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The radiative deceleration of atoms by an oppositely propagating resonant light wave is considered. The 
kinetic and hydrodynamic stages of the deceleration are analyzed on the basis of a kinetic equation of the 
Fokker-Planck type for the atomic distribution function. Hydrodynamic equations for the motion of the 
atoms in the field of a plane light wave are derived and are investigated for the case of an atomic beam in a 
steady state. 
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1. INTRODUCTION. FORMULATION OF THE tribution function to describe the motions of the atoms 
PROBLEM provides more detailed information than i s  needed for 

Among the important applications of resonant light 
pressure a re ,  a s  recent studies have shown,"16 i t s  use 
to cool atomic gases and to decelerate atomic beams. 
A unique feature of the use of light pressure  is the pos- 
sibility i t  affords of achieving extremely low atomic 
temperatures. Under optimal conditions, the ultimate 
cooling is limited only by the natural line width 2y of 
the resonant atomic transition, and for typical allowed 
optical transitions temperatures of K can be 
achieved. 

any practical purposes. It is accordingly natural to 
approach the solution of the problem of radiative de-  
celeration of atoms by describing the motions of the 
atoms on the macroscopic level. 

Using such an approach in this paper, we shall find 
the hydrodynamic equations for the motion of atoms in 
the field of a resonant light wave. The equations to 
be derived, like the initial kinetic equation, a r e  valid 
for atoms for which the natural line width y of the 
resonant transition exceeds the recoil energy r, and 
a r e  capable of describing the macroscopic motion of 

With the realization of deep cooling of atoms in mind, the atoms for times ,,r-l. In Section we use 
a number of schemes for atomic traps have been pro- these basic equations to analyze the changes in the 
p ~ s e d ' * ~ * ' ~ * ' ~  which envisage a preliminary radiative principal macroscopic variables (local density, 
cooling of the atoms and the subsequent accumulation average velocity, and temperature) for the case of an 
of the cold atoms in o p t i ~ a l ~ * ~ * ' ~  o r  magnetic16 fields. atomic beam being decelerated ir. the field of an op- 
An adequate analysis of the operation of such traps positely propagating resonant light wave. 
presupposes the solution of two basic problems: that 
of the evolution of the velocity distribution of atoms in 
a standing light wave, and that of the evolution of an 2. INITIAL EQUATIONS 
atomic ensemble irradiated by an oppositely propagat- In what follows we shall always assume that the en- 
ing traveling light wave. The first  problem i s  of semble of atoms i s  in the field of a plane traveling 
great  importance in clarifying the kinetics of the cool- light wave with frequency w (w = kc) and the unit po- 
ing of atoms within a trap and for determining the con- larization vector e, propagating in the negative di- 
ditions necessary for the deepest possible cooling. The rection: 
solution of this problem has been discussed in Refs. 3, 
6, 7, 12, and 13. The second problem is of interest 
in determining the best methods of injecting atomic E(z, t )  =eE, cos ( o t f k z ) .  (1 

beams into traps. In addition, the problem of the r a -  We shall assume the atoms to have two levels: the 
diative deceleration of atoms in a traveling light wave ground state, and an excited state that decays to the 
is of more general physical significance, since the ground state with the full spontaneous-decay probability 
ability to produce beams of cold atoms would be of 

2y. In accordance with the selected two-level scheme great assistance in many problems of atomic physics for the atoms, the wave (1) should be either linearly o r  
and spectroscopy. circularly polarized. The frequency wo of the resonant 

In principle, the most general approach to the solu- 
tion of the problem of radiative deceleration of atoms 
would be to analyze the evolution of the atomic dis- 
tribution function w(r,  p, t ). For the case of ideal two- 
level atoms interacting resonantly with a traveling 
light wave, the distribution function satisfies a kinetic 
equation of the Fokker -Planck type,'"-l9 whose exact 
form was found in Refs. 19 and 20. Actually, that ap- 
proach is difficult, both because the equation cannot 
be solved analytically and because the use of the dis- 

atomic transition is close to the frequency w of the 
wave. We assume that the width y of the atomic tran- 
sition and the recoil energy R r  = R 2 k 2 / 2 ~  satisfy the 
relation 

which, keeping in view the most important allowed 
atomic dipole transitions, is a necessary condition for 
the motion of the atoms to be describable by a Fokker- 
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Planck kinetic equation.l9 

