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In the framework of an asymptotic theory, analytic expressions are found for the probability and cross section 
for nonresonant charge-transfer processes as functions of the parameters describing the states of the colliding 
particles before and after collision. There is good agreement between the analytic and numerical calculations 
of the charge-transfer probability in the range of impact parametersp that makes the main contribution to the 
cross section for these processes and for which the use of the asymptotic theory is justified, i. e., the range in 
which yp > 1. 

PACS numbers: 03.80. + r, 34.10. + x, 34.70. + e 

1 .  One of the possible reaction channels when ions 
and atoms collide is the charge-transfer reaction, i. e .  . 
the transition of an electron from one atom core to 
another: 

Atoms in excited states can be produced a s  a result of 
the transfer of charge from one atom to another, and 
this makes possible the efficient production of beams 
of neutral atoms in excited states.  A particularly in- 
teresting case i s  that of so-called quasiresonance 
charge transfer ,  in which the electronic energy of the 
system is almost unchanged in the collision, i.  e . ,  
when hE << 1.  e ere and throughout the atomic sys- 
tem of units (a. u. ) with e =ti = m - 1 is used. ] The 
large cross  sections corresponding to these processes 
distinguish them from a number of other physical phe- 
nomena that go on among atoms and positive and nega- 
tive ions in gas discharges, in the upper layers of 
the atmosphere, and in low-temperature plasmas. 
Therefore there has been a great deal of theoretical 
and experimental research on these processes. 

Since these processes correspond to almost resonant 
conditions of charge transfer, we shall assume that 
there is interaction only between two states of the 
system such that transitions between them leaves the 
electronic energy of the system practically unchanged 
before and after  the collision transitions to other 
states involve a more considerable energy consumption, 
s o  that their probabilities a r e  adiabatically improbable 
and they can be neglected. In this case the nonstation- 
a ry  wave function that describes the behavior in time 
of the system (AB)' can be written in the form 

Here H i s  the Hamiltonian which describes the system 
of colliding atoms ( I ) ,  and the case i s  considered in 
which the relative velocity of the collision of the atomic 
particles is much smal ler  than the speed of the elec- 
tron in orbit on atom A  o r  atom B :  

The most general time dependences of the matrix ele- 
ments A(t)  and ~ ( t )  for which the system of equations (3) 
can be solved exactly a r e  well known. These model 
solutions a r e  widely used in the interpretation of non- 
resonance processes,  including the nonresonant charge- 
transfer  processes ( 1 )  considered here.  In this proce- 
dure there is no attention given to the fact that the 
model solutions2 do not agree  in the limiting case with 
the results  obtained in the framework of perturbation 
theory. This is because the representation of the non- 
diagonal matrix element H,, = $ A ( t )  by an exponential 
time dependence 

is not justified in the case of large impact parameters 
p, which give the main contribution to  the charge-trans- 
f e r  c ross  section for smal l  collision velocities1' 

where W ( p )  = 1 C,(t = 0) l2 is the probability of nonreso- 
nant charge transfer .  

This approximation for the nondiagonal matrix ele- 
where cp,(r,) and cp,(r,) a re  the atomic wave functions 

ment is unsuitable in the region of nonadiabatic transi- which determine the behavior of the electron on the 
tion, and leads in the final analysis to e r r o r s  in the 

atoms A and B ,  respectively; El and E,  a re  the binding c ross  section for nonresonant charge transfer ,  
energies of an outer electron on atoms A and B ;  and 

especially for small  collision velocities. This was 
C,,,(t)  a r e  the probability amplitudes describing transi- f i r s t  pointed out by O l ~ o n , ~  who solved the system of tions of the electron between the atomic cores A and B .  

equations (3) by numerical methods, assuming that in 
The coefficients C ,  and C ,  satisfy the system of equa- the region of nonadiabatic transition the matrix ele- 

tions ments have the behavior 
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This conclusion is confirmed by other numerical cal- 
culations. " 

In the present paper simple analytic expressions fo r  
the probability and c ross  section of quasiresonant 
charge -transfer processes (1) a r e  derived in the frame- 
work of the asymptotic theory (yo >> 1);  the results  a r e  
rather different from the well known model  solution^,^-^ 
but a r e  free from the contradictions that have been 
mentioned. 

