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The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective 
interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the 
system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle 
Lagrangian L, . It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of 
the system. The connection between the parameters of the effective Lagrangian and the constants of the 
quasiparticle interaction introduced in the theory of finite Fermi systems is established. 

PACS numbers: 21.60.Jz, 21.1O.Dr 

1. INTRODUCTION quasiparticle spectrum near the Fermi surface. Since 

The present paper i s  devoted to the problem of cal- 
culating the binding energies and self-consistent fields 
of nuclei on the basis of the Fermi-liquid approach. In 
the theory of finite Fermi systems,2 which is construc- 
ted on the principles of the theory of a Fermi liquid,' 
it i s  possible to describe many nuclear phenomena and, 
in particular, solve numerous problems that have no 
analog in an infinite system. The price to be paid for 
this success i s  the introduction of a relatively small 
number of phenomenological parameters, which a r e  
universal for all nuclei and characterize the self-con- 
sistent field of a nucleus and the interaction of the 
quasiparticles at the Fermi surface. 

the properties of the quasiparticles near the Fermi sur- 
face a r e  the same a s  those of the real single-particle 
excitations, this circumstance makes it possible to go 
over from the real system of A interacting particles to 
a system of A quasiparticles whose equations of motion 
a r e  obtained from the Dyson equation. To describe the 
quasiparticle system, one can introduce an effective 
Lagrangian L, of the quasiparticles, requiring the La- 
grange equations to be identical to the equations of mo- 
tion of the quasiparticles (Sec. 3). It can be shown that 
the energy of the system of interacting quasiparticles, 
calculated in accordance with the usual rules on the 
basis of the Lagrange function L,, is equal to the total 
binding energy E, (Sec. 4). This assertion i s  analogous 

Until recently, the theory of finite Fermi systems, to the well-known Landau-Luttinger theorem on the 
like the theory of a Fermi liquid, was concerned solely equality of the number of particles and quasiparticles. 
with problems related in some manner to the change in 
the distribution of the quasiparticles at the Fermi sur- 
face. It was believed that the calculation of, say, the 
ground-state energy Eo or  the self-consistent potential 
of a nucleus i s  quite impossible in the framework of 
such an approach because the result necessarily con- 
tains sums over states fa r  from the Fermi surface, 
which cannot be eliminated by means of the standard 
renormalization procedure.' However, this is not the 
case, since in systems in equilibrium under the influ- 
ence of only internal forces the pressure i s  zero. It 
follows from this directly that the binding energy Eo is 
uniquely related to the single-particle spectrum of the 
excitations of the systems near the Fermi surface, i.e., 
it is uniquely related to the properties of the quasipar- 
ticles. The connection i s  especially simple in a macro- 
scopic system, whose energy is Eo= yoA, where A i s  
the number of particles and y, is the chemical poten- 
tial, which i s  equal to the limiting energy of the quasi- 
particles. Thus, E, is quite independent of the spec- 
trum of single-particle excitations of the macroscopic 
system f a r  from the Fermi surface. It is true that in 
nuclei, in which the number of particles i s  not particu- 
larly large, the expression for the binding energy 
Eo(N, Z) is somewhat complicated by the need to take 
into account the terms with the following powers of the 
parameter A-'I3 in the liquid-drop part of Eo, and also 
the irregular shell corrections, but this does not af- 
fect the essence of the matter. The problem of calcu- 
lating the binding energy of the nucleus reduces to 
finding the chemical potentials y, and CI,, o r  rather the 

Thus, the effective quasiparticle Lagrangian L, de- 
termines both the spectrum of single-particle excita- 
tions a t  the Fermi surface and the binding energy Eo 
of the nucleus. In Sec. 5, we establish the connection 
between this Lagrangian and the amplitude F of the local 
quasiparticle interaction introduced in the theory of 
finite Fermi systems; this means that it is also possible 
to calculate in terms of L, the response function of the 
system when an external field is applied, i.e., one can 
solve the same problems a s  in the theory of finite 
Fermi systems. The upshot is that, specifying a few 
parameters, which a r e  universal for all nuclei and 
characterize the interaction Lagrangian of the quasi- 
particles, we obtain the possibility of calculating the 
basic characteristics of nuclei, namely, the binding 
energy, single-particle spectra, static moments, tran- 
sition probabilities, and so forth. 

