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It is shown that in an n-component homogeneous gravitating medium there are not only acoustic (Jeans) 
oscillations, which are synphasic, but also a new class of "asynphasic" oscillations, which are related to 
Langmuir plasma oscillations or optical vibrations of a crystal lattice. In contrast to the acoustic branches, the 
new branches remain oscillatory for arbitrarily large wavelengths, which changes the traditional picture of 
unavoidable gravitational condensation of all long-wavelength perturbations. Two theorems concerning the 
stability of a heterogeneous gravitating medium are formulated. In accordance with the first theorem, which 
holds in the special case when the components are at rest, there are n-1 different asynphasic branches of 
oscillations; the Jeans's instability can develop only in the synphasic branch. The second theorem is 
formulated for the general case of components moving relative to each other, and it determines the number of 
stream instabilities as a function of the relationships between the stationary parameters of the components. 

PACS numbers: 04.30. + x, 52.35.P~ 

5 1. GENERAL COMMENTS ponents. I t  is necessary to consider how perturbations 
can exist in the form of oscillations and without collaps- 

Gravitational condensation is  the reason for the ing when they have a sca le  s o  large that the elastic 
formation of the basic astrophysical objects, i.e., force-the pressure  gradient for each of the compo- 
s t a r s  and systems of them (from s t a r  clusters  to nents-becomes much less  than the gravitating force of 
clusters of galaxies). In his classic work Ref. 1, c ~ n t r a c t i o n . ~ )  
Jeans described the cri ter ion of gravitational conden- 
sation of perturbations in a homogeneous medium. The 
essence of this cri ter ion is that in a homogeneous 
gravitating medium oscillations with wavelength A 
greater  than some cri t ical  A,.,  cannot exist. According 
to Jeans, al l  perturbations with X > h ,  collapse. The  
meaning of this criterion is extremely c lear ,  namely, 
an increase in the scale of a perturbation increases the 
mass and, therefore, the perturbed gravitational force 
and decreases the pressure  gradient. As a result ,  the 
f irst  force is  predominant, which leads to collapse of 
the perturbations. 

We should note that cases  of a homogeneous gravitat- 
ing medium for which the above picture of gravitational 
condensation is valid a r e  extremely rare. ') For  ex- 
ample, our Galaxy consists of severa l  s t a r  and gas 
components, i.e., it is  a heterogeneous system. Thus,  
if heterogeneity is  a necessary property of an astro-  
physical system, it is  natural to consider what is the 
criterion of gravitational condensation for a heterogene- 
ous system. 

Hitherto, this problem has been solved trivially-the 
Jeans criterion for a homogeneous sytem has been used. 
The reason for this "inductive approach" i s  obvious in 
the present case; the Jeans  criterion is so  simple, and 
the physical mechanism underlying it-the balance of 
two forces, the gravitational and the pressure  forces- 
is so  universal that the possibility of using the criterion 
for more complicated sys tems was not doubted. 

The existence in a heterogeneous system of character- 
is t ic  oscillations with arbitrari ly large wavelength i s  
due to  the establishment of phase relations between 
the oscillations of the individual components. As a 
result ,  the total amplitude of the density wave is less 
than the amplitudes of each of the oscillating compo- 
nents. For example, in a two-component gravitating 
medium the oscillations of the density in the two differ- 
ent components a r e  antiphased, i.e., the density minima 
in one of the components coincide with the density maxi- 
ma in the other. On the one hand, an increase in the 
ra t io  x/x,., leads to an  increase in the rat io F ,  ,,/F ,,,,, 
(and it can be made much grea ter  than unity for  each 
of the components). On the other hand, the increase 
in A/A- .  leads to mutual suppression of the density per- 
turbations, which compensates the f i r s t  effect. Of 
course,  such a mechanism is  impossible in a homo- 
geneous system. 

The asynphasic oscillations investigated in the paper 
a r e  related to Langmuir oscillations in a p l a ~ m a , ~  op- 
t ical  vibrations of a crystal  lattice,' the vibrations of 
 molecule^,^ and s o  forth. 

