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The reorientation of the director of a nematic liquid cwstal induced by the field of a light wave is considered. 
An oblique (with respect to the director) extraordinary wave of low intensity yields the predicted and 
previously observed giant optical nonlinearity in a nematic liquid crystal. For normal incidence of the light 
wave on the cuvette with a homeotropic orientation of the nematic liquid crystal, the reorientation appears 
only at light intensities above a certain threshold, and the process itself is similar to the Fredericks transition. 
The spatial distribution of the director direction is calculated for intensities above and below threshold. 
Hysteresis of the Fredericks transition in a light field, which has no analog in the case of static fields, is 
predicted. 

PACS numbers: 61.30.Gd, 64 .70 .E~ 

1. INTRODUCTION 

The nonlinear optics of liquid crystals has recently 
received a great  deal of attention (see the review1). 
In  addition to the quite interesting quadratic nonlinear- 
ities (generation of the second harmonic2), recently 
there have been  prediction^^-^ and experimental dis- 
c o v e r i e ~ ~ ~ ~  of giant cubic optical nonlinearities of liquid 
crystals (nematic, cholesteric, and smectic), which 
a r e  due to the reorientation of the director by light 
fields. Succeeding experimental s t ~ d i e s ' ~ . ~ ~  have con- 
firmed the presence of giant optical nonlinearities for 
a number of specific nematic liquid crystals (NLC) and 
experimental geometries. In particular, a nonlinear 
interaction was found" between a normally incident light 
wave and a homeotropically oriented cell of the liquid 
crystal (OCBP), and had a characteristic threshold de- 
pendence on the intensity of the laser  beam. This effect 
was explained qualitatively in Ref. 11 on the basis of an 
analogy with the Fredericks transition in the field of a 
light wave. 

Here K,, a r e  the Frank constants, n i s  a unit vector in 
the direction of the director (nand -n will be assumed 
equivalent), and the permittivity tensor of an NLC a t  the 
frequency of the light field w is 

&,*=&,6,*+ (E,,-E,.) n,n~. 

In addition, we have used in (1) the notation c ,  = E,,- cl. 

The complex amplitude of a quasimonochromatic field 
E( r ,  t) is determined in a self-consistent manner from 
the solution of Maxwell's equations with 

E,r (r, t) =8~6t~+&cnt(r, t) t ) .  

However, we emphasize that to obtain the variational 
equations for the director n(r ,  t )  it is  necessary to a s -  
sume that the amplitude of the electr ic field E( r ,  t) is 
fixed. We shall  take the density of the dissipative func- 
tion R (in erg/cm3 sec)  to be 

R='/,I~ (nn). (2) 

The  variational equations for n(r ,t) have the form 

In the present study we construct a quantitative theory --- 6F a 6F 6R 
=Sn,-- 

of the Fredricks transition in the field of a light wave. 6ni ax, s(anilaxA) 6ni ' (3) 

In contrast to the simplest model of the Fredericks tran- where is an undetermined Lagrange multiplier that 
sition in stat ic fields (see Refs. 12 and 13), here we ensures that the condition I nl = 1 is satisfied. 
take into account the following two facts: 1) the ampli- 
tude for the deformation of the director above thresh- 
old must be found taking into account the distortion of 
the longitudinal profile of the light wave itself a s  it 
propagates in an inhomogeneous anisotropic medium; 
2) if the transverse dimension of the beam is signifi- 
cantly smaller  than the cuvette thickness, the threshold 
intensity itself depends on the transverse distribution of 
the intensity in the beam. In addition, the theory pre- 
dicts that for certain liquid crystals the Fredericks 
transition is accompanied by hysterisis. 

