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The physical picture of excitation transfer between atoms is investigated. A characteristic function is 
introduced to make the field description complete. It is shown that such quantities as the radiation-field 
intensity and energy, the atomic-electron velocity, coordinates, and energies, vary in a retarded fashion. The 
change of the energy of an initially unexcited atom is calculated in fourth-order perturbation theory. It is also 
shown that the matrix element previously used as a measure of excitation transfer is strictly speaking not such 
a measure so that the retardation requirement is not applicable to it. By the same token, the nonretarded 
behavior of this matrix element, which was established by a number of workers, finds a natural explanation. 

PACS numbers: 3 1.50. + w 

In his known 1932 paper,' devoted to the development 
of quantum electrodynamics, Fermi investigated the 
propagation of excitation from one atom to another. The 
considered atoms were spaced a distance R apart, in 
the entire atoms +field system was described by a Ham- 
iltonian H and was at t = O  in a state IabO): the first  atom 
in the ground state, the second in an excited state, and 
photons were absent. To describe the excitation trans- 
fer, Fermi used the square of the modulus of the matrix 
element 

cited, the second i s  excited, and there are  no photons. 
It will be shown that although only the second atom is ex- 
cited initially, both atoms a re  centers of electromagnet- 
ic-field radiation. As for the second atom, i t  radiates 
because i t  i s  excited. The first  atom, on the other hand, 
i s  a source of radiation by virtue of the fact that its 
ground state /a)  i s  not an eigenstate of the complete Ham- 
iltonian. It begins to interact from the very outset with 
the oscillations of the vacuum, goes over into the lower- 
lying ground state of the entire system, and radiates. 

M=(baO1e-'H'labO) (ti=l), ( 1 )  A similar situation for a free electron was considered 
by Ginzburg.' Naturally, the emission of the first  atom 

representing the probability of observing the system at is much less than that of the second. It can be shown 
the instant t>O in the state IbaO) with the f i rs t  atom ex- 

that the radiation fronts a re  abrupt-their smearing is cited, the second unexcited, and zero photons. This ma- 
of the order of the dimensions of the atom, and the 

trix element was used a s  a measure of excitation trans- 
propagation of these fronts proceeds in retarded fash- 

fer  in most subsequent  paper^''^ dealing with this ques- ion. At sufficiently short times, before these fronts in- 
tion. Fermi has shown that the matrix element M i s  tersect, the space between them i s  in the same excited 
equal to zero up to the instant t=R/c. state a s  at the initial instant. This means that "nothing 

This result, however, was approximate, and a more 
accurate  calculation^" has shown that the matrix ele- 
ment M contains a small additional part which i s  not 
equal to zero prior to the instant t=R/c. Since one can 
expect any quantity that characterizes excitation trans- 
fer  to have a delay R/c, a s  follows from elementary re- 
lativistic considerations, the presence in M of an addi- 
tional nonretarded part i s  a paradox that calls for clar-  
ification. 

It is shown in the present paper that the matrix ele- 
ment M i s  strictly speaking not a measure of excitation 
transfer between atoms, so  that one should expect no re- 
tardation from it. On the other hand, transfer of excita- 
tion must be characterized by a change in the average 
values of the dynamic variables, such a s  the coordinate, 
velocity, electron energy, and others. It is shown by the 
the same token that, despite the absence of a retardation 
in the matrix element M, the excitation transfer between 
atoms proceeds in causal fashion. 

The fmmulation of the problem in this paper is the 
same a s  in Ref. 1. We investigate, however, not the ma- 
trix element M, but the change in the mean values of the 
dynamic parameters at different points of the investi- 
gated system. 

Assume that at the initial instant of time t=O the sys- 
tem is in the state IabO), i.e., the first  atom is not ex- 

slipped-in" in that time between the atoms, and the dif- 
ference of the matrix element Mfrom zero at these in- 
stants of time i s  due to some other causes, but not to 
the excitation transfer from one atom to the other. It i s  
precisely this circumstance which shows that the ma- 
trix element M, strictly speaking, cannot be a measure 
of the excitation transfer between atoms. 

It will also be shown that excitation of the first  atom, 
which was initially unexcited, is due to other causes. 
From the very outset, the first  atom interacts with the 
oscillations of the vacuum and with the Coulomb field of 
the second atom. This interaction leads to a certain de- 
velopment of i ts  state and to the appearance in it of an 
admixture of an excited state. The f i rs t  atom interacts 
also with the radiation field of the second atom. The ex- 
citationof the first  atom due to this cause i s  strictly re- 
tarded. This proves that the excitation propagation is 
causal. 

