
Investigation of the processes of relaxation of electron 
excitation in crystals- for arbitrary relationships between 
interaction microparameters and concentrations of energy 
donors and acceptors 

I. A. Bondar', A. I. BurshteTn, A. V. Krutikov, L. P. Mezentseva, V. V. Osiko, V. P. Sakun, 
V. A. Smirnov, and I. A. Shcherbakov 
(Submitted 24 December 1980) 
Zh. Eksp. Teor. Fiz. 8 1 , 9 6 1  14 (July 1981) 

An analysis is made of the time dependences of the populations in a donor subsystem interacting with energy 
acceptors. Various methods of transport of the excitation to the region where it is lost in a solid are 
considered. The criteria of validity of various models of energy relaxation in a set of noncoherently interacting 
particles at macrolevels and microlevels are considered. It is shown that in addition to the familiar relaxation 
mechanisms (diffusion, mixed, and hopping) there is a new transition mechanism distinguished by a 
characteristic population profile of the donor subsystem in the region of an energy acceptor. This mechanism 
is a consequence of the discrete nature of the structure and corresponds to a wide range of parameters in the 
theory of energy transport in solids. This transition model is used to obtain expressions for the steady-state 
rate of energy relaxation in a regular donor lattice in a real crystal. Similar expressions are obtained also for 
the mixed mechanism. A report is given of a study of the evolution of the population of a metastable state of 
donors in La, , r  -,. Nd, Dy,. P,O,, crystals. All the characteristic parameters in the theory of energy transport 
are determined for this system and the transition relaxation model is confirmed. The nature of kinetics of 
nonradiative energy transport in a set of interacting particles is established for the whole time scale. A 
quantitative agreement between the theoretical and experimental results is obtained. 

PACS numbers: 61.70.Rj, 71.55. - i 

Relaxation of e lec t ron  excitation in a s e t  of interact-  donor 2nd a s  a n  enercy  accep tor ,  i.e., the concentra- 
ing part ic les  in a sol id is a superposition of a l a rge  tions of energy donors  and accep tors  a r e  the s a m e  and 
number of e lementary energy t ranspor t  events of two equal t o  the Lotal concentration (n, =n,  =n). 
types. T h e s e  a r e  events resul t ing in migrat ion of ex- 
citation between metastable  donor (D) s ta tes  and I t  would be interest ing to investigate the p rocesses  of 

events resulting in the transfer of excitation from don- relaxat ion of the energy of electron excitation in  a s e t  of 

o r s  to  acceptors  (A). T h e  probabilities of the occur-  interact ing part ic les  a t  genera l  relationships between 

rence of these  elementary events (per  unit t ime)  a r e l 2  &and  C,,, and a l so  between the concentrations of 
donors  and accep tors  in a crystal .  

I.Vvv=C,,,fv,(R). Ir;,*=C,,, f v ,  ( R ) ,  (1) 

where C,,and C,,,are the microparameters  of the D-D 
and D-A interactions; R i s  the internal dis tance in a 
pair of interacting part ic les;  X,,JR) and f;,,(R) a r e  the 
functions whose form is governed by the nature of the 
D-D and D-A interactions. 

T h e  quantities C,,,,and C,,:, a r e  governed by the c rys ta l  
basis  and by the propert ies  of t ransi t ions responsible  
for  the t ranspor t  of excitation. Consistent theor ies  
revealing the functional relat ionship between the r a t e  
of loss  of excitation in a s e t  of interacting part ic les ,  
the propert ies  of these part ic les  in  a given c rys ta l  ba- 
s i s ,  and their  concentrations have been developed f o r  
two limiting situations, for which the c r i t e r i a  

CDA>CDD (2a) 
(Refs. 1, 3 ,  and 4) and 

C D D W D A  (2b) 

(Refs. 1 and 4-6) a r e  largely intuitive. Other r e s t r i c -  
tions have been assumed a l so  in  the theories  of Refs. 1 
and 3-6 and these we sha l l  consider la ter .  

T h e  fullest experimental investigations have been made 
of the situation in which d i rec t  loss  of excitation occurs  
via a n  intermediate nonradiative s t a t e  (c ross  relaxa-  
tion). In this case  each part ic le  can a c t  a s  a n  energy 

T h i s  problem was  tackled in the present  study by syn- 
thesizing a l a rge  number of La,-,-,Nd,Dy,P,O,, penta- 
phosphate c r y s t a l s ,  in which the donars  a r e  neodymium 
ions and the accep tors  a r e  Dy3+ ions. T h e s e  c rys ta l s  
provide a convenient model f o r  investigating relaxation 
processes  because the lattice s t r u c t u r e  of these penta- 
phosphate c rys ta l s  is well known, and the neodymium 
and dysprosium ions a r e  incorporated isomorphously 
in the lanthanum sublattice up to complete replacement  
of the lanthanum ions. I t  is thus possible to vary in  a n  
a r b i t r a r y  manner  the concentrations of the energy 
donors  and accep tors  within the s a m e  c rys ta l  s t ructure.  
Changes in the population of a metastable s t a t e  of Nd3' 
with t ime  were  investigated in  a wide range  of neody- 
mium and d v s ~ r o s i u m  concentrations. 