3. THE FREDERICKS TRANSITION IN BROAD LIGHT 
BEAMS 

Let us consider a homeotropically oriented NLC cell 
occupying a layer 0 a z c L. We shall  assume that the 
light field has nonzero components Ex and E,, while E ,  
= 0. The unperturbed direction of the director in n o  =e,. 
We shall also assume that the perturbation of the direc- 
tor does not move it out of the xz plane. Then 

n(r) =e, cos q+e. sin cp, 

where cp =cp(r). If the transverse dimensions of the 
2. THE SYSTEM OF BASIC EQUATIONS beam a, in the xy plane a re  much larger than the cuvette 

thickness L and the beam itself is almost a plane wave, 
We shall take the free energy per unit volume of an the field components Ex and E, can be assumed to de- 

NLC i n  the presence of a light field of complex amplitude pend only on z ;  more precisely, 
E to be of the form 

E=[e,E,(z) +e,E, (z) ] esp ( iosx lc+ik ,z )  . 
F [ergicm'l ='/2Kl, ( d i ~  n)2+112K?2(n rot n)' (4) 

L'11K13 [n rotnIZ-t.(nE) (nE')/lGrr-~_I E12/16~ .  Here s =sins and ff is  the angle of incidence of the 
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nkz  
cp(z, t)=C I cp ,  s in-exp L rht, 

FIG. 1. Unperturbed director vector no perpendicular to the 
cell walls. The wave vector k'of the light field makes an angle 

with the normal to the cell walls. 

light wave on the  cel l  in a i r  ( see  Fig. 1). Under these 
conditions the s lope of the d i rec tor  rp a l s o  depends only 
on 2.  Now the variat ional  equations (3) take the f o r m  

a s c p  acp 
( a , ,  sinzcp+K,, cos2cp)- - (K. -K, , ) s in  cp cos cp  (x) a z2 

Let  us  f i r s t  give a qualitative picture of the F r e d e r i c k s  
transition. When a plane light wave fal ls  a t  normal  in- 
cidence on a homeotropic cel l  the e l e c t r i c  field of the 
wave is exactly perpendicular to the director .  At  a posi- 
tive value of E, i t  would be energetically favorable t o  
or ient  the d i rec tor  in the direction of the field. However, 
this is prevented by the homeotropic orientation of the 
d i rec tor  by the curvet te  walls.  Fur thermore ,  in 
the f i r s t  approximation in the light intensity the  
orientational effect of the field on the unperturbed 
d i rec tor  is absent ,  in other  words,  for  E =e,Ex the 
function cp(z) = 0  is a n  exact  solution to equation (5). 

Above a cer tain threshold value of the intensity the 
solution (p(z) = 0  will no longer be stable. T o  determine 
this  threshold it  is convenient to consider the l inear-  
ized [that i s ,  a t  s m a l l  (p(z)] equation (5). Here  we mus t  
take into account the fact  that  f rom the equation d ivD=O 
we have 

Therefore ,  to t e r m s  linear in (p we have E , = - E , ( ~ E ~ / E ~ ,  
and equation (5) takes the f o r m  

Equation (6) is analogous to the l inearized equation for  
the behavior of the d i rec tor  near  the Freder icks  
transition in a s t a t i c  field E ,,,. = e x E  ,,, (cf. Ref. 13, 
sect ion 4.2). T h e r e  a r e  two differences,  however. 
F i r s t ,  instead of the e,,,, of the s ta t i c  c a s e  in (6) we 
have I E, 12/2-the mean square  of the amplitude of the 
light field. Secondly, in a s t a t i c  field E,,, the condition 
d i v D  = O  has no effect on the field vector  E when the di- 
rec tor  is inclined. In con t ras t  t o  this ,  in  the problem 
with a light field, a component E, appears  because of the 
condition div D = 0. 

As a resu l t ,  in equation (6) we have a n  additional fac- 
to r  the ro le  of which reduces to  a ce r ta in  in- 
c r e a s e  of the threshold. Expanding (p(z, t )  in  a Four ie r  
s e r i e s  and taking the boundary conditions ~ ( z  =0 ,  t )  
= cp(z = L, t )  = 0 into account, we obtain f rom (6) 

F r o m  (7) we find that fo r  

a per turbat ion of the f o r m  s i n ( n z / l )  begins to grow 
exponentially. 