The distribution function w(r, p, t )  that describes the 
motion of the atoms under condition (2) for times t 
>>+" satisfies a kinetic equation, which forms the 
basis for the subsequent analysis, and which we take 
directly from Ref. 19: 

where F i s  the light-pressure force along the z axis: 

and the D,, are  components of the momentum diffusion 
tensor: 

Here we have used the following notation: G = (dE,/ 
tiy)*/2 i s  the saturation parameter for the atomic 
transition, whose dipole-moment matrix element i s  d, 
and D = w - w, i s  the difference between the frequency 
w of the light wave and the frequency w, of the atomic 
transition. We assume D to be negative (W < w,), for 
otherwise the ensemble of atoms and the light wave, 
propagating in opposite directions, could not interact 
resonantly. The parameters a, , ,  which determine the 
components of the diffusion tensor, depend on the po- 
larization of the wave (1 ). "-I9 

The problem of the radiative deceleration of an en- 
semble of atoms, in which we a re  interested, reduces 
formally to the solution of Eq. (3). On examining this 
equation i t  can be seen that the ensemble of atoms 
evolves in qualitatively different ways in directions 
parallel to the z axis, and perpendicular to it. The 
transverse motion of the atoms i s  determined by the 
diffusion of the momenta of the atoms, and a s  a result, 
the transverse velocity distribution broadens a s  time 
goes on. The transverse velocity distribution accord- 
ingly remains permanently in the kinetic stage of i t s  
evolution. As will be shown below, the evolution of the 
longitudinal velocities of the atoms results in the rapid 
establishment of a local velocity distribution. For the 
motion of the atoms along the z axis, therefore, the 
hydrodynamic stage i s  the most important. 

Bearing in mind the simultaneous existence of two 
qualitatively different stages in the evolution of the 
distribution function w (r ,  p, t )  and being primarily in- 
terested in the longitudinal motions of the atoms, in 
the beginning we shall neglect the transverse diffusion 
in Eq. (3) and consider the one-dimensional motion of 
the atoms along the z axis (Sections 3-5). The analy- 
sis will be generalized to the case of a real three- 
dimensional space in Section 6. 

Now let us write the initial kinetic equation for the 
first part of the problem in dimensionless variables. 
Taking (ku,)-', y/k2v,, and y/k a s  the units of time, 
length, and velocity, respectively (here v, = A k / M  is 

the recoil velocity), we find that (3) reduces to 

where the dimensionless light-pressure force i s  

F=-L=-G[l+G+(6+u)z] -', (8) 

and D determines the z component of the dimension- 
less  velocity -diffusion tensor: 

D=ExL, (9 

x=l+a+LZ[(6+v)'-31 IG. (10) 

To simplify Eqs. (7)-(10) we have omitted the sub- 
script z ,  writing simply v and z for the velocity and 
coordinate along the z axis. The dimensionless detun- 
ing in Eqs. (8) and (10) i s  6 = i l l y .  

3. DECELERATION OF ATOMS IN  THE KINETIC 
STAGE 

Let us examine the time evolution of the distribution 
function along the z axis and determine the character- 
istic time scales of the problem. To do this we first  
turn to Eq. (7) and find the relaxation time r, that de- 
termines the kinetic stage of the evolution of the dis- 
tribution function. In accordance with the structure of 
Eq. (7), the kinetic stage i s  characterized by the es -  
tablishment of a local velocity distribution (see, e.g., 
Ref. 21). That this statement is correct i s  clearly 
evident from the expression for the force F, which, in 
the case of a sufficiently narrow velocity distribution, 
can be expanded in a power ser ies  in the deviation u 
= v - (v) of the running velocity v from the average 
velocity (v): 

The first  term in (11) represents the constant force 
that alters the average velocity, while the second term 
represents the friction force (we note that 6 + (v) <0 
when the atoms a re  being decelerated1,which narrows 
the velocity distribution. Since the time for relaxation 
to a local velocity distribution depends only on the fric- 
tion force, we may define i t  a s  the reciprocal of the 
coefficient of friction; then from (11) we obtain 

Expression (12) clearly reflects the nonlinear velocity 
dependence of the light-pressure force and the fact 
that the greater the deviation o f  the average velocity 
from resonance with the average force (F) = - ( L ) ,  the 
longer the kinetic stage of the evolution of the velocity 
distribution lasts. 

Being interested in the important case of the evolu- 
tion of an ensemble that was in resonance with the 
average force a t  t =O, we must take the minimum value 
of (12) a s  r,; this minimum value i s  
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We note that in this time the average force alters the 
velocity (u) by a quantity of the order of (1 + G)"~ ,  
i.e., it brings the ensemble out of resonance with the 
force ( F ) .  