T h e  t rans fe r  of energy f r o m  a metastable  s t a t e  of 
neodymium ions to  Dy3' may occur  along s e v e r a l  
channels7 and the value of the microparameter  CbA(Nd- 
Dy) is the s u m  over  a l l  possible channels. T h e  mos t  
important c ircumstance is that the Nd-Dy t rans fe r  is  
i r revers ib le .  T h i s  s implif ies  great ly the interpreta-  
tion of the resu l t s .  

T h e  selected energy donors  ( ~ d ~ ' )  and acceptors  
(Dy3+) can be  used to model situations not investigated 
e a r l i e r  and this can  be done by varying their  concentra- 
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tions, It is important to note that in all cases the fol- 
lowing conditions of noncoherence of the transport pro- 
cesses a r e  obeyed: 

where r is the line width in the optical spectra and 7, is 
the intrinsic lifetime of the excited states. In the case 
of trivalent rare-earth ions the conditions of Eq. (3) a r e  
always satisfied.' In the case of our system this 
allows for the use of the probabilistic approach of Eq. 
(1) to the theoretical interpretation of the relationship 
obtained by us. 

SYNTHESIS OF INVESTIGATED CRYSTALS 

We synthesized complex phosphates of the following 
compositions: Nd, ,lLao,9,py,P5014 (where y = 0.001, 
0.005, 0.01, 0.02, 0.05, and 0.1); Ndo,5Lao,5,py,P,0,4 
(y =0.01, 0.02, and 0.05); Nd,-py,P5014(y = 0.001, 0.005, 
0.01, 0.02, 0.05, 0.1, 0.3, and 0.5); the synthesis 
method was that described in Ref. 9. The starting 
materials were lanthanum, neodymium, and dyspro- 
sium oxides, containing 99.900-99.999% of the main 
substance, and phosphoric acid of 86% concentration. 
It was reported earlier1' that La and Nd pentaphosphates 
have the same structure characterized by the mono- 
clinic system with the space group P2,/c. According to 
our results, Dy pentaphosphate may crystallize (depend- 
ing on the synthesis conditions) in two structures which 
both belong to the monoclinic system but have different 
space groups (P2,/c and C2/c). The presence of two 
other components (La and Nd) in the synthesis of these 
mixed pentaphosphates causes them to crystallize in 
the structure with the space group ~ 2 , / c ,  giving r ise  to 
continuous ser ies  of solid solutions. The existence of these 
solid solutions in the investigated Nd, ,,La, ,9,py,P,01,; 
Nd0,5La0,5-,,D~ JP5014, and Ndl-py,P5014 systems was 
confirmed by x-ray diffraction. 

KINETICS OF DECAY OF DONOR EXCITATIONS 

The existence of the donor-donor (DD) and donor- 
acceptor (DA) interactions in a se t  of particles gives 
rise to a complex evolution of the population of the ex- 
cited state of the donor subsystem. However, in all  
cases of practical importance the process of excitation 
decay has the following characteristic stages. 

Before the populations of the various donors begin 
to differ significantly (ordered stage of static decay), 
the decay process is exponential (Refs. 2 and 4):') 

where y is the relative concentration of acceptors and 
C,R;' is the sum over all the lattice si tes accessible 
to A. The duration 7, of the static ordered decay stage 
is governed by the reciprocal of the scatter of the rates 
of static deactivation in a system of many donors D and 
acceptors A, and it is estimated from the expression4 

where Wm,, is the maximum possible rate of energy 
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transfer in a DA pair, i.e., W,,,,, = CL)~/R:, where R, 
is the minimum possible distance between D and A in 
a crystal. 

After a time 7, the difference between the acceptor 
environments begins to tell and, consequently, the 
rates of decay of different donors become significant; 
therefore, the populations begin to fluctuate greatly from 
one donor to another. The static ordered stage of Eq. 
(4) is followed by a static disordered decay stage".'2 

In the absence of migration of excitation in the donor 
subsystem, the loss of excitation should occur in ac- 
cordance with Eq. (61, irrespective of time. Energy 
migration, which frequently takes place in real  systems, 
influences the nature of decay kinetics of donor excita- 
tions in the 7 > r t  case. It has been establishedZ that the 
experimentally observed nonradiative decay curves of 
an excited neodymium state under conditions of energy 
migration can be described statisfactorily by the follow- 
ing expression valid in the interval T ,  < t <  7,: 

Nd ( t )  -exp 1- (yt'+Wt) 1, (8) 

where W is the steady-state rate of loss of excitation a t  
the acceptors because of migration of energy to the 
acceptors from the donors. The moment 7, can be 
estimated from 

Eventually, this migration of energy between excited 
donor states results in decay of the exponential type 
(migration-limited relaxation). 

It has also been found experimentallyz that in the case 
of migration-limited relaxation the kinetics of the energy 
transfer process a t  times t > r Z  is described well by the 
expression 

where exp(-A) is the proportion of excitation not lost 
statistically. 

Determination of the dependence of the steady-state 
rate of loss of excitation Won CDA, CDA, nD, and nA, 
together with determination of the general nature of 
the decay kinetics throughout the whole time scale 
represent some of the main tasks in the study of energy 
transfer in a se t  of interacting particles. 

A very important auxiliary role in finding this rate 
dependence is played by the concept of a sphere of 
strong quenching surrounding A. The radius of the 
sphere R, is given by 

where 7, is the time that an excitation spends inside a 
sphere of radius R, in the absence of an acceptor. 

