
has the sca le  N ,  - l o 6 .  

Thus, over a wide range of values N ,  10 s N  s l o 6 ,  
autolocalization of the system of surface charges i s  
possible in the multi-electron dimples and also linear- 
ized description of this l o ~ a l i z a t i o n . ~ '  The localiza- 
tion radius R ,  from ( 2 9 )  does not depend on N here  and 
sat isf ies the inequality n R O  < 1 .  The maximum dis- 
placement ( ( 0 )  sat isf ies the inequality ( ( O ) / R  < 1  right 
up to N s N,,. The energy decrease associated with 
the appearance of the multi-electron dimple at  E, 
a~," and N - l o 5  has ,  according to the definition of W 
( 2 9 )  the sca le  W - 10'~-10'~ erg ,  o r  W - l o 4 - l o 5  eV. 
This energy is macroscopically large in comparison 
with the characterist ic  helium temperatures,  and 
therefore the multicharged dimple, although it i s  in a 
metastable s ta te ,  i s  little subject to thermal Iluctua- 
tions and can exist a ra ther  long time. A brief com- 
munication on the properties of t he  multi-electron dim- 
ple on the helium surface has  been published in Ref. 1 9 .  
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C. The analogy mentioned above between the one- and 
many-electron dimples is  preserved in the calculation 
of the dynamic characteristics of the dimple along the 
helium surface. For  example, the determination of the 
effective mass M is obtained in the following wayz0: 

The angle 0 of the cylindrical coordinate system located 
at the center of a dimple moving with a velocity vd i s  
measured from the direction of motion, <(r)  is  the de- 
formation of the surface of helium under the action 
of the electron pressure. Under completely adiabatic 
conditions, when the deformation of the surface has 
time to adjust itself to the motion of the electron spot, 
we can use for ( ( r )  the expression obtained in the static 
problem. The condition of applicability of such an ap- 
proximation is 

where W i s  defined in (28). 

The solution of the problem (33), carried out in Ref. 
20 in connection with the calculation of the effective 
mass of a single-electron dimple, leads to the follow- 
ing final expression for M: 

It i s  interesting to note that the value of M does not 
depend on R .  It is  obvious also that, in the case  of a 
surface dimple, the value of the attached mass M does 
not bear a direct relation to the total volume of the 
dimple, a s  occurs, for example, in the case of a body 
moving in the volume of a liquid. Actually, the volume 
of the dimple 

v=2x b ( r )  r dr=QE,lax2 I (36) 
i s  proportional to the first  power of the clamping and to 
the second power of the capillary constant: v =((o)H-' 
-QE,(u"H'~, where ((0) i s  defined in (29). At the same 
time, the quantity M is quadratic in E, and contains the 
single power of x. The numerical value of M a t  N = 10' 
andE,=3000 W/cm is M s 3 ~ 1 0 ' ~  g. 

A similar generalization to the case of a many-elec- 
tron dimple i s  possible also in the problem of i ts  mo- 
bility along the helium surface. The final result for 
the mobility p equivalent to the Stokes mobility of the 
helium ion in a liquid-helium volume has the form 

Here 77 is the coefficient of the first viscosity of liquid 
helium. 

A comparison of the mobility p of the many-electron 
dimple with the StoKes mobility of an isolated helium 
ion in a liquid-helium volume 

shows that the effective mobility of the dimple is much 
greater than p,: 

Thus, at N - lo5 andE, ~ 3 0 0 0  V/cm, the ratio p /p ,  
-lo3-lo4. This is not surprising, since the effective 
charge of the dimple is very large, and the geometry 
is significantly different from the geometry of an ordi- 
nary sphere, which promotes the increase in the mo- 
bility of the dimple. 

It i s  of interest to estimate the role of the wave re -  
sistance in the motion of the dimple along the helium 
surface. Taking into account the explicit form of the 
ripplon spectrum 

02-gq+aqslp, 

it i s  not difficult to determine that the minimum group 
velocity v,,, for such a spectrum is approximately 
equal to 

umr.== (gx-I)'". 

The numerical value of v,,, = 10 cm/sec. 

Thus, the wave resistance turns out to have a thresh- 
old and ar ises  only when the dimple goes along the sur-  
face with a velocity v d >  vmin Under similar conditions, 
the kinetic energy W,, , -MV; of the moving dimple be- 
comes comparable with the energy of localization of the 
electrons in the dimple, W , , s  W, where W is defined 
in (29). A s  a result, a self-consistent theory of wave 
resistance should take into account the effect of motion 
of the dimple on the  localization of the electron cloud 
in the dimple. This problem will not be discussed 
here. 