At the same time, the fact that the states of both 
atoms change from the very beginning explains the non- 
retardation of the matrix element M. Indeed, the latter 
contains the coordinates of both atoms, i.e., it i s  the 
characteristic of two places in the system, both of which 
change starting with the instant t =O. Therefore the ma- 
tr ix element also changes starting with t=O. 

In the investigation of the state of an electromagnetic 
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field, it i s  convenient to use a s  a characteristic of the 
excitation of the field a t  a given point of space the char- 
acteristic function 

where E(p) and H(p) a r e  field operators in the Heisen- 
berg representation a t  the observation point p; e and q 
are  arbitrary vectors. The value of the characteristic 
function lies in the fact that if it i s  known then, differ- 
entiating it with respect to and qk and putting then I 
= O  and q =0, we can obtain the mean value, in the state 
IabO), of all the powers of E x @ )  and HA (p )  (A=1,2,3) and 
their products. We shall assume the characteristic func- 
tion to be a complete description of the field at the point 
p .  In particular, it i s  natural to assume that if the char- 
acteristic function at a certain point of space is the 
same a s  in the vacuum state, then no electromagnetic 
field is  excited at this point. 

Thus, we consider a system of two atoms separated by 
a distance R. It is assumed (this is  not a fundamental re- 
striction) that each atom contains one zero-spin nonre- 
lativistic electron. The Hamiltonian of the atoms plus 
field system i s  given by 

H=Hs+H,+H,+Hf, (3) 
where the f i rs t  three terms (E=c=l )  

a re  respectively the Hamiltonians of the first  atom S, of 
the second atom T, and of the electromagnetic field, 
while their sum i s  the unperturbed part Ho of the total 
Hamiltonian. The interaction Hamiltonian consists of 
the following parts: 

H'=S+S'+T+T'+Q+Vs+V*, (5 

where 

The system considered i s  at the initial instant of time in 
a state IabO), which i s  an eigenstate of the unperturbed 
Hamiltonian H,. 

Such an initial condition is universally accepted in prob- 
lems of this type. Sometimes the discussion of the ex- 
citation transfer focuses precisely on the choice of the 
initial state. It i s  assumed that i f  i t  is successfully 
chosen the matrix element M will work well. However, 
excitation transfer can take place under various initial 
conditions, but not under some exclusive ones. A rea- 
sonable measure of excitation transfer should be suit- 
able for a large class of initial conditions, including the 
one used in the present paper. 

Any Heisenberg operator C(t) can be expanded in a 
ser ies  

f f r 

C( t )=C  ,+(- i)!dt,[~,;H,']+(-i)'~dt,jdt,[[~,:~,'];~,']+ ..., (7) 
I 0 1, 

which we shall use hereafter and in which Hk ( a = l ,  2, 
. . . ) i s  the Hamiltonian of the interaction in the interac- 
tion representation while the index a! denotes the time on 
which the Hamiltonian depends; C, is the operator C in 
the interaction representation, and depends on the time 
t. The lower limit of integration in this expansion i s  set 
equal to zero in accordance with the problem with the in- 
itial condition a t  t=O. 

The characteristic ficnction of the electromagnetic 
field. The main difficulty in the calculation of the char- 
acteristic function (2) i t  i s  due to the Coulomb gauge as- 
sumed by us. In this gauge, the electric field E breaks 
up into two parts: a transverse part and a longitudin- 
a l  Coulomb field E". The change of the Coulomb field is  
instantaneous in all of space. The transverse part of the 
field also contains an instantaneous term, which when 
E~ is added to the Coulomb field E" i s  cancelled out when 
the latter changes. This distinguishing feature of the 
Coulomb gauge i s  well known.g-'' 

Using the expansion (7),  we represent the transverse 
part  of the electric field in the form of the series 

where 

E,I = i x ' k q  (a ,e 'k ,r - '4 t  - a,+e- ik ,~+d%t 1. 

Taking (5) into account, we write down the commutator 
[E:; Hi], which i s  contained in each term of the series 
(8), in the form 

[&I; H,'] =[&I; S,+S,'] + [EtL; T,+Ti'l = K s ~ + K T I .  