The mechanism of steady-state migration quenching 
in a se t  of interacting particles is governed by the ratio 
R,E, where X=n;'l3 is the average distance between 
the donor particles, i.e., the characteristic length of 
a migration jump. The condition 
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means that the density of the donor excitations a t  
neighboring donors differs only slightly, s o  that a con- 
tinuous distribution of this density can be assumed in 
the kinetic equations. We can then speak of the diffu- 
sion of the excitation energy to an acceptor.13 It follows 
that in the diffusion quenching mechanism the value of 
R, is given by 

R , , = R , ~ =  (DT ,~ ) ' " ,  (13) 

where 

D=CDD/Xb (14) 

is  the diffusion coefficient. It follows from Eqs. ( l l ) ,  
(13), and (14) that 

cDAlcDD= ( R , , . ~ )  '1x1. (15) 

I t  is  clear from Eq. (15) that the condition (12) i s  sat is-  
fied if 

C;~BC;', (16) 

Doktorov, Kipriyanov, and ~ u r s h t e i n ' ~  obtained a more 
rigorous criterion of the validity of the diffusion theory, 
which is  a s  follows: 

XK~H,,. , (16a) 

where b,,  = R , / m  (m is the mul t ip l e  order of the inter- 
action; in our case m =6) i s  the thickness of the quench- 
ing layer. The condition (16a) is a consequence of the 
fact that in the diffusion model the complete quenching 
of an excitation occurs already on the boundary of a 
sphere of radius R ,  in a layer of thickness ~5,~. The 
passage through this layer i s  by diffusion, i.e., it oc- 
curs by a large number of jumps. The layer thickness 
d R w  = ~ , / m  is  the distance to the boundary of the sphere 
in which the probability of excitation loss decreases by 
a factor of e. Clearly,  it is meaningful to speak of 
diffusion-limited relaxation only if n,>>n,, since in the 
opposite case the condition (16) has the effect that the 
decay is hardly accelerated by energy migration and 
may remain purely static. 

The condition 

means that the excitation cannot migrate by jumps in- 
side the sphere and a single jump is sufficient to enter 
o r  leave the sphere (hopping energy relaxation mech- 
anism). The time for the transfer of excitation between 
particles separated by a distance X i s  

Thus, it follows from Eqs. (11) and (18) that the condi- 
tion (17) implies 

c;;>cD1,". (19) 

The r i se  of the donor concentration reduces both X 
and R,. The inequality 

means that the density of donor excitations remains 
constant in space and that it varies with time in ac- 

cordance with the exponential law (4), i.e., rate of 
decay over the whole time scale is  equal to the rate of 
decay during the initial stage when the donor density is 
low. This  situation is  known a s  relaxation under super- 
migration conditions. We shall call it  the kinetic limit. 
Clearly,  the conditions (12) and (20) a r e  mutually con- 
tradictory. This means that the kinetic limit cannot be 
reached within the framework of the diffusion approach. 
It can be reached only when the condition (12) is re-  
versed. In fact, i t  follows from Eqs. (11) and (18) that 
in the hopping model, we have 

and if the condition (19) is obeyed, we can satisfy not 
only Eq. (17) but also Eq. (20) even when x4< 1 ( x  is the 
relative concentration of the donors). 

In the f i r s t  approximation the condition for attaining 
the kinetic limit can be expressed a s  follows in terms of 
microparameters2 

which means that the ra te  of migration in the average 
distance must be greater  than the ra te  of loss of ex- 
citation in the minimum possible distance between the 
interacting particles. It is  important to note that in a 
s e t  of interacting particles the most probable migration 
rate cr is greater  than the rate of excitation jumps over 
distances given by Eq. (18): 

which makes it eas ier  to reach the kinetic limit, and 
the condition (22) becomes less  stringent: 

This condition is satisfied when a certain critical donor 
concentration x* is  r e a ~ h e d . ~  

An allowance for the fact that the most probable mi- 
gration ra te  @ is a s e t  of particles i s  greater  than the 
ra te  of migration over a distance X results  in a sig- 
nificant easing of the condition of validity of the hoPping 
model when 

In this case the cri terion of validity of the hopping 
mechanism can be writ ten-as follows: 

from which it follows automatically that, when the 
composition obeys Eq. (25), the hopping mechanism is  
obtained if 

CDD>~DK (2 7) 

The transition from Eq. (19) to Eq. (27) when the condi- 
tion (25) is  satisfied represents reformulation of the 
definition R, (Ref. I ) ,  s o  that in Eq. (11) we substitute 
not Eq. (18) but t? defined by Eq. (23), and this gives 
r i s e  to a numerical factor of -10. In other words, in 
contrast to Eq. (12), the condition (17) is  not rigorous. 

The relationship between the rate of relaxation W due 
to energy migration to an acceptor was established in 
Refs. 1, 4-6, and 15 for microparameters of the energy 
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transfer process typical of the hopping mechanism. 
This relationship is 

where Po is the probability that during a random walk on 
a lattice a particle never returns to the starting pint.') 
This formula is derived without allowance for fluctua- 
tions of the donor-donor distances. An attempt to allow 
for these fluctuatiom was made by ~ u ~ r n e h t e r "  and i t  
resulted in a slight increase in the numerical coefficient 
in Eq. (28). I t  is essential to s t ress  the following point. 
Equation (28) is derived on the assumption that the 
donor-acceptor distance fluctuates in different quenching 
spheres. In a crystal lattice, when both donors and ac- 
ceptors replace the same ion in the matrix, this is valid 
only in the case of low concentrations of the active par- 
ticles, i.e., when the condition (17) is satisfied, but the 
number of points of res t  in a sphere of radius R, is 
large. 