D. In concluding this section, we determine the form 
of the interaction between two dimples, located at a 
distance r = I ri - rj I from each other (here ri and r, 
a r e  the coordinates of the centers of two dimples). 
For calculation of Wi,, we need to substitute in W [Eq. 
(23)] the deformation and the distribution of the  charges 
for the two individual dimples, and to separate the in- 
terference terms. It is convenient to carry  out the con- 
crete calculations by using a somewhat transformed 
expression for W .  Namely, taking into account the 
equation of mechanical equilibrium (24) and the iden- 
tity transformations in the definition of W in (23), we 
bring the energy to the form 

Assuming now that the deformation of the helium sur-  
face is created by the superposition of two solutions 

where 

we find from (38) the energy of interaction of two dim- 
ples of like charge 

where K o ( x )  is a Bessel function of imaginary argu- 
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FIG. 7. Graphs of the dimensionless energy "Wk) = w4,/w2 as 
functions of x=  x r  for three values of x R :  0.56 (curve 1) ; 0.43 
(curve 2) ; 0.33 (curve 3). The dash_ed curves indicate the re- 
gions in which the determination of W&) is inaccurate. 

ment, r= I r i - r j I ,  andR i s  defined in(29).  At smal l  
distances, this interaction has the charac ter  of a 
Coulomb repulsion, followed by a region of attraction 
of deformation origin, and finally, in the region r >> x" , 
the Coulomb repulsion again dominates. In the case  of 
oppositely charged dimples, the interaction has  a form 
s imi lar  to (39), but with opposite sign. The graph of 
the dependence of the dimensionless energy of interac- 
tion @(x) of two like-charged dimples, @ = W ~ ~ Q - ~ U - ' ,  
on the dimensionless distance x = u r  for different x R  
(0.56,0.43,0.33) is shown in Fig. 7. At distances r > 2R, 
where R  is the radius of the individual dimple, the defi- 
nition of W,, from (39) loses meaning. The correspond- 
ing parts  of the graphs of Fig. 7 a r e  denoted by dashed 
lines. It follows from Fig. 7 that the minimum of the 
functions Q(x), which determines the stationary dis- 
tance between like-charged dimples, i s  located in the 
region marked by the dashes. Consequently for the 
description of the bound state of a complex of two like- 
charged dimples, we need a more  accurate calcula- 
tion of the function Lv at  distances r - R .  As for the 
problem of the bound s ta te  of two oppositely charged 
dimples, the location of the equilibrium is determined 
in this case by the extremum of the function @(x) on 
Fig. 7 in the region x  e2.5 (the maximum in Fig. 7). 
This extremum is located in the region of applicability 
of the definition of W,, (39) and therefore has a precise 
meaning. 

CONCLUSION 

We now present some summaries.  We studied in this 
paper the spectrum of oscillations of a charged helium 
surface under the conditions of an  arbitrary degree of 
charging 6 of this  surface. In the limiting case  6 1 1 ,  
the general expression (9) for the dispersion of w, 
goes over into the previously known asymptote. If now 
6 << 1, then new dependences ~ ( q )  a r i s e  which allow us 
to investigate the effect of surface charges on W, in the 
entire interval of 6 down to 6 - 0 [see the definitions 
(14), (18) and (19) of w,]. 

It was shown that upon development of an instability 
of a charged helium surface under the conditions 6 << 1, 
the formation of individuai many-electron dimples is 
possible. Using the assumption that the density of 
charges n, on the bottom of the dimple has a homogene- 
ous &stribution [see the definition (27) of n , ] ,  for  

which there a r e  experimental grounds, we can calculate 
various characterist ics  of an  individual many-electron 
dimple: the radius R of the electron spot ,  the coupling 
energy W and the cri t ical  field E:" necessary for  the 
formation of a many-electron dimple, the effective 
mass  M and the mobility of the dimple p in i t s  motion 
along the helium surface,  and the interaction energy 
Wij of two dimples with like and opposite charges lo- 
cated a t  a finite distance of one from the other.  In the 
calculation of W,, it turned out that this energy, con- 
tains besides the Coulomb term an additional te rm of 
deformation origin. The deformation te rm has a sign 
that is opposite to that of the Coulomb t e r m ,  and leads 
to a significant renormalization of the interaction. As 
a result ,  in the region of sufficiently strong applied 
fields El having a sca le  El > E?", formation of a bound 
complex of oppositely charged dimples is possible. 
The problem of a bound s ta te  of a complex of two like- 
charged dimples needs additional study. 
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 he details of the corresponding experiment, carried out by 
one of the authors (P. L. ) and the quantitative information 
following from it will be published separately. Here there is 
sense in  noting that we are dealing with a cell of diameter - 8 
cm. distance between the plates of the capacitor d 1.5 cm, 
a lower glass plate, which is covered with gold is used addi- 
tionally as a mirror, upper plate, also of glass, is made 
semitransparent (covered by a conducting, transparent layer 
of inO), which allows one to observe the state of the helium 
surface along the normal to the surface through the upper 
plate; the helium surface is located in the middle part of the 
cell, the number of electrons in a single dimple N = 10~-10', 
the temperature T 4" K, the distance between neighboring 
dimples -1 0-' cm. 

3 ) ~  similar phenomenon appears also in the case of a single 
electron located on the surface of helium in a strong field EL. 
The difference is only that the Coulomb interaction between 
the electrons is replaced by the energy of the zero-point oscil- 
lations of a single electron. 20 
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