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The singularities of a displacive phase transition at a system of line defects in a crystal are investigated. The 
case of large supercriticality of the unrenormalized spectrum of the local phonons is considered. This makes it 
possible to apply perturbation theory in terms of the small anharmonicity. The criteria for the validity of the 
perturbation theory used by Vinokur and Kravchenko [JETP Lett. 29, 572 (1977)] and of the method used in 
the present paper are obtained. The temperatures of the transitions to the commensurate and incommensurate 
phases are calculated and the influence of quantum effects are analyzed. The effect of impurities on the 
conditions for observing the predicted transition is considered. 

PACS numbers: 61.70.Ph, 63.75. + z 

A preceding paper1 dealt with the feasibility of a dis- 
placive transition at line defects. It was shown that if 
the perturbation produced by the defect in the force- 
constant matrix of the initial crystal i s  large enough, 
then an instability [u:(~* ) = 0, q* # 0] ar ises  in the spec- 
trum of the phonons localized at the defect, meaning in 
fact the feasibility of a structural transition a t  the de- 
fect line. Such a transition will take place if the cry- 
stal contains a large enough system of defects parallel 
to one another [since a transition is at a single defect 
(in a one dimensional system) is  impossible. '1. 

modulus of the order parameter can be neglected and the 
fluctuating quantity is  the phase. To estimate the fluc- 
tuations of the modulus, we compare Te with the free 
energy per unit cell at  the instant of the three-dimen- 
sional transition. 

The expansion of the free energy near q =q* can be 
written in the form 

where $ i s  the order parameter (the average displace- 

To estimate the transition temperature we used a ment) and a is  the interatomic distance. The average 

scheme borrowed from the theory of phase transitions displacement i s  determined by minimizing F: 
. - 

in ferroelectrics3 and based on a consistent allowance $ : = o ~ ~ u ~ / ~ s ~ - A o l a Z  
for the anharmonic corrections to the spectrum of the 

and the free energy localized phonons. The transition temperature is  then 
estimated at1 F m , n - - M m ~ a r / ~ 2 - - M ~ 2 A ~ .  

t.-Aole'ix/a. (1) Comparing Fmin with T, from (I),  we have 

Here IF,,, I /T,-A.z/c'". (5) 

r = TI@, A, = -QO2(Q') =-ool(q')/o.>O, Q=q/q, ,  At A ~ C ' / ~ < <  1 the modulus of the order parameter does 
not have time to become fixed (the fluctuations of the 

€9 =tisq,=Zw, is the Debye temperature, a = O/MS~,  
modulus a r e  large) and the method of Efetov and Lar- M is the mass of the atom, s is  the speed of sound, c 

is the dimensionless density of the line defects (the kin4 is  not applicable. The use of perturbation theory 
is then justified, just a s  was done in Ref. 1 ,  since At atomic density of the atoms belonging to the defect <<c1/2< 1. 

lines), and qo i s  the maximum value of the wave vec- 
tor. The calculation was made under the assumption 
that A,<< 1. It should be noted that this assumption is  
natural in the theory of ferroelectrics, inasmuch a s  in 
the three-dimensional problem the temperature tco 
- A v a ,  and if A, - 1, then t ,  turns out to be higher than 
the melting temperature. In our case, however, when 
t ,  i s  estimated from formula ( I )  and its smallness is  
ensured by the smallness of the density c ,  the condition 
A,<< 1 is not necessary. On the contrary, it is more 
natural to assume that A, - 1 is  possible under real con- 
ditions. 