In Sec. 3 ,  we investigate s t ream instabilities whose 
conditions of excitation a r e  identical to the analogous 
condition of the plasma two-stream instability.' The 
gravitational s t r eam instabilities develop on the back- 
ground of the ordinary Jeans instability of the entire 
medium in the same range of wavelengths. For this 
reason, they a r e  not s o  readily distinguished from the 

As is shown in the present paper, the picture des- Jeans  instability; for this, a s  is shown in Ref. 9, a 
cribed by Jeans is  qualitatively changed in a heterogen- specially prepared gravitating system is  required. . .  - 

eous medium. Even in the simplest case of components 
at  res t  (considered in Sec. 2) it is possible t o  have os- 52. THE CASE OF COMPONENTS AT REST 

cillations with wavelength appreciably exceeding the If a spatially unbounded medium is  heterogeneous and 
greatest of the Jeans wavelengths of the individual com- consists, for example, of a hot and a cold component, 
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then in this case there a re  two Jeans scales,  one for the 
cold component, kc, and one for the hot, A,. Let us 
consider how the perturbations with different wave- 
lengths behave in such a heterogeneous medium. We 
shall restrict  ourselves to the case of one-dimensional 
perturbations propagating along the x axis. Thus, all 
the perturbed quantities depend only on x ,  and the s ta-  
tionary psi-ameters a re  spatially homogeneous. We 
shall later generalize the relations that we obtain for a 
two-component medium to the arbitrary case of n com- 
ponents. 

For the cold component of the medium, the linearized 
equations of motion and continuity a re  

Here, v, is the x component of the velocity, pc is the 
density, PC is the pressure, and Il, is the gravitational 
potential. We shall distinguish the stationary quantities 
from the perturbed quantities by the subscript 0. 

For the hot component, we have an analogous system 
of equations: 

The two systems of equations a re  related by the Pois- 
son equation 

We assume that the perturbations a r e  adiabatic and 
that the presswe P=P(p) is related linearly to the den- 
sity for the perturbed quantities: 

where 4 = BP,/B~, is the square of the velocity of 
sound. Obviously, there is an equation of state for 
each of the components of the medium. 

Since the medium is spatially homogeneous, we 
choose the perturbed functions in the form 

and since the equations a r e  linear, it is  sufficient to 
consider an arbitrary harmonic of the Fourier series. 
Thus 

Omitting in what follows the subscripts w and k of the 
perturbed quantities, we readily arrive a t  the system 
of equations 

from which we obtain the required dispersion relation 

Here, WE, = 4nGp,, ath= 4nGph. Denoting the left-hand 
side of this equation by f (a2), we represent this function 
schematically in Fig. l(a). The roots of the dispersion 
equation correspond to the points of intersection of the 
curves f (w2) with the straight line f = - 1. It can be seen 

FIG. 1.  a) The case of a 2-component medium (vOi = 0); b) 
the case of an n-component medium (vOi = 0). 

from Fig. l(a) that the dispersion relation can have 
only one negative root w2 =-WE, which is when the left- 
hand curve f(w2) has a behavior similar to the broken 
curve (intersects the straight line f =-1 at  negative 
values of wZ). But if the left-hand curve f(wz) has a 
behavior similar to the continuous curve, then both 
roots a r e  positive, w: ,2 > 0. 

The above analysis of the roots of the dispersion 
relation for the two-component system can be readily 
generalized to the case of an n-component system. For  
an arbitrary i-component gas,  its perturbed density is 

and, therefore, the dispersion relation for the n-com- 
ponent system has the form 

where w:, =4rGpOI. We again denote the left-hand side 
of this equation as  f (w2); we have plotted f (w2) schema- 
tically in Fig. l(b). It can be seen from Fig. l(b) that 
the dispersion relation for  the n-component system can 
have only one negative root (w2< O), which is when the 
extreme left-hand curve f (w2) has a behavior similar 
to that of the broken curve. All the remaining roots a re  
positive. 

Thus, the following theorem can be formulated.') 

In a heterogeneous system consisting of n homoge- 
neous components, only a single aperiodic instability 
can develop, this occurring when 

The remaining n - 1 collective modes a r e  asynphasic 
oscillations. 