The rate of nonradiative relaxation in the diffusion 
model can easily be calculated using the formalism of 
Eq. (11) and the procedure described in Ref. 14. The 
steady-state solution of the diffusion equation i s  of the 
form 

According to Ref. 14, we have 

Substituting Eq. (30) into Eq. (29), we obtain 

This result is in good agreement with the exact solu- 
tion' in which the numerical coefficient 0.4 is replaced 
with the coefficient 0.676. This difference is the con- 
sequence of using the formalism of a strong quenching 
sphere whose radius is given by Eq. (30) and it is not 
exactly the quantity which should be substituted in Eq. 
(29). However, this formalism is useful because it 
makes it possible to analyze the criteria of validity of 
various models and to estimate the energy relaxation 
rate for any value of R, and X. Moreover, the formal- 
ism of this sphere allows us to give a simple interpre- 
tation of the expressions for the nonradiative relaxa- 
tion rate w. According to this interpretation, is the 
product of the volumes of the quenching spheres and the 
frequency of arrival  of excitations in these spheres: 

The knowledge of the exact expressions for w in the 
hoppings and diffusion3 models allows us to determine 
accurately the radii of the spheres R,, which can be 
done by comparing the expression (32) and the exact 
solutions. The resultant correction of Eq. (11) is unim- 
portant and it does not affect our analysis of the validity 
criteria of the various models. 

In specifying the value of D we should bear in mind 
that the correct  formula of the relationship between D 
and the microparameter C , ,  in the case of the dipole- 
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dipole interaction is available only for a regular donor 
lattice and homogeneous broadening of the spectral 
lines. It then follows from Ref. 13 that 

(R, is the distance to the i-th donor; summation is 
carried out over a l l  the donors in the lattice) and the ex- 
pression (31) including the correction in the definition 
of R, can be rewritten in the form 

At low donor concentrations there is some scatter of 
D due to fluctuations of the donor-donor distances. In 
this case an expression analogous to Eq. (3) becomes14 

where X is the average scale of a jump and rO'is the 
time between successive jumps. There is some arbi- 
trariness in the definition of X and 7,. For example, the 
mean-square value of the jump length k2 is given by 

which becomes meaningless in the case of the dipole- 
dipole interaction because the integrals in Eq. (36) then 
diverge.3) A rigorous definition of ro  is also lacking. 
There a r e  several ways of overcoming these difficulties. 

a .  Introduction of the diffusion coefficient by means 
of an integral is proposed in Ref. 1: 

which is an expression that can be obtained from Eq. 
(33) by changing from summation over i, i.e., over 
the sites occupied by the donors, to integration with 
respect to R. The resultant divergence is suppressed 
by introducing a cutoff factor X. This factor can be - 

Zn3 '3 .  

b. One can use Eq. (35) in which in accordance with 
Ref. 12 the value of ro =*-I is  substituted from Eq. (23) 
and it is also assumed that X2 =nG2l3. 

c .  One can also follow Eq. (33), i.e., assume that 
the distribution of donors is regular even at low concen- 
trations and that the distance between donors is - 

=nD1/3. 

d. A rigorous solution of the problem of disorder in 
the donor system was attempted by ~ u ~ m e ~ s t e r ' '  who 
allowed for the effects of disorder in the initial kinetic 
equations. 

All these cases give the following expression for the 
diffusion coefficient: 

but the value of the coefficient A varies. The values of 
A for the various ways of allowing for the disorder in 
the donor subsystem a re  as  follows: 
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It follows that in the calculation of the numerical coef- 
ficients by means of the expression W=fin,,n,, C,), CDA) 
in the x< 1 case considered in the diffusion model there 
is some indeterminacy because the procedures a, b, 
and c a r e  to some extent speculative, and the claim in 
Ref. 16 to give a cor rec t  allowance for  the disorder ef- 
fect is unjustified. In  fact ,  an  analysis shows that the 
result  of Ref. 16 is an  increase in D,  i.e., acceleration 
of migration in a disordered sys tem compared with a 
regular lattice, for  the s ame  donor concenteration. This  
i s  in conflict with the existing ideas" according to which 
one can expect slowing down of such motion in disordered 
media. This  comment applies also to the hopping 
model, for which allowance fo r  disorder in Ref. 16 also 
increases the r a t e  of migration, although by a very 
small  amount. Bearing the points made above in mind 
and substituting Eq. (38) into Eq. (31), we obtain 

It should be s t r e s sed  that introduction of the concept of 
a quenching layer makes the cri ter ion of the diffusion 
model more stringent compared with Eq. (16), namely 

A mixed energy degradation mechanism is proposed in 
Ref. 14 and i ts  range of validity i s  given by 

where R ,  is defined in the dame way a s  for  the hopping 
model: 

The essence of this mechanism is that the motion of an  
excitation obeys the diffusion laws and the passage of 
a distance equal to the thickness of a quenching layer 
~ , / m  occurs in one jump. Bearing in mind that the 
hopping cri ter ion of Eq. (17) is  not rigorous, we can 
make the inequality (41) less stringent: 