2 .  We solve the system of equations ( 3 )  in the f rame-  
work of the asymptotic method, assuming that the 
quasiresonant transitions ( 1 )  occur a t  distances be- 
tween the colliding particles that a r e  large compared 
with their diameters. In this case we can use for the 
matrix elements in Eqs. ( 3 )  the asymptotic values of 
the energy difference of the adiabatic te rms,  AE = El 
- E,,  and the energy A(R) of the exchange interaction7: 

A = ARPe-TR . (7) 

where a i  a r e  the polarizabilities of the atoms A and B, 
y  = ( 2 ~ ~ ) ' ~ ~  1 ( 2 ~ , ) " ~ ,  Ei a r e  the ionization energies of 
the atoms A  and B, 4 = 2 / y  - 1 ,  A = A ~ A , ~ - " " .  amdAl 
a r e  the well known asymptotic coefficients which de- 
scribe the behavior of outer electrons on atoms A and 
B. 

Since the nondiagonal matrix element A  which gives 
the nonadiabatic coupling between the initial and final 
states depends exponentially on the change of the run- 
ning parameter with respect to which one integrates the 
system ( 3 ) ,  it can be expected that the transition between 
the initial and final states occurs in a narrow range of 
variation of this parameter.  Furthermore the position 
of the transition region i s  determined by the distance 
R ,  at  which the function f  ' (R , )  in Eq. ( 3 )  takes i ts  
maximum value. 

To find the position Ro of the region of transition and 
i ts  width we simplify the expressions for the matrix 
elements H and A: 

where p  i s  the impact parameter and R  is the distance 
between the colliding particles. The approximation (8) 
is justified i f  the transition occurs a t  large distances 
between the particles ( y R  >> 1 ) .  

We introduce new symbols 

and write the system of equations in the form 

It is obvious that the main contribution to the solution of 
Eqs. ( 1 0 )  will come from the range of variation of 5 
where j, takes i ts  maximum value, i. e . ,  near the point 
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5, = i a .  Since the quantities fl  and f, go to zero expo- 
nentially a s  5 - i w, the integration over 5 from -m to 
+ w i s  equivalent to  integration over the ray z that goes 
through the point 5, = i a  parallel to the rea l  axis: 

g=z+ia, -m<z<+m. 

Furthermore,  in the range of the variable z ,  1 z 1 G zo << 1 ,  
which gives the main contribution to the solution of the 
system ( l o ) ,  the hyperbolic cosine in the coefficient of 
the exponential function in Eq. (11)  is slowly varying 
and can be treated a s  a constant, 

The range / z  1 < z ,  is easily determined from the con- 
dition ypz2,/2 cosa  - 1 ,  i. e .  , 

2,- ('2 cos a/yp)'"<l at yp>l. 

Let us  go over from the system of equations ( 1 0 )  to 
the second-order differential equation for the ampli- 
tude C,: 

In the narrow range 1 z 1 c z ,  we can write approximately 

frf2=B2fz2, 

and determine the constant B from the relation 

- yp sinZ a 
B= jVtiZ) *dz / f d z  = ~ X P  (---) / cos a. 

2 cos a 
0 0 

The system of equations 

with the initial conditions 

has the solution 

c~=B-' sin ( B  jizdz' ), ( 1 5 )  
-- 

Accordingly, the result  ( 1 5 )  gives for the probability 
of the nonresonant charge transfer  ( 1 )  the expression 
(at Y P > > ~ )  

3 .  Let us analyze the solution ( 1 6 ) ,  ( 1 7 ) .  If the a r -  
gument of the sine, i. e . ,  the phase a,,  i s  very small  
for al l  values of 

the parameters p, Eq. ( 1 6 )  goes over into an expres- 
sion which is found in the framework of perturbation 
theory: 
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A characteristic quantity in this problem i s  the 
Massey parameter p =&O/vv. If p = 0 ,  the solution (16)  
is the same a s  the resonant charge-transfer cross sec- 
tion given in Ref. 7 ,  when K = 0 :  

For  p << 1  Eqs. (16 )  and (17 )  can be simplified: 

W=exp (-ypp') sin' On', 

where @:= v - ' ( ~ r p / 2 y ) ' ~ ~ ~ ( p )  is the phase which deter- 
mines the frequency of resonant charge transfer. 

