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The effect of electron-phonon interaction on the electron excitation spectrum in a normal metal is considered 
for an arbitrary shape of the Fenni surface and without any simplifying assumptions on the phonon 
dispersion law. The formulas obtained are a generalization of the results obtained by Migdal [Sov. Phys. JETP 
7,996 {1958)]. Singularities, due to interactions with the phonons are predicted in the electron spectrum. 
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1. As is well known, the energy spectrum of metals 
consists of two branches, fermion (electrons) and boson 
(phonons). The existence of the two weakly coupled branch- 
e s  of the energy spectrum is due to the difference in masses 
of the electrons and ions (m <<M). The basis of the calcula- 
tion of the properties of metals is the adiabatic approxima- 
tion, accordingto whichthe interaction between electrons 
and phonons can be considered by perturbation theory 
in most cases. The electron-phonon interaction leads 
to many observed effects, of which the most studied 
are: a) the metal resistance connected with the colli- 
sion of electrons with phonons, b) the renormalization 
of the phonon dispersion law of the phonons, by the 
interaction with electrons (sound absorption, see, for 
example, Ref. 1, and the Migdal-Kohn singularities2). 
Less studied is the effect of electron-phonon interaction 
on the electron spectrum of the metal, other than the 
formation of Cooper pairs and the transition of the 
metal into the superconducting state (these problems 
will not be studied by us). 

According to Migdal,' the electron-phonon interaction 
renormalizes the electron spectrum, and the renormal- 
ization touches mainly on electrons with energies 
I E - E ~ ~  sfiWD (EF is the Fermi energy, @wD is the Debye 
energy). We note that the large ("from the viewpoint of 
the phonons") energy interval a h D  is small in electron 
scales (h, <<&,). Further, since the speed of the 
electrons vF is much greater than the speed of sound s ,  
the region of quasimomentum space touched on by the 
renormalization is very small: 

This estimate shows that all the geometric singularities 
of the Fermi surface of the metal should manifest them- 
selves in the renormalization, although on the Fermi 
surface itself (at & -cF) the renormalization of the en- 
ergy is absent (see Ref. 3 and also Ref. 4). 

The task of this paper is the generalization of the 
results of Migda13 to the case of an arbitrary disper- 
sion law of the electrons and phonons (in Ref. 3, all 
the results were obtained for a quadratic electron 
spectrum and a linear phonon spectrum). 

2. At f i rs t  glance, the words "renormalizationV and 
"arbitrary dispersionw do not go together. How can we 
renormalize the function E =&(p) which is not defined 
precisely? The point is that: a) without account of the 
interaction with phonons, the range of ~ ( p )  over which 
this function changes by an amount of the order of itself 
is determined by the band structure vFAp, 
while Ap -E/a (a a r e  the dimensions of the cell of the 
crystal), and the electron-phonon interaction, accord- 
ing to (1), affects the region of p-space immediately 
adjoining the Fermi surface; b) account of the electron- 
phonon interaction leads to a finite lifetime of electrons 
outside the Fermi surface. 

Thus, we shall s tar t  out from the fact that we know 
the function E =  ~ ( p )  that determines the dispersion law 
of the electrons without account of their interaction with 
phonons. '' The spectrum of the phonons is determined 
by the dependence of their energy tiwj on the quasiwave 
vector k(w, = oj(k)). Among the phonons there a re  
bound to be acoustic phonons ( j  = l , 2 , 3 )  for which 
w, = sj(n)k a s  k - 0 a s  k - 0 (n = k/k). In polyatomic 
metals, in addition, there a r e  optical phonons 
( j  = 4,5 ,6 ,  . . . , w ,(k) - 0 a s  k - 0). Use of perturba- 
tion theory permits us to write down the change elec- 
tron energy change 6c=E(p) -c(p) due to interaction with 
the phonons [&(p) i s  the renormalized energy] in the 
form of an integral over p-space (see, for example, 
Ref. 5, p. 158 of Russ. transl. ): 

where 

with e r r o r  up to a factor 2112/(2nE)S12 is the matrix 
element of the electron-phonon interaction and is re-  
sponsible for the transition of the electron from the 
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state I p) to the state 1 p') by emission of a phonon of the 
3 -th type with quasimomentum p - p'. It i s  written in 
this form to single out the dependence on p - p' a t  
I p - p' I <<pF; Ap .. then tends toward the deformation po- 
tential and is of the order of c,. The regions of inte- 
gration in (2) and (3) a r e  given by the equilibrium Fer- 
mifunction fp-the Fermistepat T =O. In what follows, 
we shall consider only absolute zero temperature. In 
the solution of problems of this type (see Refs. 1 and 6) 
i t  is convenient to begin with the investigation of 
Imwp)  because there i s  a 6 function in the integral in 
(3), the argument of which goes to zero on the surface 
in p' space (we call i t  the F,  surface): 

Since Ew, <<c(p), the F, surface passes very close to the 
equal-energy surface (the E surface.): 

We denote the value of the quasimomenturn p' on the& 
surface (5) by p . The distances along the normal from 
the E surface to the F j  surface a re  equal to 

and i f  Ew, i s  the energy of the acoustic phonon, then a t  
one pointzJ (p' =p)  the F j  and c surfaces touch each 
other (Fig. la).  In the case of an optical phonon, the 
F ,  surface lies entirely inside the E surface (Fig. lb). 
For definiteness, we have assumed that the E surface is 
the electron surface. For  comparison we have drawn 
the hole &and F j  surfaces on Fig. 2 in the case of an 
acoustic phonon. 