The value of is  calculated in Ref. 14 for the mixed 
mechanism on the assumption that one can use the dif- 
fusion formula (29) in which the diffusion coefficient i s  
substituted in accordance with the diffusion theory 
[ ~ q .  (38)], and R ,  is defined in accordance with the 
hopping model [ ~ q .  (42)]. Bearing in mind that in the 
case of a regular donor lattice the time for a single 
jump is  

and the diffusion coefficient is given by Eq. (33), we ob- 
tain 

In the calculation of for  the mixed mechanism when 
x<< 1 we again face the problem because of the indeter- 
minacy of the diffusion coefficient. Bearing this point 
in mind, we find that the substitution of Eqs. (38) and 
(42) into Eq. (29) gives 

- ~ = 0 . 7 ~ 4 n A n , n ~ ~ ~ $ ~ ~ .  
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The conditions of validity of the mixed relaxation mech- 
anism, Eqs. (43) and (42), indicate that in the case of 
the  dipole-dipole interaction the range of this  mechanism 
i s  very narrow; i t  is then given by 

It is important to s t r e s s  also that correction of the 
validity c r i te r ia  of the diffusion model and the proposal 
of the mixed mechanism14 in the ca se  of solid discrete 
structures have in now way reducad the region lying 
between the hopping and diffusion models. The mixed 
mechanism simply displaces the range of validity of the 
diffusion model to even lower values of z=C,dq,,, 

This  analysis shows that a study of the decay kinetics 
of the donor excitations makes it possible to determine 
the value of C,,, by two independent methods using the 
nature of the kinetics during the s tages  described by 
Eqs. (4) and (6). However, difficulties a r e  encountered 
in the establishment of the migration-limited relaxa- 
tion mechanism and determination of the value of C,, 
because the ra t io  R, /x  is  not known. The  situation is 
further worsened by the fact that the existing theories 
do not allow us to go from one model to another. Never- 
theless,  in t he l imi t  x -  1 it is  possible to obtain an ex- 
pression for W which is  valid irrespective of the value 
of the rat io  provided the lattice s t ruc ture  is  
known, i.e.,  provided the coordinates of al l  the donor 
s i t e s  a r e  known, and the acceptor concentration is low. 

The  relevant calculation reduces to finding the donor 
population in the case of steady-state energy flow to the 
acceptors,  i.e., it reduces to solution of the system of 
equations 

subject to the boundary condition that n, - 1 when i- 
(iand k label the donor si tes;  W,, is the probability of a 
migration jump of an  excitation from a donor i to a 
donor k, and W,, is the probability of a jump to an  ac- 
ceptor). The required ra te  is  then 

- 
w = y C  w,A~, .  (49) 

I 

Solution of this problem becomes much eas ier  if Z c 10. 
This  restr ict ion is due to the fact that the function W,, 
decreases rapidly on increase in the distance of a donor 
i from an acceptor A. Consequently, we can simplify 
Eq. (49) retaining only the te rms carresponding to the 
interaction between the acceptors and donors in the f i r s t  
coordination sphere. Then, 

where W,, and n, a r e ,  respectively, the deactivation 
probability and the population of the donors in the f i r s t  
coordination sphere; K is the coordination number of 
the acceptors. The approximation (50) is  justified only 
if even the second coordination sphere sat isf ies the in- 
equality 

In the case of a simple cubic lattice the condition (51) 
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reduces to 9CDD>> C,,,/8, i.e., c,,/c,,<< 70, and this de- 
fines the region where finite results  can be applied to 
describe the migration-limited relaxation in a cubic lat- 
tice. We can assume (see the Appendix) that the solution 
of the system (48) is in'this case 

and the expression for becomes 

where 6 is some numerical coefficient. It is thus clear 
that at low values of Z the above formula reduces to that 
for the kinetic limit obtained in the hopping theory. 

We shall apply the same procedure but to the lattice of 
a pentaphosphate NdP,O,, crystal. We shall assume that 
an acceptor "senses" s ix  of the nearest donors located a t  
distances 5.2, 5.9, 6.6, 6.6, 6.8, and 7.4 A. These dis- 
tances a r e  deduced from the results of Ref. 18 and agree 
with those of Ref. 19. In the case of the seventh donor 
site, located a t  8.8 A from the energy acceptor, the prob- 
ability of the interaction with the acceptor for Z=10  is 
an order of magnitude less than the probability that an 
excitation escapes from this donor site without loss; 
the population a t  this donor s i te  can be regarded quite 
accurately a s  equal to the population a t  the more dis- 
tant donors. Solution of the system (48) under the above 
assumptions gives the following expression for W (C,, 
is in units of cms/sec): 

FIG 1 .  Profiles of steady-state populations n i  of donor ex- 
citations in the region of an energy acceptor in the limit x-  1 
calculated for different migration mechanisms of energy re- 
laxation; a) kinetic limit; b) diffusion mechanism; c) mixed 
mechanism; d) transition mechanism. Here, represents an 
acceptor and 0 are donors. 

In the limit Z- 0 the expression (54) reduces to that for 
the kinetic limit. The fact that we have ignored the 
difference bewtetn the populations at the donors located 
further than 7.4 A sets  the limit of validity of Eq. (54): 

The differences between the various mechanisms of 
the migration-limited relaxation a r e  due to the different 
profiles of the donor populations in a certain region 
near an acceptor. This is demonstrated in Fig. 1 for the 
x- 1 case. It should be stressed that the transition 
mechanism, like the kinetic limit, appears because the 
minimum approach distance between excitations Ro is 
comparable o r  greater than the radius of the strong- 
interaction sphere R,, and this is characteristic of 
solids. 