We confine ourselves to calculation of Ksl. An expres- 
sion for KT1 is obtained by replacing in the correspond- 
ing formulas the subscript S by T. With the aid of (6) 
we obtain the expression 

K 61 - C e i {  ( P ~ ~ ~ - ~ A . ~ ~ )  ; [EIL" AatYl} ,  2m (9) 
zu 

where the subscript 1 of the operators and As, means 
that in the interaction representation they depend on the 
time t,. Dividing the commutator in (9) into a retarded 
part  and an instantaneous part" we obtain for Ks, also 
two parts: retarded 

e} - ~ ( ( p 6 , - e ~ H l ) ;  6 ( p s 1 ) ) ,  
Psi m 

(10) 
which i s  equal to zero at O<rpS,, and instantaneous 

where Esl i s  the Coulomb field of the electron of the 
atom S. We write down together the instantaneous terms 
of the series (8) 

The sum in the curly brackets can be convoluted with the 
aid of the expansion (7). Then, taking (11) into account, 
we obtain for the instantaneous part  of the series (8) the 
expression 
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' dE,n dET" 
E,' - ! d l l  [-+-I = ElL-ESu( t )  + E E u ( 0 )  - E T n ( t )  + E P n ( O ) .  

d t ,  d t ,  
0 

It is easily seen that in the calculation of the total elec- 
tr ic field the terms Es"(t) and ~ , " ( t ) ,  which represent 
the instantaneous Coulomb fields of the electrons of the 
atoms, cancel out and the electric-field operator takes 
the form 

where according to (10) all the series terms containing 
&R a re  equal to zero at t < p% and produce the radiation 
wave of the atom S. However, until i t  i s  averaged over 
the states, p h  i s  not yet defined. The terms containing 
ICTIR correspond to the radiation wave of the second 
atom. The fields E~"(o)  and ~ ~ " ( 0 )  a re  the Coulomb 
fields of the atoms that exist in space a t  the instant of 
the start  of the radiation. Similar but simpler (because 
of the absence of a longitudinal part) calculations for a 
magnetic field lead to the following retarded expression: 

where 

and LT1 i s  obtained by replacing the subscript S by T. 

We now investigate the characteristic function (2). To 
this end we substitute (12) and (13) in (2). We expand 
next the exponential in a ser ies  and group separately 
the terms containing the integrals with respect to time 
from (12) and (13), and those not containing such inte- 
grals. We denote them respectively by AC and C, 

C=Co+AC. 

The quantity C,, a s  will be shown below, is none other 
than the initial characteristic-function value that de- 
scribes the electromagnetic field at some point of space 
prior to the arrival of the electromagnetic wave at this 
point. Indeed, by definition 

C,=(abOI e x p { i [ E E I L + q H , t k E E U  ( 0 )  +EETIJ(0) ] )  I abO), 

recognizing that 

E,I=e'%tEl ( 0 )  e-'nl: H,=e'H~'H (0) e-'nl', 

we obtain 

Consequently, prior to the arrival of the wavefront at 
some point of space, the electromagnetic field a t  this 
point i s  characterized by the initial Coulomb field and 
by the initial vacuum fluctuations of various orders. 

We consider now a typical term contained in AC: 
t t 

% CbOI 5 dt ,  j d t , [ ~ , , ' ;  T,'] IbO). (14) 
0 1. 

Since K~~~ contains a retarded function, i t  can be inter- 

preted as  the summation of the radiation coming from 
those points of the atom T, which produce a t  the instant 
t a field a t  the observation point. The problem i s  made 
simpler by the fact that the electron moves in the atom 
slowly and i s  only slightly displaced during the time of 
passage of the fmnt over the atom. Consequently the 
atomic operators in (14) can be taken in the Schriidinger 
equation and not in the interaction representation It be- 
comes c lear  then that in (14) and in similar expressions 
contributions a re  made only by those pT which land in 
the volume occupied by the atom in the initial state Ib). 
Consequently, up to the instant of time t = p -  a, where a 
i s  the Bohr radius, the term AC will be exponentially 
small, and after that instant it will grow during the time 
2a. This means that the change of the characteristic 
function is retarded, and the smearing of the front i s  of 
the order of the dimensions of the atom. It i s  easily 
understood also that this front i s  spherical, inasmuch a s  
only the modulus pT figures everywhere. 

Thus, until the radiation front of one of the atoms 
reaches the observation point, the electromagnetic field 
a t  this point i s  in the same state a s  at the initial instant 
of time. 