We must now consider what wavelengths participate 
in the aperiodic instability of a heterogeneous system. 
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T o  establish this, we res t r ic t  ourselves to the case of and w:, we find w:= a:,, w:= w:,. The corres-  
a two-component medium. ponding solutions of the dispersion relation a re  

The solution of the dispersion relation for the two- a?=-ool ,  ~ ~ = ( k z ~ , b 2 0 0 c f + H t c , c f ~ O d ) / ~ 0 2 ,  

component medium is where w: 1 w:, + wZoC. The  f i rs t  solution describes the 

1 Jeans instability of a heterogeneous system for which 
0' = -(-- ( 0 h ~ + 0 : )  * ( ( O ~ ~ - O ~ ~ ) ~ + ~ ~ O ~ ~ O O ~ ~ )  '1, 

2 the square of the growth ra te  is equal to the sum of the 
squares of the Jeans growth rates of the instabilities 

where wi = wih - @<,, wz = w:, - #&. We consider the that would each develop by itself in the corresponding 
following four limiting cases : 

component of the medium alone. The second solution 
1) The wavelength of the perturbation is less than describes the propagation of asynphas ic oscillations. 

the Jeans length in both the hot and the cold components, 
Obviously, it i s  not difficult to generalize these re-  X<< A,, A,. 

sults to the case of an n-component medium. In sum- 
From the equivalent inequalities p&>> w:, and @<, marizing, it is  just such a system that we shall have in 

>> w;, we obtain wz = -#I&, wi= - PC:,, which after mind. 
substitution in the solution of the dispersion relation 

Thus,  1) perturbations with wavelength smaller  than leads to two oscillation branches, 
the smallest  of the n Jeans lengths lead to the occur- 

each of which is determined by the parameters of the 
hot and cold components of the medium, respectively. 

2) The wavelength of the perturbation is less than 
the Jeans length in the cold component and grea ter  than 
the Jeans length in the hot component, A, >> X >> A,. 

The equivalent inequalitites @I& >> w:,' and w:, 
can be written together as  w:, >> k2<,>> @ e h > >  mic. We 
see  that in this case the density of the hot component 
by many times the density of the cold component, w:, 
>> 020,. 

From the system of inequalities, we obtain wi-w;,, 
u:= - @<,. Using these values of the squares of the 
characteristic frequencies, we find the following solu- 
tions of the dispersion relation: 

The first  of these solutions describes a Jeans instabil- 
ity whose growth rate is determined by the density of 
the hot component. The second solution describes 
asynphasic oscillations in the heterogeneous medium 
with velocity equal to the velocity of sound in the cold 
component by itself. 

3) The wavelength of the perturbation is greater  than 
the Jeans length in the cold component and less than it 
in the hot component, Ah>> A >> A,. 

From the equivalent inequalities #<, << w:, and 
PC:,>> w:, we find wi= - k 2 e h ,  4 = WE,. The solutions 
of the dispersion relation in this case a r e  

",l=-"Oc?, @22%k=~lh2. 

The f i rs t  solution describes an aperiodic instability of 
the heterogeneous system whose growth ra te  is  equal 
to the Jeans growth rate of the cold component of the 
medium by itself. The second solution describes asyn- 
phasic oscillations propagating in the heterogeneous 
system with frequency equal to the acoustic frequency 
of the oscillations in just the hot component. 

4) The wavelength of the perturbation is  greater  than 
the Jeans lengths in both the cold and the hot component, 
X >> A,, A,. 

rence of a different oscillation~branches, each of which 
is determined by the parameters of its corresponding 
subsystem; 2)  perturbations with wavelength greater 
than the Jeans lengths of m components of the medium 
and less  than the Jeans lengths of n-m components lead 
to instability of the system, the square of the eigenfre- 
quency being equal to  the sum of the squares of the m 
Jeans frequencies taken with the minus sign, 

and to the occurrence of n-1 branches of asynphasic 
oscillations. For m = n ,  we ar r ive  a t  the last  case,  4, 
considered above. 

The existence of oscillations with arbitrari ly large 
wavelength in the heterogeneous system is explained by 
the fact that the density oscillations in the different 
components compensate each other. Indeed, it can be 
seen from Figs. l (a)  and l(b) that with the exception of 
the extreme left-hand root, which can correspond to 
instability, and other root i lies between p<, and 

i.e., p<, < w2< kZC25(i+0. AS follows from the 
expressions for the perturbed densities, it is precisely 
the t e rms  p, and p,+, that make the largest  contribution 
for root i. Since w2 - 0 but w2 - ka&i+ l )<  0, the 
signs of pi and pi+, a r e  opposite. 