2. QUASIPARTICLE DESCRIPTION OF FINITE 
FERMl SYSTEMS 

The quasiparticle formalism of the theory of a Fermi 
liquid is generally employed to describe the single-par- 
ticle states near the Fermi surface and to find the re- 
sponse of a system to a long-wavelength external 
field.'" However, the possibilities of the quasiparticle 
description a re  much richer. As we shall see, in prob- 
lems involving the calculation of the total binding ener- 
gy of the system and i ts  self-consistent field we can 
also in fact replace the real system of A interacting par- 
ticles by a system of A quasiparticles with effective two- 
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body interaction that i s  uniquely related to the quasipar- 
ticle scattering amplitude at the Fermi surface. One 
can here use the principle of least action, applying it 
to the quasiparticles and requiring that the correspon- 
ding Lagrange equations be identical to the equations of 
motion of the quasiparticles. 

These equations a r e  usually obtained from the Dyson 
equation by expanding the particle mass operator 
C(r, p, E) near the Fermi surface in powers of E - 
and p2-p:, the contribution of the quadratic and fol- 
lowing terms being ignored, i.e,, the mass operator 
Z, of a quasiparticle in nuclear matter i s  given by 

The subscript 0 indicates that the derivatives a r e  taken 
at the point E = pO, P =Pp. The Fermi momentum PF and 
the chemical potential po of equilibrium nuclear matter 
a r e  related by 

The exact Green's function is G = G,+ G,, where G, 
is the regular part of G and G, = (E - &: - Z,)-' i s  the pole 
part. The poles of G, determine the quasiparticle spec- 
trum &, = (P - P,). PF/m*, which near the Fermi sur- 
face is, a s  i s  well known, the same a s  the spectrum of 
the real single-particle excitations of the infinite sys- 
tem. The quantity 

determines the weight of the quasiparticle in the exact 
single-particle state, and the effective mass of the 
quasiparticle is 

In a finite system, the mass operator I; also becomes 
a function of the coordinates. Note that because the op- 
erators r and p do not commute, it is necessary to ar- 
range them in an order that does not violate the Hermi- 
ticity of the mass operator Z,, and where nothing is 
said to the contrary a product written in the form 
p2f (r) i s  to be understood a s  the operator pf (r)p. With 
allowance for this, the analog of (1) for a finite system 
is the expression 

The quantity Z2(r) is related to the renormalization 
factor a(r )  of the Green's function: C2(r)= 1 - a''(r). 
Essentially, Eq. (3) i s  a consequence of the short range 
or ,  as one often says, locality of the nuclear forces. 
The expansion parameter, which permits the retention 
of the terms -p2 but the neglect of the remainder, i s  
the ratio of the range of the forces to the characteristic 
distance over which the nuclear density changes ap- 
preciably. For the interior regions of the nucleus, this 
ratio is -A-'l3.  On the surface of the nucleus, it is of 
order unity, and in the surface components of C it is  in 
principle necessary to take into account higher powers 
of the operator p, i.e., terms of the type P,P,V ,nV,n, 
etc. Their contribution to the single-particle energies 
is small and in nuclear matter it i s  further 
suppressed for numerical reasons, in particular, be- 

cause of the weakness of the velocity forces of the quasi- 
particle interaction at the Fermi surface. In principle, 
it is not difficult to take into account these terms, but 
since they play a small part, we shall, to simplify the 
exposition, initially omit them altogether. Then the 
equation for the pole part G, of the Green's function has 
the form 

where C,(r, p, &) is given by Bq. (3). 

The solution of this equation can be expressed in 
terms of the eigenfunctions $& of the homogeneous equa- 
tion: 

91'(?) $A(?) 
G~'r'r'. "= .-EA-ia agn(E,-P, . (5) 

The equation for the quasiparticle wave functions #, 
differs from the ~chrzdinger  equation in that the single- 
particle potential depends on the energy: 

algl(r t) a 
i d  = (" + roc?) + p ~ . ( r ) p + i & ( r ) ~ )  r ( r .  s. 

ut 2m 
(6) 

Because of this, the eigenfunctions $,(r) of this equation 
a r e  orthogonal with weight a-'(r): 

$@A:(r)a-l(r)@lo (r)dr=6,~,. (7) 

By the Landau-Luttinger theorem, the number of oc- 
cupied states i s  equal to the number of particles: 

z . n A = ~ .  
I 

3. LAGRANGIAN OF A SYSTEM OF INTERACTING 
QUASIPARTICLES 

The system of equations (6) can be obtained from the 
principle of least action for quasiparticles. The action 

Sq = {Lq(t) dt 

can be expressed in terms of the effective quasiparticle 
Lagrangian 

which i s  determined by the variational formula (derived 
in Appendix 1) 

It follows that the Lagrangian L, can be written in the 
form L, = L: + L:, where LO, i s  the f ree  Lagrangian, 
whose density i s  given by 

Here, 

In accordance with (a), the interaction Lagrangian L: 
i s  related to the quasiparticle mass operator: 
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This variational formula can be illustrated graphically. 
We represent - L: a s  a sum over double, triple, four- 
fold, etc., collisions of the quasiparticles: 

The continuous lines here correspond to propagators 
G,, and the hatched 2n-sided polygon, which is the a p  
propriately symmetrized effective potential, corre- 
sponds to the amplitude of the local interaction of the 
n quasiparticles. In the graphical language, the varia- 
tion of L: reduces to the breaking of one of the continu- 
ous lines. The resulting set of graphs is the single- 
particle potential, the quasiparticle mass operator C,. 