The second characteristic time of the problem is the 
time T, in which the atomic ensemble is declerated to 
zero average velocity. In determining T, we need only 
consider the changes in the average velocity (u). We 
therefore neglect the diffusion term in Eq. (7) and 
write down the characteristic equations of the linear 
partial differential equation: , 

From (14) we obtain the time dependence of the veloci- 
ty of interest to us in the form 

where u, i s  the initial velocity of an atom. 

Before calculating 7 ,  from (15), we introduce the 
following condition, which i s  basic for al l  the subse- 
quent calculations : 

This condition means that the change in the velocity of 
the atoms during the acceleration process i s  greater 
than the characteristic velocity range in which the 
light-pressure force acts. This condition is satisfied 
in all cases of practical importance since in decelerating 
an ensemble of atoms from a typical initial thermal 
velocity of ti -102, the detuning 6 should be taken a s  
-6 z ij - lo2, while the saturation parameter G, a s  a 
rule, does not exceed lo3. Now we set  u=O in (15) 
and, taking condition (16) into account, we find the 
order of magnitude of the deceleration time: 

16 1 '/3G. (17) 

On comparing Eqs. (17) and (13), we find that when con- 
dition (16) holds, we have 

Thus, when condition (16) holds, a s  it practically does, 
the kinetic stage of the evolution of thevelocity distribution 
lasts for only a small fraction of the time during which 
the atoms a re  being decelerated, and the hydrodynamic 
stage of the evolution is the important one. For ex- 
ample, assuming a beam of Ca4' atoms irradiated by a 
light wave in resonance with the 4s-4P transition and 
taking G = 10 and 6 = S2/y = -70, we find the character - 
istic times to be ~ 7 ~ '  sec  and T, sec. These 
times correspond to the lengths I ,  ~ 0 . 1  cm and I ,  P 100 
cm. 

A qualitative analysis of the evolution of the distribu- 
tion function in the kinetic stage encounters no serious 
difficulties. Despite the fact that, strictly speaking, 
one should solve the complete equation (7) when t z ~ , ,  
the diffusion broadening of the velocity distribution is 
actually small in the early stages of the evolution,14 

FIG. 1. Evolution of the velocity distribution of a beam of ca4O 
atoms under the action of the light-pressure force (4). For the 
calculations, a thermal distribution with the average (dimen- 
sionless) velocity c= 48 was chosen as  the initial velocity dis- 
tribution of the beam, and the values 6 = -70 and 6 = 10 were 
chosen for the dimensionless mismatch and the saturation 
parmeter. The several curves were calculated for the follow- 
ing values of the dimensionless z coordinate: a-0, b-5x lo3, 
c-lo5, d-2 x105, e-4 x105. 

and we may se t  D=O in Eq. (7). After this simplifica- 
tion, the linear equation can always be solved with the 
aid of the characteristic equations (14). 

As an example of the use of this approach, we show 
in Fig. 1 the results of a calculation of the evolution of 
the velocity distribution w(z, u, t )  for a stationary beam 
of Ca4' atoms. For the chosen parameter values, the 
kinetic stage of the evolution corresponds to z r 50. 
The curves in Fig. 1 illustrate the general trend of the 
evolution of w(z , u, t ) ,  and in particular, they show the 
increase in the density of atoms m a r  the turning point 
(Fig. 1, d) and the turning back (reflection) of the 
atoms, which separates the beam being deceleratedinto 
an incident beam and a reflected one. 

4. HYDRODYNAMIC STAGE. MACROSCOPIC 
EQUATIONS FAR FROM THE TURNING POINT 

As was shown in Section 3 ,  the main interest in the 
theory of the radiative deceleration of atoms l ies in the 
hydrodynamic stage of the evolution of the distribution 
function. The corresponding macroscopic equations 
take the simplest form far  from the turning point. The 
equations a re  complicated in the immediate vicinity of 
the turning point by the necessity of taking into account 
the conversion of the incident atomic stream into a r e -  
flected stream. We shall therefore first  consider the 
hydrodynamic equations for the motion of the atomic 
ensemble up to the turning point, and in the next sec-  
tion we shall add the terms responsible for the cou- 
pling between the incident and reflected streams. 

In the hydrodynamic stage at times t >>T, the center 
of the local velocity distribution, according to (15), 
will have a velocity (v) that satisfies the condition (see 
(16)) 

In addition, we assume that when t >> T, the width of the 
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local velocity distribution will be smaller than the 
length of the characteristic velocity interval in which 
the force varies: 

A rigorous foundation for this assumption will be given 
below. 