3. We first  consider I m b ~ ,  which is due to the inter- 

FIG. 1. a )  E and Fy surfaces: 1-electron equal-energy sur- 
face, 2-F;C surface; b) & and F?D' surfaces: I-electron 
equal-energy surface, 2-FYt surface. 

FIG. 2. E and surfaces: 1-hole equal-energy surface, 
2 - T  surface. 

action of the electron with acoustical phonons. It is 
seen from (3) that the contribution to the damping is 
made by the electron states (p') which a r e  located out- 
side the Fermi surface. At 1 s ( ~ )  -c, 1 << Em,, i. e. , at  
( p - p, ( << ms (p, is the point on the Fermi surface 
closest to p), only a small section of the F, surface is 
located outside the Fermi surface. Since, w a k for  
small wave vectors, near the contact point of the E and 
F, surfaces the latter surface is a cone (Fig. 3) 

Ap, = -s Ip-p.1, 
u (PI 

where AD,, = p i  - f in ,  and p: and pn a r e  the projections of 
p' and p on the normal to the surface a t  the point p. 

Using formula (7) we can easily carry out the integra- 
tion in (3). As a result, we get 

Im 8e (p) =hp(e,-ep) ', e - e ~ a f i o ~ ,  

A?=-nIAG 1'/3(2nR)'ps'uF. 

Here A% is the value of a t  p' = p =  p,, up = v(pF) 
(see above). 

It i s  then seen that the local properties of the Fermi 
surface appear only because of the factor (42 r/v(p,), 
which is different for different points on the Fermi 
surface. However, there is no basis for expecting any 
sort  of singularities in I m w p )  when the point p is dis- 
placed around the Fe rmi surface (if c, - c, c fiw,). An 
exception is a Fermi surface which contains a conical 
point (at which the velocity is equal to zero). The rea- 
son for the weak sensitivity of Imdc a t  E,-c, <<&, to 
the geometry of the Fermi surface is that the contact 
of the c and F j  surfaces takes place a t  the conical point 
of the latter. 

FIG. 3. Fragments of & and Fy surfaces near their point of 
contact p' = p. 
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We note that a s  & , - E ~  - 0, the electron-phonon damp- 
ing mechanism is not the basic one: a t  &, -cF s ms2 
(AP 5 msa/vp) we have Im d c ~  (s, due to electron- 
electron interactionS (in particular, via the phonons). 

The cubic dependence of I m 6 ~  on E -E,(E-E, <<h,) 
was obtained by Migda13 in a consideration of an iso- 
tropic spectrum. As is seen from the present dis- 
cussion, this result has a general character-it does 
not depend on the shape of the Fermi surface. Analy- 
sis of formula (3) shows that the conclusion drawn in 
Ref. 3 a s  to the weak dependence of I m 6 ~  on E-&I, a t  
E-cp >>fiWD is valid in the general case. If the F, sur-  
face lies entirely outside the Fermi surface, then 

Since we a re  interested in a value of p close to the Fer-  
m i  surface, i t  follows that after integration over the 
energy we can obtain the limiting transition 
p--pF,pc-p;r. Assuming (Mv,(2=s/m, mv$=Ms2, 
we can establish the fact that Im&= -6wD in agreement 
with Ref. 3. 

4. The transition in Im6& from a cubic dependence to 
saturation does not take place smoothly, but is accom- 
panied by singularities. These a re  bound to  include a 
singularity a t  that value p = p c  at which the F,  surface 
goes completely outside the Fermi surface (Fig. 4). If 
E(~)sE , (E~=E(~~) ) ,  then the line of intersection of the F ,  
surface and the Fermi surface is an ellipse. This al- 
lows us  to compute the singular part (SP) of JmQ, which 
is different from zero a t  &(p) S E  : 

Here m: = (Gl$f2)112 is a parameter kith the dimension 
of mass,  which arises in the expansion of the argument 
of the 6 function near the point of contact 

x,,, a re  orthogonal coordinates on the F ,  surface, fils,, 
a s  can be shown, have the order of magnitude (m~)"'. 
In (lo), all the quantities that depend on p' a re  taken a t  
the point of contact3) p' = p ,,,. Thus, a t  p = p,, the 
quantity Im& has a kink a s  a function of energy, and 

FIG. 4. Arrangement of the Fermi surface and & and F, sur- 
faces at p= p,: 1-electron equal-energy surface, 2 - T  sur- 
face, 3-Fermi surface. 

It is necessary to note that the signs of fi, and ms for 
the obligatory singularity a r e  fully defined independently 
of the shape of the Fermi surface-the departure of the 
F ,  surface to the outside of the Fermi  occurs only 
through the contact a t  the elliptical point. 