Further simplifications a r e  associated with the spe- 
cific form of C,(r, p, c). If the mass operator E, is 
given by formula (3), then from (12) we obtain 

6L,=- I X i  (r) 6v, (r) dr. (13) 

Here, vi and v2 a r e  determined by Eqs. (10) and ( l l ) ,  
and 

The quantity vo is the quasiparticle contribution to 
the total density p(r) and differs only in the factor a(r )  
from the quasiparticle density n(r) normalized to the 
number of particles. Since the expression (13) for 
6L, contains only the variations 6vi, this means that in 
the considered approximation both the Lagrangian L, 
and the mass operator Z, depend on only three func- 
tions: v,, v,, and v, The functions Zi(vk) a r e  the varia- 
tional derivatives of L:: 

Therefore, they a r e  connected by definite relations 
which follow from the equality of the mixed derivatives 
of L;. 

It is obvious that the variation with respect to JI: of 
the Lagrangian L, determined from (9) and (15) leads, 
with allowance for the relations 

to the equation of motion (6) of the quasiparticles. 

Let us now consider what happens if we include the 
surface components of C, which depend on the momen- 
tum p. The principal one of these is the spin-orbit 
part - [ox p] v vo (r) linear in the momentum. The inclu- 
sion of the spin-orbit forces leads to the appearance 
in the variation of the Lagrangian of the additional term 

The other pdependent surface corrections to the mass 
operator Z, can be taken into account similarly. The 
Lagrangian L: i s  a functional of the new densities v,, 

and the corresponding components Ei a r e  determined 
by Eq. (15). 

The Lagrangian approach makes it possible to find not 
only the spectrum of single-particle excitations of a nu- 
cleus but also, a s  we shall now see, to calculate the 
binding energy of the nucleus, including the shell cor- 
rections. 

4. EQUALITY OF THE ENERGIES OF THE PARTICLE 
AND QUASIPARTICLE SYSTEMS 

The ground-state energy of a macroscopic system 
maintained in equilibrium by internal forces is related 
to the chemical potential p0 by the simple euqation E, 
= po A, which follows from the vanishing of the external 
pressure. Thus, in the macroscopic limit the energy 
Eo i s  equal to the quasiparticle energy E,= @,A, since, 
by definition, the chemical potential po is equal to the 
limiting quasiparticle energy p,. It is clear that a simi- 
l a r  assertion is also valid for an atomic nucleus with a 
sufficiently large number of particles, and the only 
question is that of i t s  accuracy. 

We define the quasiparticle energy of the nucleus by 
the usual relation 

!ere, we have used the circumstance that L, depends on 
J, only through vI. It follows from (17) that the differ- 
ence between the ground-state energies of systems of 
A + 1 and A quasiparticles is exactly equal to the ener- 
gy c, of the last occupied quasiparticle level (see Ap- 
pendfx 1). The binding energy Eo(N, 2) of the nucleus i s  
the sum of the Weizsacker drop energy 

and the shell correction 6EoS, which varies rapidly and 
irregularly with the particle number. Although 6EoS does 
not exceed 10 MeV (and the binding energy of heavy nu- 
clei is E, - 1.5 GeV), it is necessary to take into account 
the shell effects, for it is only these that offer hope of 
finding new islands of nuclear stability. The magnitude 
of the shell correction is entirely determined by the be- 
havior of the single-particle levels at the Fermi sur- 
face. It is maximal for magic nuclei, in whose single- 
particle excitation spectrum there is a magic gap. 