The  s teady-state  value of theampli tude cp = cp,,, s i n ( n z / ~ )  
in  the reg ime above threshold mus t  now be xetermined 
with allowance for  the nonlinear t e r m s  in equation (5). 
I t  is v e r y  important that  in this  approximation we mus t  
include a solution consistent with (p(z) to Maxwell's equa- 
tions in  a n  inhomogeneous anisotropic  medium. F o r  a 
wave of the fo rm (4) these solutions can  be obtained in 
the geometr ical  optics approximation ( see  Refs. 14 and 
15): 

E,(z)  = A ( E , , - s ~ ) ' ~ ~ ' ~ ( ~ ' ,  

E.. (e.,--sa)"+s(eIle,)'" ei .rcz,. 
E , ( z ) = - A  

e, ,  (E,,-s')" 

T h e  advance of the optical phase $(z) is equal  t o  

o " - s e . , ( ~ ' ) + I e , ~ ~ ~ ( e . , ( z ' ) - s ~ )  I"' d Z ,  
*(:)=-J - 

0 
e , . ( z ' )  

A s  a l ready  noted, s =sins, where a is the angle of 
incidence in  a i r ,  and the  E,, a r e  

E,,=E,+E. cosZ q ( z ) ,  s,,=e, sin cp ( z )  cos cp ( z ) .  (9) 

T h e  constant A can  be  expressed  in t e r m s  of the power 
flux density; namely the z component of the Poynting 
vector  is 

P , = C ( E ~ ~ ~ ~ ) ' ~ ~ A  lz/8n 

and is independent of 2. 

In  the c a s e  of exactly normal  incidence (s =0) equa- 
tion (5), taking into account (8) and (9), has the follow- 
ing form i n  the s tat ionary case :  

dZ9 ( K i t  sinzcp+K~scoszcp)- - (K, , -K, , ) s in  cp cos cp 
dz2 

+ e.elIe,lAI2 sincpcos cp 
8% (e,+e. cosZ cp)" = O. 

T h e  exac t  solution of this  equation will be given in 
Sec. 5 below. H e r e  we sha l l  r e s t r i c t  ourselves to  only 
taking into account t e r m s  of o r d e r  cp and (p3 in  this 
equation, a procedure valid near  the Freder icks  thresh- 
old. T h e  s e a r c h  for  a solution of the f o r m  

c p " f r  sin (nz iL)  +cp, sin (3nz lL )  t . . . , 
which automatically sa t i s f ies  the boundary conditions, 
leads to  the following expression for  (p,: 

9 e. cpt2=2 (1 ---- l,! 
-' P-P ,, 

4 ell ) -7q-l 

Here  (p, - rp:. There fore  rp, is proportional to  the 
s q u a r e  roo t  of the  e x c e s s  of the intensity P above 
threshold P, . . 
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The advance of the optical phase #(L) over the cuvette 
thickness L can be obtained from (8b); expanding (8b) to 
terms -d we obtain 

-' P-P F, 
C 

4. THE FREDERICKS TRANSITION I N  NARROW 
BEAMS 

In the case where the transverse dimension of the 
beam a, is smaller than o r  on the order of the cuvette 
thickness L, the Frank energy due to the transverse 
gradients of the director becomes dominant. Let us 
first  estimate the order of magnitude of the threshold 
power of the Fredericks transition. The energy of the 
perturbed state is 

Here 6 2 , ~  is the volume occupied by the disturbance and 
K is the Frank constant. This expression gives a stable 
state cp, = O  a t  small  IE 12, and instability se ts  in a t  

As seen from expression (14), IE l2a; = const a t  a,<< L. 

