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The problem of the crystallization of the electrons (vacancies) in the subspace of the states of an arbitrary 
Landau level is solved exactly. The vibrational spectrum of the lattice does not depend on the level number, 
but the mean square displacement of an electron from a lattice site is proportional to this number. It is shown 
that the effect of the neighboring cyclotron levels on the dynamics of the system of electrons (vacancies) of a 
partially filled Landau level amounts primarily to a relatively large shift in the ground-state energy of the 
system, and is therefore unimportant in considering the stebiity of the lattice. 

PACS numbers: 63.10. + a 

5 1. INTRODUCTION 

The problem of the determination of the energy spec- 
trum of a system of two-dimensional electrons in a 
perpendicular quantizing magnetic field B has recently 
aroused a great deal of theoretical interest. This model 
describes approximately the properties of rea l  quasi- 
two-dimensional objects in a magnetic field (inversion 
layers on semiconductor surfaces, electrons on a hel- 
ium-liquid surface, etc.; s ee  Ref. l). FukuyamaZ and 
the present authors3 have shown that if A<< K [A = (cE/ 
e3)IB is the magnetic length and R is the mean electron 
spacing], then the ground state of the system is the 
electronic Wigner lattice (WL), and have determined 
the vibrational spectrum of the lattice. Kuramoto4 and 
Fukuyama et aL5 have later investigated the strong- 
magnetic-field (i.e., 8/k<<Ew,) case, in which the cy- 
clotron Landau levels N a r e  well defined in the system. 
They have assumed that the number of electrons in the 
system Ne <No (No =s/2nAZ is the number of possible 
electronic states at the Landau level and S is the area 
of the sample), so  that at sufficiently low temperatures 
the electrons occupy only the lowest cyclotron level with 
N = 0. It is found4& that under these conditions the WL, 
which exists when the population of the level is small  
(i.e., when N,/N,<< I), goes over into a charge-density 
wave when the population is increased to  N,3Lf10 and, 
accordingly, A - R. 

The purpose of the present paper is to investigate 
another case, often encountered in experiment, in 
which a t  T = O  K a few of the lowest Landau levels a r e  
completely filled and the next-to be specific, the N-th- 
level is only partially filled. We shall show that in the 
case in which the population of the N-th level is small, 
s o  that the corresponding minimum dimension of the 
region of localization of the electrons A(N + I ) " ~  << R, 
the ground state of the system is also a WL formed 
by the electrons of this level. If the population of the 
level is close to  the maximum value, then a similar 
result is valid for the vacancy system of this level. 

In our previous paper3 we constructed the wave func- 
tions of the WL in a magnetic field as superpositions 
of the states of the various cyclotron Landau levels. 
Clearly, the weight of the states of the levels with N#O 
in this superposition will tend to zero in the limit of 

strong magnetic fields. Therefore, the results of this 
paper cannot be used in the N >  0 case under considera- 
tion. Furthermore, the standard method, used in Ref. 
3, of diagonalizing the lattice Hamiltonian is not ap- 
plicable in the present case, since the kinetic energy of 
the electrons (vacancies) in the subspace of the states 
of a given Landau level is generally a constant. Thus, 
to find the low-lying WL states at the N-th Landau level 
in first-order perturbation theory, we need to diagonalize 
only the potential energy in the  indicated subspace. This 
problem is solved in 82 of the present paper with the aid 
of the second-quantization formalism. Further, in 83 we 
consider the second-order perturbation-theory correc- 
tions, the analysis of which is necessary for the eluci- 
dation of the question of the existence of the WL in the 
presence of filled levels in the system. 

$2. DIAGONALIZATION OF THE POTENTIAL 
ENERGY OF THE ELECTRONS OF THE N-TH LANDAU 
LEVEL 

Let u s  consider a system of two-dimensional elec- 
trons moving in the (x ,  y) plane in a background of uni- 
formly-distributed neutralizing charge. The system is 
placed in an  external perpendicular magnetic field (vec- 
tor  potential A = i[B x r] ) s o  strong that the condition for 
the applicability of perturbation theory is fulfilled: 
8 h < <  Ew,. Let the number of electrons in the system 
be such that a t  sufficiently low temperatures a few of 
the lowest Landau levels a re  completely filled by elec- 
trons and the next upper-to be specific, N-th-level is 
occupied by Ne electrons, the mean spacing of which 
is considerably greater than the corresponding minimum 
dimension of the region of localization of an electron, 
ie., for which R >> A(N + I)''?. If we neglect the Coulomb 
interaction, then the ground state of the system is 
multiply degenerate with respect to the different ways 
of disposingthe N, electrons in the states of the N-thlevel. 