The energy E, of the quasiparticle system is also a 
sum of the drop energy 

and the shell correction 6Ef. The values of 6Et and 
6Et a r e  almost equal, since the quasiparticle spectrum 
near the Fermi surface is nearly the same a s  the spec- 
trum of the real single-particle excitations. The drop 
energies E{ and E r  also differ only slightly. The dif- 
ference between them can be estimated by comparing the 
chemical potentials 

The chemical potential p is determined implicitly by 
the exact relation 
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where x,, is the wave function of the last occupied sin- 
gle-particle state belonging to the system of functions 
that diagonalize the exact mass operator C(p). The 
chemical potential p, of the quasiparticles is deter- 
mined by the analogous relation 

The functions x,, and differ to the extent that C and 
C, a re  not identical to each other, 

Suppose that in C, all the necessary pdependent sur- 
face corrections have already been taken into account, 
Then the difference between C and Z, i s  due to the con- 
tribution of the second and higher derivatives of C with 
respect to c and p2, and therefore 

Since (p-  p O ) - c p ~ - 1 / 3 ,  it i s  readily seen that the con- 
tribution of the second derivative (a2Z/ac2), to the dif- 
ference g - p, i s  of order E , A - ~ / ~ .  The contributions 
of the terms ( a 2 ~ / a c a ~ 2 ) o ,  [ a 2 ~ / a ( ~ 2 ) 2 ] o  a r e  of the same 
order. Thus, if we do not include in the volume part 
C , ( ~ , E )  the terms quadratic in E and c j ,  a difference 
between pV and gy appears in the terms of order 
C , A - ~ / ~ ,  SO that the three main coefficients a, P, and 
y in the WeizsHcker expressions for the particles and 
quasiparticles a r e  the same. If we need to increase the 
accuracy (for example, to calculate the contribution of 
the curvature terms we must include in C, the 
terms with the second derivatives of 3. 

Thus, using the quasiparticle picture we can calculate 
the binding energy of the Fermi system, and also the 
spectrum of single-particle excitations near the Fermi 
surface, For this, it is necessary to specify phenomen- 
ologically the effective quasiparticle Lagrangian L,. As 
we shall see in the following section, the constants in 
L, a re  uniquely related to the parameters of the ampli- 
tude of the local quasiparticle interaction at the Fermi 
surface, which determines the response of the system 
to an external field. 

5. CONNECTION BETWEEN THE QUASIPARTICLE 
LAGRANGIAN AND THE AMPLITUDE OF THE 
QUASIPARTICLE INTERACTION 

The amplitude A(1,2,3,4) of the local quasiparticle 
interaction can be introduced a s  the variational deriva- 
tive 6 2 ~ , / 6 ~ , ( 1 ,  2)6G,(3, 4) or ,  equivalently, by the 
variational formula 

Graphically, the amplitude A is obtained from L, in the 
diagrams given above if two continuous lines a re  
broken. We introduce the notation to = 1, t1 =p2, and 
~ ~ = & = i a / a t .  Then the quasiparticle mass operator (3) 
can be represented in the form C,= tiZi(r) ,  and the am- 
plitude A corresponding to it a s  A= ti(1)t,(2)Ai,(ri, r2). 
From (la), we obtain 

In conjunction with (15), this expression enables us to 

determine readily the components of the local ampli- 
tude A from given quasiparticle Lagrangian L,. We now 
establish how A i s  related to the local amplitude 8 in- 
troduced in the theory of finite Fermi systems. This 
can be done in several ways. One of them uses a con- 
sistency c o n d i t i ~ n . ~  

This condition i s  a consequence of the spontaneous 
breaking of translation invariance in a system main- 
tained in equilibrium by internal forces: The displace- 
ment operator p commutes with the total Hamiltonian 
of the system but not with the mass operator Z. As a 
result, in the identity for the derivatives of the Green's 
function based on the Galilean transformation4 terms 
containing the commutator 

appear, This leads to the consistency conditiong: 

de' 
E(rl, r2, E) = J dr3dr4dr5drej -W(ri, r2, 1.; e, e') ar, ar2 2nc 

or ,  in symbolic form, 

In (19), the contour C is closed, a s  usual, in the upper 
half- plane of c'. The 4- pole block 8 (ri, r2, r3, r4; E , &'), 
which i s  irreducible in the particle-hole channel, is a 
short-range local function of the coordinates and uni- 
versal for all nuclei. The local component B is also 
present in the product G,G,, but i t s  pole part also con- 
tains a long- range interaction, which varies in a non- 
universal manner from nucleus to nucleus. 

In this paper, we shall use not only the coordinate 
representation but also a mixed representation. In it, 
the block 9 ( r l ,  pi, r,, p2; c ,  c') i s  a smooth function of 
the momenta pi and pz. 