If, however, AVc1/'>> 1, the modulus of the order 
parameter is frozen at temperatures -T* - I F r n i n  1 
>> T,. In this case a transition will take place when the 
correlations of the phases a t  the different defects sup- 
press the one-dimensional fluctuations. In other words, 
the increment to the free energy q c p ]  due to the inter- 
action of different defects should be of the order of the 
energy of the phase fluctuations at  the given defect at  
temperatures -To, i. e. , 

A large value of A, can no longer be offset by small where W is the energy of the interaction of the fluctua- 
anharmonic corrections. To consider the transition in tions a t  the different defects, and r, i s  the one-dimen- 
this case it is convenient to use the method developed sional correlation radius. The temperature T, obtained 
by Efetov and Larkin: in which perturbation theory in from this estimate is  much less than lFmi,,l, thus jus- 
small anharmonicities is not used. This method4 is  tifying the assumption that the fluctuations of the mod- 
applicable, however, only when the fluctuations of the ulus of J ,  a r e  small. 
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The foregoing estimate shows that T, depends substan- 
tially on the tempe~ature  behavior of the correlation 
radius r,. It is  known that if the transition is into a 
phase commensurate with the initial lattice, then r, 
depends on the temperature exponentially, and if the 
transition i s  into a incommensurate phase, the depen- 
dence follows a wwer  law. It is  clear that a t  A ~ c ' ' ~  
<< 1, when the modulus of the order parameter i s  not 
fixed at the instant of the trassitiop, then t ,  i s  indepen- 
dent of the type of the produced structure. 

CALCULATION OF THE TRAIUSlTiON TEMPERAfURE 

The one-dimensional-system free energy connected 
with the fluctuations of the phase of the order psrameter 
i s  of the form 

where J,= $,exp(icp+ iq&n/m),s5 = (aw/aq),,,* i s  the 
phason velocity, and x,=q* -q@/m is the incommen- 
surability vector. The last term in (6) is  the commen- 
surability energy that takes into account the invariance 
of the system to a shift by m lattice periods; B is a 
number of the order of unity. If the system is noncom- 
mensurate, then m - 00 and the commensurability ener- 
gy vanishes (~ldae 1). The quantity #e = I is  deter- 
mined by Eq. (3). 

We obtain now the free-energy increment produced 
by the interaction of the defects. We consider for this 
purpose, for example, a crystal containing a regular 
(quadratic in the section perpendicular to the lines) lat- 
tice of parallel line defects. It i s  easy to write down 
Dyson's equation for the lattice Green's functions: 

where q is  the wave vector along the defects, U, is  the 
Fourier component of the local perturbation introduced 
by an individual defect,' and n, (the lattice indices) a r e  
the coordinates of the defect atoms in a plane perpen- 
dicular to the defect; the superscript d indicates that 
one considers Green's functions with lattice indices that 
describe the defect atoms, 

i s  the Fourier component [with respect to (n,,) of the 
Green's function of a defect-free crystal. 

Carrying our a Fourier transformation over the de- 
fect lattice, we easily obtain the following expression 
for the defect Green's function: 

where g a re  the defect-reciprocal-lattice vectors (g, 
=nk,/L,, L,  is  the distance between the nearest line 
defects, k ,  a r e  integers, a is  the coordinate index), 
x = zk,/L ,, (L ,, i s  the dimension of the crystal in. the 
plane perpendicular to the defects), and urn, = u/Ld. 

Carrying out the summation, we easily d t a i n  an ex- 
pression fop G:(O, w) and the increment to the disper- 
sion law of the local phonons (in dimensionless units): 

where SZ, is  the dispersion law of a single defect. 

The free energy of a defect passing through the origin 
takes in this case the form 

where the index 1 numbers the sites along the defect, 
and n, lies in the planegerpendicular to the defects. 
The same result can be easily obtained by calculating 
the corrections to the spectrum of the local vibrations 
of the given defect in a crystal containing a system of 
randomly distributed defects1*' and averaging next the 
increment to the free energy over a l l  the defect con- 
figurations. 

We write down, following Ref. 4, the self-consistency 
equation for (q): 

Assuming the fluctuations of J ,  to be emall, we expand 
in the small interaction W and, putting 1, = 0 and 7, 

=0,  obtain 
1 # 

( ~ ( O , O ~ ) - - ~ D ~ $ ( O , O ) ~ = ~ ( - ~ ~ & ~ )  Z . 
0 

where 

Here (. . . ), denotes averaging with a purely one-di- 
mensional free energy F,. 