T o  find the energy of the system in first-order per- 
turbation theory, we must diagonalize in the subspace 
of the states of the degenerate N-th Landau level the 
potential energy operator: 

dr, dr, 
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Here $,(r) is the electronic field operator of the N-th 
Landau level. The second term in (1) describes the 
interaction of the electrons of the N-th level with the 
uncompensated portion of the uniform background. As 
will be seen below, in the case of the low occupancy of 
the N-th level, the minimum of the energy operator 
6 is attained when the positions of the electrons a r e  
close to the si tes of some regular two-dimensional 
lattice (a WL) with order parameter R. Let R,  = (X,, Y,) 
be the si tes of this lattice. 

Let us construct a single-particle basis whose wave 
functions a r e  linear combinations of the states of the 
N-th Landau level, and a r e  centered on the WL sites. 
At the j-th si te we se t  

For the functions (2) to be a complete se t  in the sub- 
space of the states of the N-th Landau level, we clearly 
need to take at each si te as the basis functions only M 
of the most highly localizedfunctions (-N c m s M - N - I), 
where M=[N,/N,] is the number of states of the Landau 
level per electron, a number which is fairly high in the 
case of low occupancy of the level: M - ( R h ) 2 .  On the 
other hand, the functions (2) can be considered in our 
case to be orthogonal functions, since, as  we shall  
show below, the low-lying eigenstates of the operator 
c a r e  superpositions of the states (2) with magnetic- 
quantum-number values m=-N. Then for not too high 
cyclotron levels, the overlap of the wave functions of 
the si tes j ,  and j, is of the order of ~ X ~ [ - I R ~ ~ - R ~ , ~ ~ /  
4k2}. 

Let u s  expand the electronic field operator GN(r) in 
terms of the basis (2): 

R# Y-N-I 

e n  (r) = x (r) 4 N m .  

J-L m--nr 

The operators E,,, (we do not explicitly write out the 
index N in 52) satisfy the anitcommutation relations: 

Substituting the expansion (3) in (I), we write the 
operator 6 as a sum of different types of terms: 

The terms of the type fi,, al l  of whose indices jl coin- 
cide, describe the interaction of two (or more) elec- 
trons at the same WL site; this corresponds to non- 
phonon excitations of a system with energy of the order 
of ~ / A ( N  + 1)'". 

In the present paper we shall limit ourselves to the 
consideration of only the phonon type of excitations, 
for which each WL site is occupied by one and only 
one particle: 

M-N-1 C ;,+5m=l. 
--N 

(6) 

In this subspace of WL states the matrix elements of the 

operator c ,  a re  equal to zero. The t e rms  of the type c, describe the interaction of the electrons located at 
the various WL sites,  and give r ise  to the excitations 
of the phonon type. The presence in (5) of the operator 
c3( jl # j4 or  j, # j3) is fundamentally important for the 
description of the exchange and hopping processes that 
occur in the lattice and lead to the appearance of empty 
si tes and to  the gathering of two (or more) particles at 
some WL sites. But the matrix elements of the terms 
of this type contain at least one overlap-integral, which 
makes the contribution of the operator U, to the energy 
of the system exponentially small  in the limit A(N+1)'" 
<< R. On account of the foregoing, to find the low-ly_ing 
WL excitations, we must diagonalize the operator U2 
with allowance for the condition (6). 

We carry out the diagonalization of the operator 8, 
in the harmonic approximation, for which purpose we 
expand the matrix elements of fit in a power ser ies  up 
to terms of second order in the displacements of the 
electrons from the equilibrium positions. Taking (6) 
into account, we find 

In this expression the difference between the first  two 
terms is the Madelung energy E M  of the two-dimension- 
a l  lattice and the G:$, a r e  the elements of the phonon 
tensor3 (a, p = x, y ). In (7) we have se t  

The subsequent transformations a r e  based on the 
properties of the matrix elements of the operators (8). 
It can be shown that, in the subspace of the states 
limited by the condition (6), the operators (8b) can be 
expressed in terms of the operators (8a): 

The operators (8a) can in turn be expressed in terms 
of the standard operators 

X-N-1 

i, = (sign m) (N+m+l)'"^c,,+&,,+, 
m--N 

(10) 

with the aid of the formulas 

The operator 2, has the meaning of a lowering operator 
at the j-th site. On account of the relations (6) and (4) 
we have 