The direct solution of Eq. (20) i s  impossible, because 
the theory is a s  yet incapable of calculating quantitative- 
ly the contribution $ the regions of integration far  from 
the Fermi surface. But, in contrast to the other rela- 
tions between the mass operator C and the two-particle 
interaction, Eq. (20) has an important feature-it can 
be renormalized. This operation, proposed by ~andau , '  
consists of decomposing the product GG into the sum 

The term A can be calculated theoretically. It contains 
the product G,G, of the pole parts and is a peaked 6- 
functional function of the variables E ,  Pi, and P2  in the 
neighborhood of the Fermi surface. The term B,  which 
like the block 9,  cannot be calculated in the theory, is 
regular at the Fermi surface. 

Once the decomposition (21) has been made, the origi- 
nal equation can be transformed by simple algebraic 
operations in such a way that it contains only one com- 
bination of the two universal functions 9 and B which 
cannot be calculated in the theory. For this, we substi- 
tute (21) in (20) and take the term Q ~ a Z ' / a r  to the left- 
hand side. Then, after application of the operator 
(1 - QB)-' to both sides of the resulting equation, and 
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denoting the amplitude of the two-particle interaction 
which arises a s  a result of the renormalization by the 
same letter A, we arrive at the equation 

The amplitude A satisfies an equation of the same type 
a s  the amplitude rW in the theory of Fermi liquids: 

,i=='%+%BA. (23) 

It has the same properties a s  9,  i.e., i t  is regular in 
the neighborhood of the Fermi surface and, like Q , is 
universal for all nuclei. 

Further, since the propagator A is, by definition, a 
&like function of E and fi in the neiqhbhorhood of the 
Fermi surface, the integration over the intermediate 
momenta in (22) takes place only in this region. There- 
fore, on the right-hand side of (22) the true mass op- 
erator Z can be replaced by the quasiparticle Z,. If, 
further, the initial 4-momenta a r e  near the Fermi sur- 
face, a similar substitution can be made on the left- 
hand side of this equation. Finally, if we ignore the 
small surface corrections in Z, which depend on the 
direction of the vector p, we can integrate the right- 
hand side of (22) over the directions of the intermediate 
momenta. Then in (22) there remain only the zeroth 
harmonics of A and A with respect to the angle between 
the momenta pi and p, After these remarks, we can 
write the renormalized consistency condition in the 
form 

pl'dplp'dpz liO(r,p, rl, p,; e, el) 
(Zn)" 

We again write 

Zq=E<Xi(r), A=Ei(i)Eh(2)Aik(r, r'). 

Then, integratiq Eq. (24) by parts, we obtain 

where 

de,  p,ldplp,2dp1 
AkiYr" b) = j 2z I ,,,. EhErA"(rt, p,, rz, pz; e ) .  (26) 

' c 

If we have substitute the product G,G, of the pole 
Green's functions a s  A', then (25) is transformed to 

A rigorous method for decomposing GG into A and B 
corresponding to this i s  given in Appendix 2. Exactly 
the same relation is obtained from the variational 
formula (18). Thus, the use of the consistency condition 
makes it possible to establish rather easily the connec- 
tion between the local amplitude A of the quasiparticle 
interaction and the irreducible block Q of two-particle 
scattering [see (23)]. From this, it is easy to obtain 
the connection between A and rW. The amplitude rW 
satisfies an equation of the same type a s  A, but with a 
somewhat different decomposition of GG into A and B. 
The propagator A;(rl,pI, r2,p2; E) used in the theory of 
finite Fermi systems has the form2 

4(2r)'i 
A," =------ 6(p,Z-~i-'(r,))~(~2-~~'(r,))6(e-~). -G,(r,,r2 de' E') 

PlPz 3ni 
X G,(r2,r,. e').  (28) 

It is easy to derive an equation relating A to rW: 
A=T'+rm(A-Ana) A. (29) 

The difference A- 4, in contrast to A;, no longer con- 
tains any long-range components, and therefore both A 
and rW, we can express this amplitude in terms of A 
and thus calculate rw on the basis of the quasiparticle 
Lagrangian. It can then be used in all the traditional 
problems of the theory of finite Fermi systems, namely, 
to calculate the static moments, transition probabilities, 
and so forth. Thus, virtually all the phenomena in low- 
energy nuclear physics can be described by means of the 
quasiparticle Lagrangian L,. 

In constructing the quasiparticle Lagrangian of a nu- 
cleus we shall, a s  is customary in the theory of finite 
Fermi systems, assume that the quasiparticle interac- 
tion amplitude depends on the density vo linearly and 
does not depend on v, and vt. Then Li can be written 
a s  

where A,, and y a r e  local functions of the coordinate 
differences. For the majority of applications, it is 
sufficient to restrict ourselves in A,,,, and y to the effec- 
tive- range approximation: 

In the remaining less  important terms, we need retain 
only the f i rs t  6-functional term. Hence, using (15), we 
find 

The principal component of the amplitude A is 
-loo (r,, r?) = (hoa+~vc+yr,2Avo) 6 (ri-r?) 