Let us compare the analytic expression ( 1 6 )  with the 
numerical calculations of Ref. 6 .  Figure 1  shows a 
comparison of the charge-transfer probabilities for 
CI =0.262 ,  x = 9 . 3 .  lo", v =  1 / 1 2 ,  plotted against the 
impact parameter p, a s  found by numerical methods 
amd from Eqs. (16 )  and (17 ) .  As was to be expected, 
in the limit yp >> 1  the numerical and analytical calcu- 
lations coincide. For  small values of the quantity yp 
the charge-transfer probability oscillates rapidly, and 
the phases of the numerical and analytic calculations 
a r e  not the same, because Eq. ( 1 7 )  cannot be used to 
determine the phase a t  y p S  1 .  It is obvious, however, 
that this fact cannot have much effect on the value of the 
cross section (5), since the main contribution to the 
cross  section comes from impact parameters p at  
which the probability oscillates rapidly between 0  and 
1 ,  and independently of the actual phase values we can 
replace the rapidly oscillating function with i ts  average 
value, (sin3@J =+. 

Accordingly, in this range variation of the impact 
parameter, the probability of nonresonant charge 
transfer can be written in the form 

The bounding value of the impact parameter, p = p,, is 
to be set  just a s  i t  is in the case of resonant charge 

FIG. 1. Comparison of numerical (Ref. 6) and analytic [Eqs. 
(16) and (17)] calculations of the probability of nonresonant 
charge transfer, Li' + Na - Li+  Naf, with x = 9.3 v =  
1/12, p = x/yu = 0.262. The solid curve shows the results cal- 
culated from Eqs. (16) and (17). and the dashed curve, those 
of the numerical calculations. 

FIG. 2. Cross sections for nonresonant charge trruisfer He++ 
Cs - H~('s. 'P, 3 ~ ,  3 ~ )  + CS: Solid c i rc les  show partial c ros s  
sections a, (Ref. 8). open circles,  at (Ref. 8 ) ,  and squares,  
total cross  sections (Refs. 9, 10); the solid curves are from 
the theory. 

4. Substituting Eqs. (16 ) - (18 )  in Eq. (5), we get an 
expression for the cross  section for the nonresonant 
charge transfer ( 1 )  a s  a function of the parameters 
p = x / y v ,  y  = (y, + y , ) /2 ,  and A = A , A , ~ - : ~ "  which deter- 
mine the initial and final states of the system of collid- 
ing atomic particles [cf. Eq. ( 7 ) )  

As p - 0  the cross  section (20 )  behaves like that for 
resonant charge transfer: 

When p =O. 5(yp0)'112 < 1  the cross section takes i ts  
maximum value 

As p -- - we must take into account the curvature of 
the trajectories of the colliding particles 

dR P' u(R) 
R2 E 

It is easy to show that i f  the motion of the nuclei occurs 
in a central potential U(R) which varies according to an 
exponential law, then a s  p = n / y  v -- m the behavior of 
the cross section for nonresonant charge transfer is 
given by 

Let us check our calculations (20 )  and (21 )  with a 
specific example. We consider the process of nonreso- 

70 Sov. Phys. JETP 541).  July 1981 



TABLE I. 

v =  (vi+v,) i2 ,  a.u. A =  AI A , ,  a.u. 

4.77 0.032 0.564 0.2i  
1s 0.18 
3P 
'P 

nant charge transfer from a helium atom to a cesium 
atom: 

The basic parameters needed for the calculation of the 
cross sections for the charge transfer (22) a r e  shown in 
the table. 

Figure 2 shows a comparison of the cross  sections 
for the nonresonant charge transfer (22) calculated 
from Eqs. (20) and (21) with experimental values of 
these cross sections. The charge transfer leads to 
production of helium atoms in excited states ('P, 3P) 
and in metastable states (IS, 3S). The total charge- 
transfer cross  section is 

5. Accordingly, in the framework of the asymptotic 
approximation we have succeeded in finding an analytic 
solution of a system of two equations which describes 
the process of nonresonant charge transfer (1). There 
is good agreement between numerical and analytical 
calculations of the charge-transfer probability in the 
range of impact parameters that makes the main con- 
tribution to the cross section for these processes and 
for which the use of the asymptotic method i s  justified, 

i. e.  , for  which y p  >> 1. A virtue of this method i s  the 
simple and explicit form of the final results for the non- 
resonant charge-transfer cross  sections. The univer- 
sa l  nature of the dependence of the cross sections on the 
parameters that describe the state of the system before 
and after the collision makes i t  possible to determine 
quickly and reliably the cross section for any specific 
process of charge transfer with a small resonance de- 
fect. 

')We note that for  heavy particles, even with slow collisions, 
v < 1, the paths of the nuclei can be regarded a s  rectilinear, 
i.e., R =  ( p 2 +  wherep i s  the impact parameter, v i s  
the relative velocity, and t i s  the time, - * 6 t a -. 
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