53. THE CASE OF MOVING COMPONENTS, ~ 0 , -  f O  

The picture described above changes qualitatively if 
the components of the medium have velocities relative 
to one another with a magnitude exceeding the corres-  
ponding velocities of sound. Then nongrowing oscilla- 
tions occur a t  wavelengths less than the Jeans length 
(see Sec. 2 ,  Case  1). In the opposite case (Case 4 in 
Sec. 2), when the wavelength of the perturbation exceeds 
the Jeans lengths, asynphasic oscillations a r e  excited, 
and in this case n different instabilities develop in the 
system. 

If the unperturbed velocity of the cold component is 
v,,, and that of the hot v,,, then the perturbed densities 
of each of the components a r e  now 

k'+ 
(o-kvoc)2-kZea.2 

k'rb 

From the equivalent system of inequalities @I?=<< w:, p ~ = P r  (o-kvOa) 2 - k 2 ~ , ~ 2  
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and the corresponding dispersion relation is 

and for n components 

The roots of this equation determine in general form 
the solution of the problem we have posed. 

We consider f irst  the simplest example when the den- 
sity and pressure of the cold and hot components a re  
equal: w:, = w:, = w:/2, c2= = 4, = 6. In the frame in 
which v, =-vo,= vo, we have the dispersion relation 

The solution of this equation is 

o'=k'(vo'+c,') -ooa/2f (4kGv2c.'-2ooak'vo'f o2/4)".  

We take three different limiting'cases: a) w l , ~  k?v2,, 
#<; b) w:<< P4, Pg; cf #ti:= w?,>> Pe. 

In case a), we obtain two roots: 

The first root describes the Jeans instability, the 
second a two-stream instability for I vo 1 > c,. As we 
see,  the necessary condition for the two-stream in- 
stability for the heterogeneous gravitating medium is 
identical with the analogous condition in a plasmae8 

In case b), both roots a r e  positive, which corres- 
ponds to an oscillatory regime. 

In case c), we have 

Thus, two roots describe growing solutions, and the 
other two damped solutions. 

We represent the dispersion relation obtained above 
for the case of streams of equal densities and equal 
(in modulus) velocities in the form 

f ( o )  =-2.  

The function f (w) is shown graphically in Figs. 2(a) 
and 2(b) for the cases vl,<< c: and v2,>> 4,  respectively. 

As follows from Fig. 2(a), in the case G<<< it is 
only possible to  have the Jeans instability (under the 
condition w:> PC:, which is represented by the broken 
curve, the two roots w, and w, on the real  axis a r e  
absent). When w2,< k2<, a11 four roots a r e  real. 

In the case va,>> 4, a s  can be seen from Fig. 2(b), 
al l  the roots a r e  real  when w:<2k26, while for wt 
> 2k?4  they a r e  all imaginary. If the latter condition 
is satisfied, the two-stream instability develops in the 
system as  well as  the Jeans instability. 

We now turn to the formulation of a theorem about 
the number of unstable roots for the general case of 
n moving components. 

We label the components of the heterogeneous system 
in order of decrease of the numbers (v,, +c,), corres- 

FIG. 2. The case of two beams of equal (in modulus) densities 
and velocities: a) vi  << c:, b) vZ0 >> c:. 

ponding to them: 

Each of these numbers determines a flow. We shall 
say that two arbitrary flows i and j (i> j) a r e  coupled if 

We shall distinguished coupled flows by brackets: 

We shall put a stroke through brackets that a r e  com- 
pletely "covered" by some other brackets (1-2, 2-3, 
i-j in the given example). The remaining brackets de- 
termine independent elements. We also include the 
uncarpledflows (flow 5 in the given example) among the 
independent elements. We now have the following theo- 
rem. 

The number of instabilities of a heterogeneous system 
with moving homogeneous flows is equal to the number 
of independent elements. 

"If the neutrino rest mass i s  assumed to be nonzero.' then 
there are no such cases at all. 314  

2%e recall that the pressure gradient i s  inversely propor- 
tional to the wavelength of the perturbation, while the gra- 
vitational force is  directly proportional to it. 

3)The content of this theorem for the case of two components 
was first stated by Ya. B. Zel'dovich during a seminar at 
the P. K .  Shternberg State Astronomical Institute; the possi- 
bility of a generalization of it to the case of an arbitrary 
number of components was communicated to us by L. P. 
Grishchuk (for more details, see Ref. 10). 
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