EXPERIMENTAL RESULTS AND DISCUSSION 

The results of measurements of the decay curves of 
the ,F,,, metastable state of neodymium in La,-,Nd,P501, 
crystals with x=0.1, 0.2, 0.5, 0.9, and 1 confirmed 
the earlier results. For practically any value of x ,  the 
decay curves were exponential with the nonradiative 
decay constant 

( T ~  =310 psec is the radiative lifetime and T,,,,,, is the 
measured lifetime of a sample with a given composition), 
directly proportional to x. This was explained earlierz0 
by the fact that the mutual quenching of neodymium ions 
as  a result of the cross-relaxation mechanism (n,=n, 
=n) in pentaphosphate crystals makes it possible to 
reach the kinetic limit even a t  low neodymium concen- 
trations and the observed decay kinetics can be des- 
cribed by 

Our calculation of the lattice sum showed that its value 
is 1.5 x cm-'. Hence, the microparameter 
C,,(Nd-Nd) is 3.7 x cm6/sec. 

Figures 2(a) and 2(b) show the decay curves of the 
,F,,, excited neodymium state for various concentra- 
tions of the neodymium and dysprosium ions in 
Lal-,,pc/Dy,P5014 crystals. In each case we have 
included also the decay curves of the excited neodymium 
state in dysprosium-free crystals. We can see that for 
al l  the investigated concentrations the dysprosium ions 
reduce the duration of luminescence of neodymium and 
the kinetics of decay is nonexponential obeying 

where +( t )  is a function describing the kinetics of energy 
transfer from the neodymium to the dysprosium ions. 

Some conclusions can be drawn even from a qualitative 
analysis of the results in Figs. 2(a) and 2(b). Further 
stages of the decay of a l l  the curves a r e  characterized 
by exponential asymptotics, indicating that some excita- 
tions a re  lost a t  the dysprosium ions having migrated 
first between the neodymium ions. 
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The experiments show that the constant T,,,, obtained 
during the later stages is then less: 

FIG. 2 .  Decay curves of the 4 ~ 3 / 2  metastable s ta te  of neody- 
mium in a Lal~,,Nd,DyyP501c crystal  a t  300 K; the points a r e  
the experimental results and the curves a r e  theoretical. a: x  
~ 0 . 1 ;  I )  y = O . O l ,  2 )  y = 0 . 0 2 ,  3 )  y=O.O5,  4)  y = O . l ,  5) y = O .  
b :  1) x= 0 . 9 9 5 ,  y  = 0 . 0 0 5 ;  2 )  x =  0 . 9 9 ,  y  = 0 . 0 1 ;  3) x =  0 . 9 8 ,  
y = O . 0 2 ;  4 ) x = l . O ,  y = O .  

A strictly exponential'decay is not observed at any 
concentration of neodymium or  dysprosium, including in 
the limit x- 1 [Fig 2(b)] and this is true over the whole 
time scale. Consequently, in the process of quenching 
of the neodymium by the dysprosium ions an increase in 
the donor concentration makes i t  impossible to reach the 
kinetic limit, whose existence is postulated in the hop- 
ping model. Hence, i t  follows that CDA(Nd-Dy) 
>CDC,dNd-Nd) and the hopping mechanism should be re-  
jected in the present case. On the other hand, if x=0.1 
and y # 0 [Fig. 2(a)], exponential asymptotics is ob- 
served during the latter stages of the relaxation process 
and the measured exponential decay time T,,,, is then 
considerably less than the time T in a sample with x=0.1 
and y =O. It follows that the relaxation due to migration 
to the dysprosium ions does occur in this case. It would 
seem that when the inequalities of (47) a r e  obeyed, and 
particularly those of Eq. (40) (they represent the condi- 
tions of validity of the mixed and diffusion mechanisms, 
respectively), and if x = y ,  such migration should not 
occur because then excitations would have been lost 
statistically in the interaction with the dysprosium ions 
and after a moderately long time the decay curve for a 
sample with x =O. 1 would have had the form 

Z(t) = Z(0) exp (- [I (Nd-op) r ' + o , l ~ , c ~ d - ~ d )  z-I + - . '11 
Ri (59) 

[see Fig. 2(a)]. 

We can thus see  that qualitative considerations de- 
monstrate that we a r e  dealing with an intermediate case 
when the application of the diffusion, mixed, and hopping 
mechanisms is not justified. 

We shall now analyze qualitatively the decay curves 
using the theoretical ideas put forward in the preceding 
section. 

Figure 3 shows the forms of the function @(t )  plotted 
a s  the dependences In d(t) = f (ln t) during the initial 
stage of the decay process. They a r e  obtained by sub- 
tracting the initial decay curves, plotted on a logarith- 
mic scale, for samples without and with dysprosium 
and with the same neodymium concentrations. We can 
see  that the dependences obtained a r e  near-linear and 
the slope is close to unity. Consequently, the law of 
nonradiative decay of the neodymium ions interacting 
with the dysprosium ions is initially near-exponential. 
Figure 4 shows the dependence of the rate of this decay 
on the dysprosium concentration for various neodymium 
concentrations. We can see  that, in accordance with the 
theory described by Eq. (4), the decay rate is indepen- 
dent of the concentration of the energy donors (neo- 
dymiun ions) and is directly proportional to the concen- 
tration of the energy acceptors (dysprosium ions). 
Hence, we may conclude that initially the decay of the 
neodymium ions interacting with the dysprosium ions is 
of the static ordered nature and during this stage the 
general decay curve is described by the expression 

This result  and Eq. (4) yield the value of the micro- 
parameter G ~ ( N ~ - D ~ ) ,  whose value is 2 x 10'38-cma/ 
sec. 