Let us introduce the macroscopic variables: the 
density of atoms 

n=J  wdu,  (21) 

the average velocity 

and the temperature 

T=n-' ( u - ( u ) ) ~ w  dv. (23 

Since in addition to the principal atomic ensemble 
there i s  always, generally speaking, a reflected one, 
it i s  actually necessary to define two se ts  of macro- 
scopic variables: one for the incident atomic stream, 
and another for the reflected stream. Below we shall 
always analyze only the incident stream, for i t  is 
basically that one that is of experimental interest. 
Further, in this section we shall assume that the cen- 
ter  of the local velocity distribution for the incident 
atomic ensemble i s  quite far  from the zero-velocity 
point and shall carry the integrations in (21)-(23) from 
-.o to -, rather than from 0 to .o. 

Now, using definitions (21)-(231, let us write the 
following transport equations, which follow from (7) 
but do not constitute a closed system: 

where, because of conditions (19) and (20), the force L 
and the diffusion constant x have the following simpli- 
fied forms in the hydrodynamic stage: 

The moment q in Eq. (24c) is 

To Eqs. (24) we adjoin the initial equation (7) in a form 
corresponding to the hydrodynamic stage: 

Now the problem i s  to derive a closed se t  of macro- 
scopic equations from Eqs. (24). To do this we make 

use of conditions (19) and (20) to express the right- 
hand sides of Eqs. (24b) and (24c) a s  power ser ies  in 
the local velocity u = v -(v): 

( L O ) = L O ( ( U ) ) - ~ L , ( < V ) )  ( ( U ) + ~ ) - ~ T + .  . . , (29) 
e~o(Lo)-~L,u)=~~oL,(~v))+2Lo(<u)) (<u)+6) - 'T+ .  . . . (30) 

We also expand the right-hand side of Eq. (28) in po- 
wers of u: 

(31) 
Equations (24) with the expressions (29) and (30) on 

the right, and Eq. (28) with expression (31) on the 
right constitute the initial equations for the derivation 
of accurate macroscopic equations valid far  from the 
turning point. 

Let us briefly consider the solution of Eq. (28) in the 
spatially uniform case,lg in which a /az  = 0 in the kinetic 
equation (28) and the transport equations (24). We shall 
f irst  consider only the first  term in expansion (29) and 
the first  two terms in expansions (30) and (31). Then, 
treating W(Z,  v, t )  a s  a functional of the average velocity 
(v) and employing the Enskog-Chapman method, we ob- 
tain the following ser ies  for the solution of Eq. (28): 

where n i s  a constant in the spatially uniform case. 

The expression of the solution of (28) as a power 
ser ies  in z12 i s  connected with the difference between 
the temperature T = To defined by the zeroth-approxi- 
mation function [the first  term in (32)] and the true 
asymptotic temperature T, = (4/5)To, defined by Eq. 
(24c) with 8/82 =O. Expansion (32) is therefore actual- 
ly an expansion of w in powers of (T - To)/To= 1/5. 
Thus, the zeroth approximation to the distribution func- 
function gives the temperature a s  T = To; when the first  
correction [the second term in (32)] i s  included, it be- 
comes T =  (3/4)T,; and the first  three terms of (32) de- 
termine the temperature a s  T = (13/16)To, which dif - 
fers  from the true asymptotic temperature T, = 0. 8T0 
by only one percent. 

The solution (32) obtained above shows, in particu- 
lar ,  that relation (20), in which A v i s  equal in order of 
magnitude to ( 2 ~ , ) " ~ ,  is automatically satisfied when 
conditions (2) and (19) hold. We therefore retain only 
the principal terms in (29)-(31) and rewrite Eqs. (24), 
which a r e  the equations we a r e  interested in, in the 
following form, which corresponds to the hydrody - 
namic stage of the process: 

an a 
- + - ( n ( v ) )  =o, (34a) 
a t  a z  
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Then the kinetic equation (28) takes the form 

In this equation the average force, which moderates 
the entire atomic ensemble, and the friction force, 
which narrows the local velocity distribution, a re  ex- 
plicitly separated. 