Excitation transfer between atoms. The most com- 
plete description of the transfer of excitation to an unex- 
cited atom i s  given by the change of i ts  characteristic 
function 

It i s  difficult, however, to compare this function with 
the known results. We shall therefore calculate the 
average energy of the electron of the first  atom. As we 
shall see later, the change of this energy, due to the ex- 
citation transfer, i s  approximately equal to the product 
of Ih?12 by the energy difference between the excited and 
unexcited states. This explains why the use of IM2 a s  a 
measure of the transfer has not led for a long time to 
any difficulties. 

In the calculation we encounter terms of three types. 
First ,  terms that do not contain the coordinates of the 
second atom T. The retardation requirement does not 
apply to them. In accordance with their physical mean- 
ing, we shall call them the self-action terms and will 
not consider them in detail. The terms of the second 
type a re  the retarded terms due to radiation of the sec- 
ond atom T. Finally, the terms of the third type a r e  
connected in one manner o r  another with the Coulomb 
field. Physically, the second atom can influence the 
f i r s t  atom prior to the instant t = R  only by i ts  initial 
Coulomb field. Therefore these terms should be group- 
ed ultimately in such a way that the coordinates of the 
second atom a re  contained in them only a t  the initial in- 
stant of time t=O. 

Local and nonlocal variables. Before we proceed to 
concrete calculations, we discuss the question of the 
local and nonlocal variables. Local variables charac- 
terize some concrete point of the considered system, 
whereas the nonlocal variables characterize the entire 
system a s  a whole o r  some extended part of the system. 
Accordingly, we can require retardation of the local 
variables i s  signals propagate in the systems. For  the 
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nonlocal variables the retardation requirement i s  either 
not applicable o r  i s  applicable with some restriction o r  
another. The foregoing can be illustrated with coupled 
spatially separated mechanical oscillators as an exam- 
ple. It is kmwn that such a system can be described in 
two ways. Either with the aid of the coordinates and mo- 
menta of the individual oscillators-these a re  obviously 
the local variables; the other possible description is 
provided by the no rmal oscillations, their amplitudes, 
and the corresponding generalized momenta. It is per- 
fectly clear that the normal oscillations characterize 
the system a s  a whole. The amplitudes and the momen- 
ta of the normal oscillations a re  nonlocal, although they 
a re  canonical Hamilto nian variables. We cannot demand 
of them retardation when signals propagate in the sys- 
tem. In a consistent quantum field-theoretical approach, 
the amplitudes of the fields a r e  assumed by definition to 
be local variables. From this follows, in particular, the 
condition that the commutator of such quantities vanish 
at points separated by a space-like interval. 

We turn now to the variables rs and is. We assume 
that the variable rs  i s  local. In essence, we assume 
this without proof, although this seems clear intuitively. 
Then the velocity 6s should also be regarded a s  local. 
We now consider the canonical momentum ps. It i s  
known to be equal to 

The first quantity in this sum i s  local. The second, on 
the other hand [the vector potential A(rs) in the Coulomb 
gauge] cannot be regarded as a local quantity. In fact, 
a s  we have already indicated, A(rs) contains an instan- 
taneous part and consequently i s  not retarded and can- 
not be a local variable. This i s  evidenced by the pres- 
ence of an instantaneous part in the commutator of the 
components of the vector potential. Therefore the gen- 
eralized momentum ps can likewise not be regarded a s  
local and consequently the different generalized-momen- 
tum functions a re  not retarded quantities. Thus, it i s  
natural to require retardation of rs  and ibs and of differ- 
ent functions of them. 

The energy of the first atom is not an integral of the 
motion. It can therefore be determined only accurate 
to the energy of the interaction. We assume the energy 
of the interaction. We assume the energy of the elec- 
tron of the first  atom to be the operator 

Es='lzmiS2+V (re) .  

This choice i s  governed by the fact that the energy must 
be a function of the local variables rs and +s, but not of 
rs and PS . 