We shall identify the region of static disordered decay 
in accordance with the procedure of Ref. 2, which in- 
volves subtraction of the exponential component (applic- 
able during the later stages of the process) from the 

FIG. 3. Forms of the function @(t) during the initial stage of 
decay in I,,al,Nd,DyyP501r crystals at  T= 300°K. 1) x=  0 . 5 ,  
y = 0 . 0 5 ; 2 ) . x = O . 9 9 ,  y = O . O l ;  4 ) x = 0 . 9 9 5 ,  y = 0 . 0 0 5 .  
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cription of the observed decay of the excited donor 
state over the whole time scale: 

FIG. 4. Dependence of the rate of static ordered decay on the 
dysprosium concentration in La,,,Nd,Dy,P,O,,. a) x =  0.1 ; 
0 ) x ~ l  (0.995,  0 . 9 9 ,  0 . 9 8 ) ;  & x = O . 5 .  

general decay curve plotted on a logarithmic scale. This 
gives the component of the kinetics of energy transfer 
from the neodymium to the dysprosium ions in the form 
of Eq. (6). The values of y a r e  directly proportional to 
the dysprosium concentration and independent of the 
neodymium concentration (Fig. 5). Then, using Eq. (7), 
we can obtain CDA(Nd-Dy) by another (independent) 
method, which gives 2x cm6/sec, which is identical 
with the result obtained from the initial static ordered 
part of the decay curve. We can thus see  that in a cer- 
tain time interval the observed decay curve is described 
by 

i 
~(t)-z(o)exp f- r ~ D A ( ~ d - ~ d )  x T i ; t + l  ( ~ d - ~ y )  t " + ~ t +  - . 

I ' 1 1  To 

(61) 
The process of relaxation entirely due to migration 

during the latter stages of decay gives r ise  to an expon- 
ential law, i.e., the decay rate is given by 

1 1  
W - - Z  C . L N ~ - N ~ )  z - - - . 

Tmcas Ri' 70 

Clearly, 

where 7 is the lifetime of the excited neodymium state 
for a given value of x in a sample free of dysprosium. 
Thus, the exponential decay kinetics observed during 
the later stages is 

An analysis of the experimental dependences (58), 
(60), (61), and (64) suggests the empirical form of the 
function @(t) ,  which provides a good quantitative des- 

FIG. 5. Dependence of the parameter of static disordered de- 
cay on the dysprosium concentration in Lal,Nd,DyyP,Olr 
crystals. 0 )  x =  0 . 1 ;  0) x  'J 1  ( 0 . 9 9 ,  0 . 9 8 ) ;  A) x =  0 . 5 .  

1 t  
0 ( t ) - g c D A x  t  exp ( - _) + [l (Nd-Dy)  t" 

(65) 
+ ~ t l  [i-exp ( - $ ) I  exp (-$) + ( w ~ + A )  [i-exp (-+)I , 

where T~ is the time for transition from the static 
ordered decay to the static disordered decay, and r ,  
is the time of the transition from the static to the 
steady-state migration decay. Figures 2(a) and 2(b) 
show the curves plotted on the basis of Eq. (65) and they 
agree well with the experimental results. The times T,  

and T, can be found by fitting the theoretical and experi- 
mental results. Thus, the decay process described by 
Eq. (60) is localized in time up to 7,; the decay of the 
type given by Eq. (61) occurs between 7 ,  and T,, where- 
as  the decay given by Eq. (64) occurs after T,. 

We now face the question of the mechanism of the 
migration-limited relaxation and determination of 
the microparameter C,, Substituting the values of W 
determined experimentally for x = 0.1 and various values 
of y [Fig. 2(a)] into the equation (28) for the hopping 
quenching mechanism and using the value C,,,(Nd-Dy) 
=2 x cm6/sec obtained ear l ier ,  we find that 
C,,,,(Nd-Nd) = 7.6 x lo-'' cms/sec, i.e., the condition of 
validity (27) of the hopping model is clearly not obeyed. 

Application of the formulas for the diffusion and 
mixed mechanisms also gives values of CI,Dwhich a re  
in conflict with the conditions (40) and (47). A calcula- 
tion of C,,on the basis of Eq. (54) for the transition 
mechanism in the limit x- 1 gives C,,dNd-Nd) = 5 x 
cms/sec, which satisfies the condition (55) and supports 
the transition mechanism. 

The results obtained allowed us to calculate all the 
characteristic parameters of the theory and to analyze 
quantitatively the energy relaxation process in the in- 
ves tigated crystals. 

1. Energy Relaxation in Neodymium Ions. AS expected, 
the ratio 

lies in this case in the range where the hopping model 
applies. 