In order to exactly determine the threshold of the 
Fredericks transition, it is necessary to solve the 
three-dimensional problem of the stability of the solu- 
tion cp =O. We shall consider this problem for several  
particular cases. 

a. The single-constant approximation. In the single- 
constant approximation we can assume even for a nar- 
row beam that the vectors E and n lie in the xz plane. 
Then in the approximation linearized in ~ ( r )  we have 

Here P , ;  is  determined by formula (12) using the fact 
that K l l  =K. 

With the substitution cp(r, t) = g'(r) expr t ,  equation 
(15) becomes 

Let us f irst  consider the case where a "ribbon" light 
beam falls on the medium, P(r,) =P(x). Then after 
separating the variables in equation (16) we find by 
means of the substitution cpl(r) =E(x)~(z) 

Equation (17a) is the one-dimensional Schrijdinger 
equation for the potential U- -P(x). It is possible to 
solve this equation analytically for a relation, for ex- 
ample, of the form 

P ( z )  = P ~ I C ~ ~ ~ ~ Z ,  (18) 

that is, for a function which gives a good qualitative 
approximation of a Gaussian (Fig. 2). The eigenvalues 

of q for a "potential" of the form (18) will be1' 

The eigenvalues of P from (17), corresponding to the 
eigenfunction ~ ( z )  =sin(nz/l)  is P = n 2 / ~ ' .  The perturba- 
tion of the director field cp'(r) will grow exponentially 
in time at r = q - ' ~ ( q  -P) > 0. Then, defining the thresh- 
old intensity of the Fredericks transition as  that value 
of Po a t  which a bound state f irst  appears in the potential 
well U a - l/cosh2 px, we obtain 

P th ( l + b L / n ) .  (20) 

The quantity BL can be viewed as  the ratio of the cuvette 
thickness L to the beam diameter d: PL- ~ / d .  

b. Another case which can be solved analytically and 
by which we can approximate the real  distribution of the 
intensity in the beam of a light wave corresponds to a 
function P(r) of the form 

const for p G p ~  
(2 1) 

where p is the distance from the beam axis in the trans- 
verse direction. Writing equation (16) in cylindrical 
coordinates and making the substitution cp'(r) = L(P)X(Z), 
we find 

The solution of (22a) is a zeroth-order Bessel function. 

Let 

P(pCpo)  > ( L l n ) ? h P ~ ,  =PF, (23) 

[in expression (23) we have s e t  h =$/L', since director- 
field perturbations which increase with time exist only 
for r = q - l ~ ( h  -g)> 0, where g, just as  P in case (a), 
equals I?/L']. I t  is easy to see  that the condition (23) is 
necessary for the existence of a nontrivial, that is, not 
identically equal to zero,  solution to the system of 
Eqs. (22), compatible with the boundary conditions. 
Then the solution of Eq. (22a) will be 

S ( P )  = (2 4) 
for p>p0 

where cl and c2 a r e  constants and J, and K, a re  Bessel 
functions. The condition of continuity of the logarith- 
mic derivative at the point p = po gives 

FIG. 2. Form of the function 1/cosh2x. The dashed line shows 
the function exp(-x2). 
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This occurs,  for example, for the nematic crystal  
PAA, for which &,= 0.9; K,, =4.5 x9.5 x lom7 dyne [at 

(25) the temperature ~ = 1 2 5 " C  (Ref. 13)] and B=-0.03 (B 

= K ,  (p) / KO ( y) . =0.7 for MBBA and for B=0.06 for OCBP). 