+ ~ r r a ( V v p )  VG(r,-rZ)+ (h00rp2+~r,zvO) A6 (r,-r?), (33) 
and the remaining components a r e  

i izk(rt,  rz) =hih8(rt-rl). (33') 
Finally, the quasiparticle energy E,, calculated in 

accordance with formula (17) with the Lagrangian (30), 
has the form 

To simplify this expression, we have omitted the iso- 
topic dependence of the coefficients, and we have also 
ignored the spin-orbit and Coulomb forces, which can 
be readily taken into account. 

If the quasiparticle Lagrangian L,  is specified, then 
the functional dependence C, (v,) i s  also known. Then 
the characteristics of nuclei can be calculated iterative- 
ly, For this, it i s  necessary to specify the original 
mass operator c:", solve Eq. (6) with it, construct the 
set of quasiparticle wave functions $iO) and, using (a), 
(9), and (101, calculate the densities vi(r). Then, using 
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the connection between Xi and v, found from (18), it i s  
necessary to find the following approximation ~6'' for 
the mass operator Z,, after which the entire procedure 
must be repeated. As can be seen from preliminary 
calculations, the iterative process converges fairly 
rapidly, and a s  a result we obtain the quasiparticle mass 
operator Z, and the densities vi(r), and with them we 
calculate the total binding energy of the given nucleus by 
means of (34). 

The proposed approach is based on the natural as- 
sumption of a local connection between the mass opera- 
tor C, and the quasiparticle density matrix. Then the 
number of parameters introduced in the theory is 
small. In general, this assumption i s  invalid if the 
system is near a phase transition point. Then the am- 
plitude A, which i s  assumed to be local, contains a 
long-range interaction, so that the Lagrangian L, also 
becomes nonlocal. As an example, we can take liquid 
3 ~ e ,  in which the existence of such long-range inter- 
action i s  indicated by the slow decrease of the har- 
monics r:, which can be attributed to the paramagnon 
singularity in the transverse ~ h a n n e l . ~  Similar, albeit 
small effects ar ise  in nuclear physics too if one takes 
into account the contribution of the collective degrees of 
freedom. Then the prescription for constructing L, 
must be made more precise and it is necessary to sepa- 
rate the long-range interaction explicitly, after which 
the remaining part of the Lagrangian can be parame- 
trized in the usual manner. 

6. DISCUSSION 

We have constructed a quasiparticle description suit- 
able for the theoretical investigation of many nuclear 
phenomena- the calculation of the masses and self-con- 
sistent fields of nuclei, and also the response of sys- 
tems to an external field-and we have constructed a 
quasiparticle Lagrangian whose variation gives the 
equations of motion of the quasiparticles. The quasi- 
particle energy E, corresponding to it is equal to the 
total binding energy of the system. This assertion is 
analogous to the Landay-Luttinger theorem which 
states that the number of particles is equal to the num- 
ber of quasiparticles. In the usual manner of introducing 
quasiparticles, when only the term linear in c - p and 
p2-  a re  taken into account in the quasiparticle mass 
operator Z,, the equality of E, and Eo holds to accuracy 
-Aq2I3. The accuracy of the theory can be increased by 
including in the definition of X, the following terms of the 
expansion. In principle, this increase in the accuracy of 
the theory should also permit calculation of the quasipar- 
ticle damping - (c - P ) ~ ,  and, when the theory i s  gen- 
eralized to temperatures T* 0, the calculation of the 
contributions nonanalytic in T to the specific heat and 
other characteristics of the system. 

In the limiting case when the quasiparticle interaction 
does not depend on the energy, the renormalization fac- 
tor a becomes equal to unity, and the results of the 
present approach a r e  identical to the analogous results 
of the Hartree- Fock method with effective  force^.^ In 
the form proposed in Ref. 6, this method, in contrast to 
the ordinary Hartree- Fock met hod, has no theoretical 

foundation, since one seeks the minimum of a quantity 
that is not the Hamiltonian of the system. That the nu- 
clear masses a r e  well reproduced in this approach is 
largely due to the special choice of the constants, which 
compensates the inaccuracy of the theory, but when at- 
tempts a r e  made to describe other phenomena with the 
same parameters results that contradict the experiments 
a re  often obtained. The reason for these contradictions 
is in the neglect of the energy dependence of the effec- 
tive forces. 