To obtain a closed set  of macroscopic equations from 
Eqs. (341, we apply the Enskog-Chapman method to 
Eqs. (34) and (35). In doing this we must take the 
function w(O) as the zeroth approximation in the 
gradients of the macroscopic variables. Since in the 
spatially uniform case, however, the difference be - 
tween the complete ser ies  (32) for w"' and the first  
term 

of that series amounts to only a 20% difference between 
the true asymptotic temperature T, = (4/5)T0 and the 
temperature To, we shall neglect this difference and 
assume the locally equilibrium distribution function to 
be w$". Then setting T = T o  in Eqs. (341, we see at 
once that the desired closed hydrodynamic equations 
a re  Eqs. (34a) and (34b) with T = To. One can obtain 
a rigorous proof of this assertion by calculating the 
first  correction to w t ) ,  which i s  proportional to the 
gradients of the macroscopic variables n and (v). 
We shall give such a proof, treating w a s  a functional 
of the density and the average velocity. We use the 
distribution function (36) to calculate the left-hand 
side of Eq. (35) and, using Eq. (34c) with T = To and 
q = 0, we obtain from Eq. (35) the following equation 
for the first  correction wg' to the zeroth-order dis- 
tribution function wp': 

Solving the inhomogeneous equation (37), we obtain the 
following expression for the first  correction: 

Now we use the function w$"+rudl' to calculate the 
macroscopic variables, and easily verify that the cor- 
rection wil' to the locally equilibrium distribution 
function wp '  does not alter the density n, the average 
velocity (v), or the temperature T = To. The first 
moment to which w,' contributes is the heat flux q: 

Thus, the hydrodynamic equations, valid far from 
the turning point, are  

We note that the temperature To has been taken out 
from under the derivative sign in Eq. (40b) because 
aTo/az - E  << 1 is a small correction to the average 
velocity (v) and should be dropped to avoid excess ac-  
curacy. 

5. MACROSCOPIC EQUATIONS WITH ALLOWANCE 
FOR REFLECTION 

As was noted above, Eqs. (40) a r e  valid when (21) 

>> ( 2 ~ ~ ) " ~ .  This condition i s  violated near the turning 
point [((v) - (2~ , ) "~]  and then i t  becomes necessary to 
take account of the reflection of atoms, which reduces 
the atomic flux. To obtain accurate macroscopic 
equations that would be valid not only before the turning 
point, but also right a t  it, is a difficult problem. It i s  
sufficient to say that the expansion of the local velocity 
distribution in powers of the gradients of the macro- 
scopic variables is problematic at the turning point be- 
cause there the gradients a r e  no longer small. Actual- 
ly, however, neither the turning point itself, nor the 
region beyond it, is of any great practical interest be- 
cause of the sharp decrease of the atomic flux in that 
region. We shall accordingly seek only to find ap- 
proximate equations that will make i t  possible to take 
account of the evolution of the atomic ensemble a s  i t  
approaches the turning point. 

We note first  that in this case the integrations in the 
definitions (21)-(23) of the density, average velocity, 
and temperature must be taken from 0 to m. Further, 
using the same considerations a s  in Section 4, we find 
that the kinetic equation that determines the behavior 
of w when v > 0 will have the form (35) a s  before, but 
with (v) defined only by the nonnegative velocities. 

Now let us consider this equation in the spatially 
uniform case. Expressing the solution of Eq. (35) in 
the form of the series (32) and neglecting the 20% dif- 
ference between the temperature To and the trueasymp- 
totic temperature T, , we can, a s  before, regard the 
equilibrium distribution function a s  locally Maxwellian. 
In order to be able to treat the last a s  the zeroth ap- 
proximation to the local velocity distribution, we bring 
i t  into conformity with the new definitions of n, (v), 
and T. To do this we introduce the velocity v, a t  the 
peak of the local distribution and write w t '  in the 
form 

where @ ( x )  i s  the e r r o r  integral and To i s  defined a s  
before by formula (33). In view of Eq. (41), the 
average velocity (v) will be related to v, by the for- 
mula 

Since Eq. (41) is only approximate, the velocity v, in 
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(41) and (42) must be considered in the region v, 
2 - ( 2 ~ , ) " ~ .  