In the case np , /~<< 1, if in addition we assume that T o  study the Fredericks transition for B s 0 we inte- 
grate Eq. (10) with respect  to  z after multiplying it by 

3(L - <I, 
L P F ~  (26) 2dq/dz. After determining the integration constant in 

te rms of the maximum angle of deviation of the director 
we have from Eq. (25) from the unperturbed direction cp, we obtain 

P th = P F ~  [I-2LZlilZp.' In (np,/L) 1. (27) dq - e,' P ~I-(e./e,l)sin~ql"'-[I-(~./ell)sin2q,l'~ 

As seen from expression (27), the condition (26) is (di ) rX.. ( I - )  sin'q) [I-  (e . /~,~)sin~q]"'[  1- ( ~ ~ / e ~ ~ ) s i n ~ ( o , , , " ~  ' 

satisfied for ln(np0/L)>> -2, and this strengthens con- (32) 
siderably the inequality np0/L<< 1. Taking into account the fact that the maximum angle of 

In the case where p o 2  L, we obtain from Eq. (25) deviation cp, is reached a t  the center of the cell,  that 
is, for z = ~ / 2 ,  we get from (32) 

J O , L K , ( ~ P ~ ~ L )  
npoK, (npdL) 1'1 . (28) 

Ym 
(1-k sinZ q )  [I-(e./e,,)sin'q]'~[l- (en/~,)s in2 cp,]" 

Here Jo,= 2.4 is  the f i r s t  ze ro  of the Bessel  function j ( [ 1- (E,,/E,\) si$ q ~ ' ~ - [ f -  ~ e ~ / e l l ) s i n a  q,,,]'h 
)" dq 

~ ~ ( 2 ) .  In the limit po>> L formula (28) gives PI, =P,,, in (33) 
agreement with the result obtained in Sec. 3 for broad 
beams. 

In the case where the beam radius is of the order of 
the cuvette thickness, np,/L=: 1, Eq. (25) can be solved 
graphically. As  a res~!lt we find 

Therefore, in al l  the cases studied we have PI, -PI, 
- 1/L2, whereas the coefficient of proportionality is 
determined by the rat io p , / ~  of the beam radius to the 
cuvette thickness. 

In the case of more than a single constant the threshold 
of the Fredericks transition can be determined analy- 
tically for a ribbon beam of the form P(r,) =P(y) polar- 
ized along the x axis. The equation linearized in ~ ( r )  in 
this case has the form 

Introducing the new variable y' =(K,,/K~,)"'~, Eq. (30) 
can be written in the form (17) by replacing x by y and 
using the definition of P, from (12). After using the 
solution to (17), we obtain for a light wave of the form 
P(y) = Po/cosh2,9y 

Assuming that the power density P of the radition 
falling on a cell  of the NLC is close to the threshold 
value for the Fredericks transition, that i s ,  rp,c 1 ,  let  
us compute the integral in (33) up to te rms -rp:. The 
solution of the resulting biquadratic equation for cp, has 
the form 

where 

For the liquid crystals  MBBA, OCBP, and PAA the 
values of G a r e  almost identical a t  G;. 0.06. Before dis- 
cussing formula (341, we note that it can in principle be 
obtained from the condition of the minimum of the free 
energy after expanding it in a ser ies  in p, up to te rms 

Apart from a coefficient that renders it dimen- 
sionless, the free energy has the form 

At the point determined by'formula (34) we have 

Therefore, when the beam dimensions a re  slightly 
smaller  than the curvette thickness the inclusion of 
more than one constant leads to small  corrections. We 
can expect this to hold for other beam shapes,  also. 

5. HYSTERESIS OF THE FREDERICKS TRANSITIONS 
IN  BROAD BEAMS 

Formula (11) becomes invalid for the maximum angle 
of deviation of the director from the unperturbed direc- IPm 

tion if the parameters of the liquid-crystal medium a r e  
such that 

FIG. @& 3. Dependence of the free energy iP on cp, for different 
values of the light field power P: I-P 4 Pa, 2-P=P&, &Pth 

. 4  *P < Prr, -P > g,. 
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FIG. 4. Hysteresis of the Fredericks transition. The arrows 
indicate the direction of variation of the power of the light 
field P. 

Therefore, we should use the plus sign in formula (34) 
(the condition that the free energy be a minimum). 