We note that methods similar to the Hartree- Fock 
method with effective forces a r e  frequently used in not 
only nuclear physics but also in solid state theory and 
other fields. Our analysis explains why such methods 
frequently lead to reasonable results when the energy 
dependence of the effective interaction is weak, and it 
gives the possibility of taking into account this depen- 
dence correctly when it i s  important. 

We now discuss the determination of the parameters 
of the effective quasiparticle Lagrangian from experi- 
ments. For this, besides the single-particle spectra 
and the energies of the nuclei, we can use the entire 
set of nuclear phenomena studied generally in the theory 
of finite Fermi systems. The corresponding experimen- 
tal data a re  being augmented continuously. The signifi- 
cant improvement in experimental techniques achieved 
in recent years has led to a veritable revolution in nu- 
clear spectroscopy. Where until recently the probabili- 
ties of electromagnetic transitions were known only in 
a few cases, tens of differential cross sections for the 
scattering of fast electrons and protons with the excita- 
tion of individual states 1 s) have now been measured 
with high accuracy and the transition densities 

extracted. These a r e  functions of the coordinates and 
contain immeasurably richer information about nuclear 
structure. Thus, the finding of the few parameters of 
the quasiparticle Lagrangian i s  a perfectly realistic 
problem. 

The method developed here can also be applied to 
other Fermi systems, for example, liquid ' ~ e  and quan- 
tum crystals. 

We a r e  very grateful to A. B. Migdal for a valuable 
discussion of the questions considered invthis paper, 
and also to S. T. Belyaev, V. M. Galitskii, Yu. -B. 
Ivanov, S. V. Tolokonnikov, and M, A. Troitskii for  
fruitful discussions. 

APPENDIX 1 

In this Appendix, we consider the problem of the 
existence of the quasiparticle Lagrangian L,, and we 
also compare the Lagrangian and Hamiltonian formula- 
tions of the problem. 

We begin with the quasiparticle Hamiltonian H,. Using 
the methods of the theory of finite Fermi systems, we 
calculate the change in the ground-state energy Eo 
= (00 I H 1 a , )  when the number of particles i s  changed. 
In accordance with the general formula, the change in 
the expectation value of the operator Q on the addition of 
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a particle to the state )b near the Fermi surface is given 
by 

b Q = ( F ( Q )  ~ o G , ) ,  (A.1) 

where b0G, is the change in the pole part G, of the 
Green's function G associated with the change in the 
rules of pole avoidance. When a quasiparticle appears 
in the state A,,, 

and the vertex part is F(Q) = Q + %GGF(Q). 

The vertex part y(H) was calculated earlier in Ref. 7: 

Therefore, in accordance with (A.l), we can write 

and, ignoring the terms of order A - * / ~ ,  we can obtain 

6Eo = x (TI ,  hqh) 6nh; 
h 

(A.3) 
%=a"%, h=a"epOa'"+a"Z ( p )  a"-ap (dZ/ae) ,. 

Using the formulas of Sec. 2, we can verify that cp, a r e  
orthonormalized eigenfunctions of the single-particle 
Hamiltonian h: 

Using (A.4), we can rewrite (A.3) in the coordinate 
representation: 

6E0= j h ( r ,  p) 6n(r ,  r') I..,dr, (A. 5) 

where 6n i s  the variation of the density matrix 

due to the redistribution of the quasiparticles at the 
Fermi surface: 

The variational relation (A.5) can be extended to arbi- 
t rary  variations of the population numbers of the quasi- 
particles o r  their wave functions. We shall call the 
corresponding functional E,, determined by the relation 

6Eq= j 6iWq ( I )  dr= j h ( I ,  p) 6n ( r )  dr (A.7) 

for  arbitrary variations of the quasiparticle density ma- 
tr ix n@), the quasiparticle energy of the system. It can 
be seen from (A.7) that the minimum of the functional 
E, is attained on the quasiparticle wave functions cp, 
determined by (A.4). Note also that if we add a quasi- 
particle to some state A,, i.e., 6n= 6,,, then it follows 
from (A.7) that 

from which we obtain for  the difference between the 
quasiparticle energies of neighboring nuclei, which de- 
termines the chemical potential of the nucleus, 

where &,, is the energy of the last occupied level. 

To construct E, on the basis of (A,?), it is necessary 

to know the functional dependence of h on n. It is here 
that the main shortcoming of the Hamiltonian formalism 
is revealed, namely, the consistency condition does not 
reduce to a simple formula that permits the finding of 
an analytic connection between h and n. However, for  
the mass operator Z, and the density yo an analytic con- 
nection can be established relatively easily, a s  we have 
seen. This makes the Lagrangian formulation of the 
problem preferable. 