Having the explicit form of the velocity distribution, 
we use Eq. (35) to write down the first  two moment 
equations, using (41) to calculate the inhomogeneous 
terms : 

a n  d  
- + - ( n < u ) ) = - ~ , ( ( u ) )  w:'' (O), 
at d z  

(434 

Setting T = To in (43) (see Section 4), we write down 
the final equations in dimensionless variables: 

average velocity of the ensemble. Then the solution of 
Eq. (48) can be expressed a s  a Poisson integral, from 
which we obtain the following expression for the trans- 
verse temperatures of the ensemble (i = x ,  y): 

Thus, the anisotropy of the polarization of the laser 
radiation causes the velocity distribution to broaden 
differently along the three axes x, y,  and z ,  and i t  i s  
convenient to describe this behavior by three tempera- 
tures: T,= To [ ~ q .  (46) and T,=T, (Eq. (5011. Of 
course the introduction of transverse temperatures is 
justified only when they a r e  higher than the transverse 
temperatures of the initial beam. 

7. STEADY-STATE DECELERATION 
d c v )  a c u )  k T an  G y 3 ~ , ( ~ - ( ~ ) j l ~ r )  + ( u ) + B - = -  

d t  d z  Alln dz  ( Q + k ( u ) ) =  ' (44b) 

where 

and the relation between (v) and z:, i s  given by the 
formula 

In these equations k, is ~o l t zmann ' s  constant and v, 
i s  the recoil velocity. 

The hydrodynamic equations (44) describe the 
changes in n,  (v), and T = To clear out to t:, = -u,. 
Equations (44) reduce to Eqs. (40) when (v) -v, >>uo, 
i.e., far from the turning point. 

6. ALLOWANCE FOR TRANSVERSE DIFFUSION 

Up to now we have been analyzing the Fokker -Planck 
equation (3) without taking into account the broadening 
of the velocity distribution perpendicular to the z axis. 
Now let us take into account the transverse diffusion of 
the velocities, neglecting the transverse broadening of 
the atomic ensemble and assuming a s  a zeroth ap- 
proximation that the longitudinal velocity distribution 
represents local equilibrium. Under these conditions 
i t  i s  sufficient to take the Maxwell distribution (36) as  
the distribution function for the velocities along the z 
axis. Then, noting that aw/at = 0 for the zeroth ap- 
proximation distribution (36), we derive the following 
equation from (3) for w(v,, v,,t) in dimensionless var-  
iables : 

The heat conduction equation (48) can be solved with the 
aid of the relation 

We make use of (49) to change from the variable t to 
the variable 5 = (?I),.-(v), where (v), is the initial 

All the basic parameters of an ensemble of atoms 
undergoing deceleration can be obtained from Eqs. 
(44)-(47) and (50). For definiteness, let us  consider 
the case of practical importance in  which an atomic 
beam issuing from the origin of coordinates i s  being 
decelerated. Being interested in a steady -state stream 
of atoms, we se t  a/at = 0 in (44). The equations ob- 
tained in this case can be easily solved far from the 
turning point. In this region the atomic flux is con- 
s tan t 

where j ,  is the initial flux, while the change in the 
velocity i s  determined by the parametric relationship 

where we have chosen the resonant velocity (u), 
= -Q/y a s  the initial velocity. We recall that Q must 
be negative for deceleration. The increase in the tem- 
perature in this region i s  determined from Eqs. (46) 
and (50). 

When ( 11 )  - ( 2 k , ~ , / ~ ) " ~ ,  Eqs. (44) must be solved 
numerically. The variations along the z axis of the 
flux j, the average velocity (v), the density n, and khe 
temperature T a re  indicated qualitatively in Fig. 2. 

FIG. 2. Various parameters a s  functions of z for an atomic 
beam with the initial average velocity @)o = - Q / k :  a-flux, b- 
average velocity (full curve) and the velocity v, at the peak of 
the distribution function (dashed curve), c-density, d-tem- 
perature. 
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In concluding, let us make a few estimates. Accord- 
ing to (44b), the distance to the turning point is 

The turning point is characterized by the velocities 
v, = 0 and (v), = u0/2. The density n reaches i t s  maxi - 
mum near the turning point, while the flux j and the 
average velocity (v) decrease exponentially: 

where the characteristic length for the rapid decrease 
in j and (v)  i s  

Azt =XXO 161 ('/46y1. 

Near the turning point the longitudinal and transverse 
temperatures, To and T,, .respectively, a r e  

For a beam of Ca40 atoms, for example, being de - 
celerated by laser radiation a t  the 4s- 4P transition 
(A = 422.7 nm) under the conditions chosen for Fig. 1, 
the basic parameters have the values 1, = 110 cm, Az, 
= 2  x 10'' cm, and T',a T: = 1 0 ' 2 0 ~ .  

All the estimates presented above a re  typical for al-  
lowed optical transitions in atoms and show that radia- 
tive deceleration of atomic beams is a practical means 
of obtaining cold atoms. 
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