If BaO the quantity cp, will be real  a t  C = 1 - (P/P, , ) '~  
S O ,  that is, P,, =P,,. If B< 0, then in order that rp, be 
real  it is sufficient to require that the expression under 
the square root in (34) be positive, B2- 4GC 3 0 ,  from 
which we have 

However, we see  from (36) and (37) that when the power 
density of the incident radiation is P =PI,, the quantity 
cp, given by (34) is  a point of inflection for the free 
energy function (see Fig. 3). As seen from Fig. 3, for 
values PI, < P <  P,, the function 9(cp,) has a local mini- 
mum at cp,+ 0, where 

The point p, = O  becomes unstable only a t  P> P,,. 
From the above discussion it is clear that as  the power 
density of the light wave increases from zero the Fred- 
e r i c k  transition occurs at P=P,,, s o  that a free-energy 
minimum corresponding to cp,# 0 and occurring at PI, 
< P <  P,, is unattainable because of the presence of the 
potential barrier. For the inverse transition, that is, 
a s  P decreases from the region of larger P, ., the free- 
energy minimum reached a t  P <  P,, and corresponding to 
p,# 0, while not an absolute minimum of the function 9 
[as seen from (3811, is separated from it by the potential 
barrier. The barrier only disappears a t  P=P,, and then 
we have rp, = 0 (Fig. 4). 

6. PROPAGATION OF A LIGHT WAVE AT SMALL 
ANGLES TO THE DIRECTOR 

As already noted, an extraordinary wave propagating 
a t  an angle to the director induces strong nonlinear 
optical effects a t  very low powers P C P , ,  (Refs. 3-9). 
When a light wave is normally incident on a cuvette with 
homeotropic orientation of the NLC , however, reorien- 
tation of the director is possible only above some thresh- 
old value of the power of the wave. The distortions of 

FIG. 5. Dependence of the maximum angle of deviation cp, on 
P/P,, in the case of a light wave incident on a cell at small 
angles: 1-y = l o 0 ,  Z-y= 5". 

the field of the director in this case were discussed in 
Secs. 3-5. Here we shall  study the nature of the reor- 
ientation of the director by the field of an extraordinary 
light wave in the intermediate region, that is, when the 
wave propagates a t  small  angles to the director. 

Substituting the expressions for the light fields (8a) 
into Eq. (5) and including terms up to third order in the 
small  quantity rp = rp,sin(nz/~) (that is, assuming that 
the power of the wave is less than o r  of order P, :) and 
of f irst  order in s =sins, we find 

where sin y = &-In s in  a and y is the angle of refraction 
of the wave in the cell of the NLC. 

In the case of weak fields P<< P,, and large anisotropy 
of the permittivity, Eq. (39) duplicates the results ob- 
tained earlier4: 

cp,>,=e.I E IZLZ sin y/2n4K,,. 

Since the formulas a r e  quite awkward we shall not give 
the analytic form of the solution of Eq. (39). The graph 
of the function c p , ( ~ / ~ ,  ,) is shown in Fig. 5 for the 
parameters of the liquid crystal OCBP and for different 
angles y. 

The behavior of the cell in the oblique-incidence case 
discussed here is analogous to the case of a cell in an 
oblique magnetic field-in both cases there is no rigor- 
ous F reder i ck  transition (cf. Ref. 13, $4.2.3). 

7. DISCUSSION 

Let us estimate numerically the value of the threshold 
power for the Fredericks transition for the nematic 
crystal OCBP used in Ref. 11. The parameters of the 
liquid crystal a re  & f a  = 1.66, &i0= 1.53, Kll = 4  x 
dyne, K,, = 7 x dyne, the curvette thickness is 
L = 150 pm,  and the beam radius is p, = 50 pm. Sub- 
stituting the Frank constant K =0.5 (K,, +K,,) into the 
expression for PI  ,, we find from formula (29) 

This value is in very good agreement with the experi- 
mental value" 

For the cuvette thickness L =50 pm and the same values 
of all  the other parameters the value of the threshold 
power estimated from (28) is 

This value is 3.1 times larger than that for the Freder- 
i c k  transition in a cuvette of thickness L = 150 pm, 
which is also in very good agreement with the results 
of Ref. 11. 