In the case of a complicated shape of the Fermi  
surface, intermediate singularities a r e  possible, in- 
cluding some due to a contact of the F j  surface with 
the Fermi surface, accompanied by a change in the 
topology of the line of intersection of these surfaces 
(Fig. 5). In these cases, 2, and fl, have different 
signs, which leads to a strengthening of the singularity 

SP Im 8e=K,'A lnJAI, A=e,--en., (13) 

while K: differs from Kc in that (#lfi,)1'2 is replaced 
by ( 1 filfi2 and there is no factor a. 

Since the singularity ar ises  a t  1 p - p,,,, I - p , ,  i t  is 
weakly sensitive to the form of the phonon dispersion 
law. In particular, the acoustical branches a r e  not 
singled out in any way in this sense. 

Strictly speaking, the singulartities ar ise  because of 
the use of perturbation theory. Account of the finite 
lifetime of the electron in the right hand side of for- 
mulas (2) and (3) washes out the singularities. How- 
ever, i t  can be supposed that in the case of not too 
strong a coupling between the electrons and the phonons 
the washing-out will not entirely eliminate the singu- 
larities. This can be contributed to by anisotropy of 
the Fermi surafce. A similar situation occurs with the 
Migdal-Kohn singularity,' which is observed experi- 
mentally, although the finite free path length washes 
i t  out. 

5. The contribution of the optical branches of the 
phonon spectrum to the absorption of the electrons 
( Im6~)  begins with that value p=p,ODt a t  which the FOP' 
surface is touched by the Fermi  surface. As is clear 
from the foregoing section, 

At E, - c,: >>6wo, the contribution of the optical 
branches of the spectrum is of the same order a s  that 
of the acoustical [see (9)]. The departure of the FoDt 
surface to the outside of the Fermi surface is naturally 
accompanied by a jump in the derivative (12) and be- 
tween p,O" and the obligatory singularity there can be 

FIG. 5. Intersection of the Fermi surface and the F, surface 
(the Fj  surface i s  shaded) at p=p& The line of intersection 
contains the point of self-intersection. 
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intermediate singularities that include singularities of 
the type (13). Neglect of the dispersion of optical the 
phonons w,(k) = w,, k = p - p' leads to a jumpwise change 
in Im6& (compare with Ref. 7): 

6. We now determine the spectrum renormalization 
proper, i. e. , Re6c. For elucidation of the dependence 
on E,,-E,, we must integrate over &' in (2). This can be 
done since, in the f i rs t  place, the good convergence of 
the integrand allows us to extend the integration to in- 
finity and, in the second place, the implicit dependence 
on E' can be omitted because v, >> s and the change in 
the momentum on going from one equal-energy surface 
to another in a layer =Ew, is very small and can be 
neglected. The latter circumstance allows us, after 
the integration, to take the limiting transition 
p: -pk The result is thus obtained in the form of an 
integral over the Fermi surface: 

We then immediately obtain a generalization of the 
formulas derived in Ref. 3: 

ds' 
Re be=-2(e.-8,) 9 - IM,, Ia/ho (p-p'), 

~ ( P F  ) 

The f i rs t  of the formulas (17) can be rewritten in the 
form of a renormalization of the Fermi velocity: 

and i t  is seen that 6v,/vF does not depend on the ratio 
of the masses of the electrons and ions. We recall 
that this formula is strictly applicable only a s  long a s  
I 6v,/v, I << 1. At I 6v,/v, 1 - 1 use of perturbation 
theory is incorrect. However, account of the succeed- 
ing higher approximations cannot change the charac- 
t e r  of the result. With increase in energy upon departure 
from the Fermi surface, the velocity approaches i ts  
unrenorrnalized value [see the second formula of (I?)]. 
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The singularities in the I m w p )  dependence, of 
course, manifest themselves in the Rewp)  dependence. 
Their character is easiest to determine by using a dis- 
persion relation of the Kramers-Kronig type. * It is 
not difficult to establish the following relation: 

I m k  jump in the derivative Aln(A/ 
Re &: ~ l n l  A 1 jump in the derivative. 

The coefficients of the singular parts in Im6& and Re& 
a r e  identical apart from the sign and a numerical factor. 

The detailed studies of the electron spectrum that a r e  
being carried out a t  the present time allow us to hope 
for the possibility of an experimental test of the rela- 
tions obtained here. 

In conclusion, we take this opportunity to thank I.M. 
Lifshitz and L. P. ~ i t a e v s k i i  for stimulating discus- 
sions. 

w e  shall not take into account the multiband character of the 
electron spectrum. Account of multiband bansitions due to 
electron-phonon interaction is of most interest for phase 
transitions of order 2 i ,  which require a special considera- 
tion. 

2 ) ~ f  among the vectors p-p there a r e  vectors 2*fib, where b 
is one of the vectors of the reciprocal lattice, then the & and 
the F, surfaces touch each other at  more than one point. 

3 ) ~ h e  contact point depends on p. Usually, I pc -p,,,, I differs 
from 2p, by an amount - ms . For a sphere, I pc - 2pF 1 = 2ms. 
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