The matrix elements of the operator E;,,,,?, ,M-N in 
(12) a r e  equal to  zero in our approximation, since we 
choose a s  the basis the functions (2) with m s M -N - 1 
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and neglect the overlap integrals involving the wave func- 
tions of different sites. Consequently, the operators 
(10) satisfy the Bose commutation relations. The Hamil- 
tonian (7) can be reduced to a quadratic form in the 
operators sf with the aid of (9) and (11). By going over 
in this expression to the phonon operators 

we can reduce(7) to a sum of commuting operators Ck, 
each of which is a linear combination of _the products 
ii;irk, hlrii-,, and sixk. The operators U, a r e  then dia- 
gonalized with the aid of the Bogolyubov transforma- 
t i o n  Finally, we find 

(14) .. 
where the Bose operators Ak a r e  linear combinations 
of the operators iik and 2Zk; w,(k) and w,(k) a r e  the fre- 
quencies, determined in Ref. 6, of the longitudinal and 
transverse WL vibrations in zero magnetic field. 

Thus, in the h?rmonic approximation the eigenvalues 
of the operator U, do not depend on the Landau-level 
number, and form one phonon-type vibrational branch, 
which coincides with the leading t e rm of the expansion 
of the low-frequency w- branch (see Ref. 3) in the 
strong magnetic field limit. The w+ = w, type vibration- 
a l  branch does not ar ise  in the present case, since 
vibrations of this type a r e  connected with particle tran- 
sitions between the various cyclotron levels. The 
second term in (14) is a quantum correction to the 
Madelung lattice energy, and ar ises  as  a result of the 
finiteness of the particle size. 

The mean square displacement of an electron at a WL 
site can be computed with the aid of the formulas ex; 
pressing the operators a, in terms of the operators Ak: 

where the Ilk= (AiA,) a r e  the mean occupation numbers 
for the phonon states. For the lowest Landau level, this 
expression, a s  was to be expected, coincides with the 
displacement, found earlier,, of an electron at a WL 
s i te  in the limit of strong magnetic fields. The estimate 
given in Ref. 3 for the numerical coefficient in (15) 
gives the value (r2)= ~A'(N+ 1) for T = O  K. This cir-  
cumstance justifies the assumption made above that the 
low-lying eigenstates of the operator fi a r e  superposi- 
tions of the states (2) with values of ms -N. (Let us 
recall  that 

The foregoing arguments a re ,  of course, valid pro- 
vided [(r2)]1t2<< R. But Fukuyama and Yoshioka' believe 
that even when X -R there exists in the system a 
charge-density wave whose structure does not differ in 
fact from the WL structure, s o  that the peaks of the 
electron-density wave coincide with the s i tes  of the WL 
corresponding t o  the same number of electrons at the 
level. If that is so, then the solution found in the present 
section can apparently serve as a good f i rs t  approxima- 

tion for the investigation of charge-density waves. 

We have considered above the case of low occupancy 
of the Landau level. If the population of the level is 
close to the highest possible value, then the results 
a r e  valid for the system of vacancies of this level. It 
is only necessary fo  go over in (1) to the vacancy field 
operators $,ir) = *i(r  ), and place the $ i ( r  ) operators 
t o  the left of @,(?).This transformation leads in first-  
order perturbation theory to only a shift in the ground- 
state energy of the system. Therefore, the vibrational 
spectrum of the WL formed by the vacancies of the N-th 
level and the mean square displacement of a vacancy 
from a si te of the WL a r e  also given by the formulas (14) 
and (15). 

93. EFFECT OF THE FILLED LEVELS 

The authors of a number of papers4*' assume that the 
effect of the neighboring cyclotron levels on the dynam- 
ics of the system of electrons (vacancies) of a given 
Landau level is negligible in the limit of strong magnet- 
ic fields. But in the presence of filled levels in the 
system, this question needs to be considered separately. 
As an example, let us  consider the problem of the crys- 
tallization of the vacancies of the lowest Landau level. 