The temperature dependence of the threshold power is 
determined by the temperature dependence of the Frank 
constant and of the permittivity. Bearing in mind the 
fact that the Frank constant K varies with temperature 
a s  the square of the order parameter K-5? while the 
anisotropy of the permittivity &,-S (Ref. 12), we can 
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separate the temperature-dependent part  in expression 
(12) for  P,, in the form PF, a c,E,~&;"~. AS the temperature '  
increases,  E, and decreases  while E, increases;  f rom 
this we s e e  that a s  the temperature increases the threshold 
power decreases. Introducing the notation 

we can write P,, &,, . Since &;I2 depends weakly on 
the temperature (for example, in the region of the 
MBBA mesophase &t12 changes by only 0.01 of its value), 
a s  the point of the phase transition to a n  isotropic 
liquid is  approached the threshold power decreases in 
proportion to c,, that is, to the order  parameter  S. 

Here we note the following. At smal l  values of 
and k,  a s  is  the case  near the critical point, Eq. (33) 
determiningthe maximum angle of deviation of the direc-  
tor cp, a s  a function of the power of the light field can 
be simplified. For this we must expand the integrand 
in powers of and k. Then the integral on the left- 
hand side of Eq. (33) is expressed in t e rms  of elliptic 
integrals and the resulting equation implicitly deter- 
mines the function cp, = cpm(P). In the limit where P/P, , 
<< 1 (that i s ,  (pm=n/2 - 6,6<< 1) the function cpm(P) can be 
determined explicitly: 

As was shown in Sec. 5, for  certain types of liquid 
crystals  the Fredericks transition can be accompanied 
by hysteresis. Let  us calculate for  the case  of the well 
studied liquid crystal PAA the main characterist ics  of 
this phenomenon. As seen  from formula (37) with B 
=-0.03 and G =0.06, the powers a t  which the Fredericks 
effect in PAA i s  switched on and off differ little: P,, 
= 0.9925 ,. The angle corresponding to the appearance 
of a local minimum of the free-energy function [that i s ,  
pm corresponding to the inflection point of the function 
@(cpm)] is c p , ~ ( - ~ / 2 ~ ) " ~  =0.5. 

Let us demonstrate that thermal fluctuations of the 
direction of the director do not lead to surmounting of 
the potential bar r ie r  between the minima of the f ree  
energy function. For  this we note that thermal fluctua- 
tions of the direction of the director would cause the 
hysteresis t o  disappear if the mean angle of the fluctua- 
tion deviations were on the order of or  larger than the 
difference of the angles corresponding to the local mini- 
mum and maximum of the f ree  energy. This  difference 
is easily calculated using formula (34) for some value 
of the power P such that P,,. < P <  P,, (that i s ,  O< C <  B'/ 
40). For example, for  C = B' /~D we find Aq =O.4, and 
since ((6cp)2)"2<< 1 for thermal fluctuations of the direc-  
tor  the local minimum of the f ree  energy CP.(cp,> 0) is 
stable to thermal fluctuations. 

In concluding this discussion we note that a Freder-  
i c k ~  transition induced by light fields in a NLC with 
&,> 0 can occur only when the light wave is normally 
incident on a homeotropically oriented NLC cell. I t  is 
impossible to have a Fredericks transition induced by 

an  ordinary light wave normally incident on a planarly 
oriented NLC cell. Th i s  can be understood when it is 
realized that the electric field of an ordinary light wave 
in a NLC remains perpendicular to the director a s  it 
propagates through the medium. Strong nonlinear opti- 
cal effects a r i s e  if the polarization of the normally 
incident cel l  makes s o m e  angle with the director. We 
have considered these effects in a n  ear l ie r  study.' 

The  authors a r e  grateful to E. I. Kats for  a discussion 
of these problems. 
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