- Figure 6 shows the dependences of R ' , ( N ~ - ~ d )  and 
x on the neodymium ion concentration. For Z =  lo-', 
which applies in this case, the condition R',< is 
always obeyed. The point of intersection of the depen- 
dences R&) with the line R, [Fig. 6(a)], correspond- 
ing to the critical concentration, separates the regions 
of the migration-limited relaxation and of the kinetic 
limit. For x=0.05, the excited state lifetime T 

differs slightly from the radiative lifetime T, =310 
psec,  i.e., quenching is unimportant in the region of 
the migration-limited relaxation. Figure 6(a) demon- 
strates clearly the fact that practically throughout the 
range where the concentration quenching of the neody- 
mium luminescence is  exhibited by pentaphosphate 
crystals, the energy relaxation occurs in the kinetic 
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FIG. 6. Dependences of the characteristic parameters of the 
theory (A) on the donor concentration in a pentaphoaphate 
crystal: a)Nd-Nd interaction; b) Nd-Dv interaction. 

limit regime and the decay of the excited state is des- 
cribed by Eq. (57). Then, the population profile in the 
donor subsystem has the form shown in Fig. l(a). This 
situation, which is characteristic of the linear concen- 
tration dependence of the nonradiative relaxation ra te  
(4), is exhibited by a wide range of neodymium-activa- 
ted materials in which the concentration quenching 
effect is anomalously weak.'l 

2. Relaxation of Energy ofNeodymiam Ions Interacting 
with External Acceptors. Figure 6(b) shows the depen- 
dence of R&(Nd-Dy) on the concentration x plotted on the 
basis of the results obtained ( 2 = 4 )  for the case when 
R$(N~-DY) is determined using the hopping model. We 
can see  that R ' , (N~-D~) - X > R ,  applies a t  a l l  values of 
x ,  including the limit x-  1. Consequently, the kinetic 
limit cannot be reached in the investigated crystal lat- 
tice, which is confirmed experimentally. 

The same figure gives also the dependences of 
R $ ( N ~ - D ~ ) / ~  and of R ~ , ( N ~ - D ~ )  on the concentration x. 
We can see that the condition Rd,>7 X is not obeyed. It 
follows that the diffusion and mixed mechanisms do not 
occur either in the investigated crystal. The steady- 
state population of the donor nearest to an acceptor is 
-0.3, i.e., the donor population profile is that expected 
of the transition relaxation mechanism (Fig. 1). Then, 
for any donor concentration we a r e  dealing with the mi- 
gration (and not the diffusion) control of the nonradiative 
relaxation rate during the later stages of the decay. The 
transition energy relaxation mechanism occurs in real  
crystals because of the existence of the minimal ap- 
proach distance R, between an excitation and an energy 
acceptor, which is ignored in the theory of Ref. 14. 

In conclusion, the authors which to express their 
gratitude to V. A. Myzina for an  analysis of the com- 
position of the samples using a Camevax system. 

APPENDIX 

The steady-state rate of deactivation of a donor ex- 
citation can be found by solving the following infinite 
system of equations: 

where k and k1 label the coordination spheres of an 
acceptor, 

WDA(k, 0) and W,,(k, kt) a r e  the total probabilities of ex- 
citation transfer from the donors belonging to the k-th 
coordination sphere of an acceptor to the acceptor in 
question and to the donors located in the kt-th coordina- 
tion sphere of the acceptor. The system (A.1) must be 
solved subject to the boundary condition 

lim n,=i, k-c-, IA.2) 

and then the required donor deactivation ra te  is 

It follows from the condition (A.2) that the system 
(A.l) and (A.2) is identical with the solution of a finite 
system of equations in which it is assumed that nk = 1 
at values of k somewhat greater than K, and then K is 
allowed to become infinite, i.e., 

where nk(K) is found from the equations 

Wurnh* ( K )  -- wIk... 
&'<It k.'>K 

Solution of the system (A.3) gives 

where A(K) is the determinant of a matrix block com- 
posed of elements Wky with (k, kl) e K (K block of a 
matrix) and A,,(K) is the determinant of the K block of 
a matrix deduced from the matrix W,,, by replacing in 
it the column K' with a column of elements given by 
-Cam> n Wn* 

When excitation transfer to an acceptor occurs only in 
its- f i rs t  coordination sphere, Eq. (A4) is easily trans- 
formed to 

where X.=A;~(K)/~A~(K),  A ~ ( K )  is the determinant of 
the K block of a matrix Why in which it is assumed that 
WD,(l, 0) =0, and A;,(K) is the minor of the (1 , l )  element 
of this matrix. If the DA and DD transfer processes a re  
of the dipole-dipole nature, Eq. (A5) becomes 

n,(K) = [i+E(K) (CDdc~dl-', 

where 

f (K) =R,-'9eI1(K) / a  ( K )  , 

R ,  is the radius of the f i rs t  coordination sphere of the 
acceptor, whereas R(K) and R:(K) a r e  obtained from 
I A',,(@ and AD(K), respectively, by the formal sub- 
stitution CUD- 1. Thus, the quantity 5 is governed by 
the geometry of the lattice composed of the donor sites. 
In the case of a simple cubic lattice, we have ((1) =0.2; 
a s  K increases, the function [(K) rapidly (for K- 7) 
reaches a plateau and we have [(10)=0.37. Thus, in this 
case we obtain 

where a is the lattice constant. 

 ere and later, we shall consider specifically the dipole-di- 
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pole interactions, which a r e  characterized by fDD(R) =fDA (R)  
= f D A ( ~ )  = R -8. 

"1n the ca se  of the simplest  random three-dimensional walk, 
we have PowO. 66, i. e., allowance for the fact that an excita- 
tion may escape from the range of influence of an acceptor 
without being lost gives r i s e  to a numerical coefficient which 
differs little from unity. 
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