Let the population of the lowest Landau level be close 
to the highest possible value. By performing in the 
total Hamiltonian of the system the operator transforma- 
tion described at the end of 62, we can establish that, 
in second-order perturbation theory, the main contribu- 
tion to the energy of the system of vacancies of the 
lowest Landau level is made by the operator 

I - I  

H = r( C JJdr, dr2 ~ , ~ * ( r , ) & , ( t t )  

18  n*-0 X.N>1 

Here the +,(r) a re  the wave functions of the electrons 
of the N-th level in the Landau representation; X i s  the 
quantized position of the center of the cyclotron motion; 
2, is the electron annihilation operator; the cp,,(r) a re  
the wave functions of the vacancies of the lowest Landau 
level in the basis (2); 6,, is the vacancy annihilation 
operator. The Hamiltonian (16) does not conserve the 
electron and vacancy numbers separately, but describes 
the creation of the electrons and vacancies from vacuum 
and their annihilation with allowance for the equality 
of the two numbers. 

It is easy to see  that the matrix elements of the opera- 
to r  (16) a r e  of the order of e 2 h .  Therefore, in second- 
order perturbation theory the contribution of this opera- 
tor to the energy of the system of vacancies is of the 
order of A E ( ~ )  - ( k / ~ ) ~ / T i w ~  = 8 / a B  (aB is the Bohr radius). 
If a, s R,  then this quantity exceeds the vacancy-WL 
binding energy E M -  8 / ~ .  Let us show, however, that 
in spite of their relatively large values the corrections 
under consideration turn out to  be weakly dependent on 
the disposition of the vacancies at the Landau level. 

Let us retain in the operator (16) only the terms for 
which j ,  = j,, thus neglecting the overlap of the wave 
functions of different sites. Then there a r e  two pos- 
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sibilities; either jl = j, = A ,  or  jl = j, + j,. In the first  
case the different WL sites interact independently of 
each other. The corresponding energy shift for a 
vacancy is of the order of AE('), and practically does 
not depend on the presence of the small  number of 
other vacancies at the level. Moreover, this shift 
turns out to be also independent of the quantum number 
m of the wave function of the isolated vacancy. Other- 
wise it would have had to be treated as  an additional 
effective single-particle potential that should be taken 
into account in considering the WL vibrations. It is 
convenient to perform the calculations in the Landau 
representation, in which the wave function of the isola- 
ted vacancy is b i  (0). The second-order vacancy-energy 
correction arising from the operator (16) does not de- 
pend on the quantum number X, and is equal to 

where F(a, 8, y; z )  is a hypergeometric function. It is 
also easy to establish that any linear combination of 
the type 

with arbitrary coefficients q, leads to the same energy 
shift (17). Since the wave functions (2) a re  linear com- 
binations of this type, the energy shift for  the isolated 
vacancy does not depend on the form of the vacancy's 
wave function, and, consequently, does not affect the 
spectrum of the vacancy-WL vibrations. 

In the second case, in which j , =  j,#&, the contribu- 
tion to the energy of the system of vacancies depends 
on the disposition of the vacancies a t  the level, but it 
turns out to be much smaller than the cpntribution from 
the anharmonic terms of the operator U, discussed in 
82. Indee!, allowance for the anharmonic terms of the 
operator U, leads to a shift in the normal-mode fre- 
quencies of the WL by an amount of the order of 

where AC is a c h a r a d e ~ i s t i c  value of the anharmonic 
terms of the operator U, and AE(') is a characteristic 
quantum of the WL vibrations [o,- (e2/m~S)1F plays the 
role of a Debye frequency for the WL]. 

T o  estimate the WL natural-frequency shift arising 
from the structure-sensitive terms of the operator (16), 
let us expand the corresponding matrix elements of 
this operator in a power ser ies  in the small  parameter 
A/R. The zeroth-order terms in this expansion vanish 
on account of the orthogonality of the wave functions of 
the various cyclotron levels, and the first-order terms 
vanish a s  a result of the fact that the WL is assumed to 
be in equilibrium. The second-order terms lead to a 
shift in the normal-mode frequencies of the WL by an 
amount of the order of 

2 a (.").-['(")I /" --'(^ )'". 
R R  " - R  ha. 

In our approximation A<< R and 8/Ac<tiw,; therefore, 
( A ~ w ) ,  << ( S W ) ~ .  

A similar analysis of the second-order corrections 
to the energy of the electron (vacancy) system of an 
upper level that ar ise  on account of the filled lower 
Landau levels shows that these corrections lead to a 
relatively large shift in the self-energy of the electrons 
of the partially filled Landau level, but that they mani- 
fest themselves weakly in the interaction of these elec- 
trons. Therefore, the corrections under considera- 
tion almost do not affect the vibrational spectrum, de - 
termined in 82 of the present paper, of the electron 
(vacancy) WL. 
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