Using the expansion (7) and recognizing that E s  in the 
interaction representation contains terms of zeroth, 
first, and second order in e, we obtain a zeroth order 
only the constant term Hs. The two terms of first  or-  
de r 

1 

are  obviously self-action terms. In second order, dis- 
carding the interaction, we have the following terms: 

05) 
We represent the first  term of (15) in the form of two 
terms: 

I 8  I I 

( - i l l  j d t .  j d t i [  [B.; S , I ;  ~ , l - l J  &,[st; ~ . l f  (-1) j &IS.; r.1, 
0 It 0 @ k 

where the dot denotes the partial derivative with respect 
to the time t,, which enters in the photon creation and 
annihilation operators in the interaction representation. 
The first  t e r m  in i t  i s  cancelled by the third term of 
(15). We divide the second term into an instantaneous 
part  

where Q,,=eV/lr,, -r,,l, and a retarded part 

0 r. 

where 

It is easily seen that the first  term of the instantaneous 
part  in (16) i s  cancelled by the second term of (15). We 
thus obtain in second order  the expression 

I 1  L 

E."'=(-i) Jdt ,  j d t ,  d,2n +(-i) Sdtl[H.; Q I 0 ] ,  (17) " 0 

the first  term of which i s  retarded and the second in- 
stantaneous. However, it contains the coordinates of 
the electron of the atom T, taking only at the zeroth in- 
stant of time, and corresporded to the initial Coulomb 
field of the second atom. Therefore the presence of 
this term does not violate the retarded character of the 
electron motion. 

In third-order perturbation theory, all  the terms van- 
ish upon averaging over the vacuum state, since they 
contain only odd powers of the vector potential. We have 
also performed calculations in fourth order and have 
shown that the energy change of the electron of the first  
atom at 0 < t <R i s  determined by the initial Coulomb 
field and by self-action. At t>R there a r e  added to these 
terms retarded terms due to the radiation of the second 
atom. For large distances R >>A between the atoms and 
a t  A >> a, where A is the radiation' wavelength and a i s  
the Bohr radius, these terms simplify and the retarded 
part  of the energy change of the first  atom is given by 

1 1  

E F ~  (-i)' j d t , J d t ,  ( b ~ ~ I c t , , ~ l o b )  1' ( E : ' = E ~ '  -E:'), (18) 
0 11 

in the calculation of which i t  i s  necessary to neglect all 
the terms that decrease with distance like the Coulomb 
terms, The detailed calculations in fourth order, which 
we do not present for lack of space, can be found in Ref. 
12. At equal r e e n a n t  energies of the atoms, E,:' 
=E,,(T)=EW,,, the energy change takes the form 
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where a i s  the fine-structure constant, R = R / I  Fd, and 
d, i s  the matrix element of the coordinates of the elec- 
trons. This energy change coincides with the product 
Ew, by the square of the modulus of the matrix element 
M, calculated in Refs. 3 and 4 in the region 

where 7s and T, are the lifetimes of the atoms in the ex- 
cited states. However, this quantitative agreement i s  
accidental; the matrix element M, first introduced by 
Fermi,' i s  not retarded, in contrast to the change of the 
energy of the first atom, and cannot serve as  a measure 
of excitation transfer. 

Conclusion. The main result of our paper i s  a clarif- 
ication of the physical picture of excitation transfer be- 
tween two atoms. We have established that the process 
has a retarded character. 

It was shown in this paper that the matrix element M, 
strictly speaking, i s  not a measure of the excitation 
transfer from one atom to another, therefore one cannot 
require it to be subject to retardation. It would be cor- 
rect to state that M i s  a correlator of states at two dif- 
ferent points. The retardation, on the other hand, can 
be required only of a quantity that characterizes either 
point of space, but only one of them. An investigation 
of the characteristic function of the electromagnetic 
field has shown that a radiation produces near each 
atom spherical wavefronts, and the space between these 
fronts is in the same state as before the start  of the ra- 
diation. This means that nothing has been physically 
transferred from one atom to the other prior to this in- 
stant. 

We have investigated the energy of an initially excited 
atom with accuracy to fourth order of perturbation the- 

ory. We have shown that its change, due to the motion 
of the second atom, has a retarded character. For the 
energy change in fourth order we obtain practically the 
same expression as  in Fermi's paper, but multiplied by 
E,(S) and, of course, retarded. However, the change 
of the energy of the first atom, due to the excitation 
transfer (17), takes place already in second order in e, 
whereas according to the Fermi theory the probability 
of excitation transfer i s  a quantity of fourth order in e. 
To be sure, if the radiation wavelength is much larger 
than the size of the atom, this change (in second order) 
i s  small, as  i s  seen from the fact that it i s  equal to zero 
in the dipole approximation. 

In conclusion the authors thank I. V. Obreimov for in- 
terest in the work and M. F. Stel'makh for support and 
a discussion. 
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