To construct the quasiparticle Lagrangian L,, we 
write down the change in the expectation value of the 
Lagrangian 

L= j Pdr 

of the system with respect to the ground state a s  pro- 
duced by a variation of the quasiparticle population: 

6 ( L ) = ( F ( L ) 6 0 G q ) .  (A.8) 

The vertex part f(L) can be calculated in the same way 
as f(H). We then obtain the result 

Using the fact that the matrix elements of f ( L )  vanish 
for physical states, we can rewrite 6(L) for variations 
of G, near the Fermi surface in the form 

It follows that the coefficients of 6vo, 6vi, and 6v2 a r e  
not arbitrary but must be connected by the relations 
which follow from the equality of the mixed derivatives. 
The fulfillment of these equalities makes it possible to 
extend formula (A.lO) to arbitrary variations 6vi, the 
quasiparticle Lagrangian L, being determined by the 
same equation (A.lO) but for arbitrary variations. 

If the quasiparticle Lagrangian L, is known, we can 
readily calculate for  it the current density, the energy- 
momentum tensor, and so forth. At the same time, 
using the expressions for the variation 6vi from Sec. 3 
and the definition (16), we can write down for the cur- 
rent density vector 

o r  i t s  fourth component (the "charge" density) 

(A. 11) 

and, finally, for the density of the quasiparticle Hamil- 
tonian corresponding to the Lagrangian L, 

It is obvious that the Hamiltonian defined in this 
manner is identical to the Hamiltonian introduced above. 

APPENDIX 2 

We here renormalize the consistency condition, i.e., 
the transition from (20) to (27), more rigorously. In 
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Sec. 5, this transition is made under the assumption 
that the dependence of the interaction amplitude A on 
t i ( l )  and 5,(2) is linear. As we shall now show, the 
same result can be obtained in the general case if the 
propagator A in the decomposition (21) of the product 
GG into A + B  is appropriately defined. We recall that 
(22) contains the zeroth harmonic A0 of A with respect 
to the angle between the momenta pi and pz. The usual 
definition (28) for A0 given in the theory of finite Fermi 
systems can be regarded a s  the f i rs t  term in the expan- 
sion of the product GqGq in a ser ies  in 6 functions of 
s - p and p2-p;(r) and their derivatives. To obtain Eq. 
(27), it i s  necessary to include in A0 the following terms 
of the expansion. To avoid cumbersome expressions, 
we shall regard t i  a s  the components of the "vector" 
F = (l,p2, E ) .  We also introduce the vector to = [o,P;(~), 
p ]  and the vector 6 function 

Finally, we symmetrize the product GqG, formally with 
respect to the energies and the momenta, denoting 

G,G,=K~(~, ,  pi, rz, p,; el, ez)2ni6(el-e2)--Ko(1; 2). (A.14) 

We now define A0 a s  follows: 

where 3/85,, =- 1, and z, ,  is a sign factor, equal to zO, 
= z i , = 2 0 2 = ~ Z O = 1  and z i ,= l  for other i , k .  The co- 
efficients A!,, in (A.15) a r e  

They a r e  related to the functions A!,(ri, r2) defined by 
Eq. (26) by 

Xsko(ri, rz) -A,:(r,, rz) - ~ : ( ~ ) A O A ( ~ I ~  rz) 

-A<,o (r,, r,) gko (2) +%,"(I) Aoo (PI, rz) f r" (2). (A.17) 

Substitution of (A.15) in (22) gives 

where the subscript 0 means that the derivative is 
taken a t  c = p and fi2 =fii(r). Simple calculations lead 
to the relation 

by means of which we can readily obtain from (A.18) 
the required equation (27), in which the coefficients 
A!, a r e  expressed in terms of the zeroth harmonic 
nO(l ,  2) of the interaction amplitude and its  derivative 
at the Fermi surface a s  follows: 

aZn(i;,2) 
~ o o ( r ~ ~ ~ 2 ) = ~ ~ ~ ~ ~ l o ( l )  ( aE,( l)aEk(2) ) Ek0(2), 

a .k 

azA(i; 2) 
~ ~ l o ( ~ l , r ~ ) = A o l ( r ~ , r l ) =  -x zlk( ) EA0(2), 

k a g 1 ( l ) a ~ , ( 2 )  

Az0(r,, rd= Ao2(r~, r,) = -z zzk ( azn( i ;  2) 
) V ( 2 ) .  

k ~ E Z ( I ) ~ E , ( Z )  

Ai,(r,.o)- (. 2, ) , AS2(r,, rz) = ( 
a ~ , ( i ) a ~ , ( 2 )  

Alz (rl, - Azl (rz, rl) = 
(aE, aE2 (2) 
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