Taking the Fourier transform with respect to q along 
the defects 

and taking (12) and (9) into account, we obtain (a:(&*) 
<< Qz(~*,O)-1,  I G ~ * ( Q ~ ) I - l ) :  

Since the instability point is q =q*, it follows that - Jh = #,*bar *. We obtain thus the known relation that 
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determines the transition temperature: 

The correlation functions of one-dimensional systems 
were calculated in Refs. 7 and 8. It i s  convenient to 
consider separately the transitions into the commen- 
surate and incommensurate phases. 

TEMPERATURE OF TRANSITION INTO THE 
INCOMMENSURATE PHASE 

1. Classical region. In this region we can neglect 
the dependence of ij on the imaginary time T. We 
have7* 

where i s  a certain function of no =q* - 2nn/am. In 
the case of a noncommensurate structure8 nq: no. Sum- 
ming over I in (151, we get 

M~dqo'  re 
i-c-- 

2Mo'&'*,' 
, re= 

I 

T s aT " 
(17) 

whence 

which, a s  expected, coincides with (1). 

2. Quantum region. The quantum effects become 
significant at  temperatures 

Writing 

cp(2, .r)= cpo(z)+ xcp(w.)e-"*'=cpo+-cp, (20) 
"*O 

(we have replaced the lattice index I along the defect by 
the coordinate x), we easily obtain 

T i-cos (qz-a,,?) (. . . > m ( z , T ) =  exp { -- , 
2aMA L w,'+uaq' 

9.."*0 

where u - [s, w, = 2mT,K0(d) i s  the classical correlation 
function, and L is  the length of the defect. 

Taking into account the cutoff in q (q < w,/s), we get 

U =  a/4[A2,. Integrating with respect to T, we obtain for 
$ 

K (2)  -TI ~ T K  (2, T )  

0 

the expression 

Taking into account the smallness of o (o<< I ) ,  we 
easily verify that both a t  4nTx/u << 1 and a t  4uTx/u >> 1 
the hypergeometric function F = 1. This circumstance 
enables us to assume the following interpolation formula 
for K(x): 

In view of the smallness of u the quantum corrections 
lower the transition insignificantly. 

TEMPERATURE OF TRANSITION INTO THE 
COMMENSURATE PHASE 

In the transition into the commensurate phase, the 
free energy qcp] of a one-dimensional system is given 
by Eq. (6). It i s  known that the nonlinearity connected 
with the commensurability enefgy leads to a specific 
behavior of the system a t  low temperatures. The de- 
struction of the long-range order in such one-dimen- 
sional systems is th6 result of breakup into regions of 
finite length (domains) with almost constant values of 
the phase. The domains a r e  separated by rather narrow 
domain walls in which the phase changes by -a. These 
domain walls a r e  solitons, whose dynamics is described 
by a sine-Gordon equation derived in standard fashion 
from (6). 

1. Cl assical region. In this case the quantity x is 
exponentially small and q* ~ 2 u n / a m ,  since no is also 
small. In this case8 

2% 6 A.' ago 

where 

is  the dimensionless pinning frequency. 

We estimate the transition temperature for m=2.  
Substituting (25) in (17), we obtain 

and hence, with logarithmic accuracy, 

(we have taken it into account that D,- 1 at m =2). 

2. Quantum region. If the defect density c is  not 
too large, c < D l e x p ( - ~ v a ) ,  then the transition temp- 
erature obtained from (26) turns out to be in the quan- 
tum region: 

t.-Ao2/a ln(QP2/c).  

In this case the foregoing analysis i s  not valid and to 
obtain a correct estimate of t ,  we must take quantum 
effects into account. Nonetheless, the result (26) re- 
mains practically unchanged if w,<< w, and the transi- 
tion temperature is  not too low, so  that the condition 
LO,>> T,>> w, i s  satisfied. In fact, by using the repre- 
sentation (20) for cp we can, integrating with respect to 
cp,(x, T) leave out (at T>> a,) the nonlinear term of the 
free energy (6), after which we obtain for the correla- 
tion function formula (24) [where KO(%) is,  naturally, 
the correlation function of the classical commensurate 
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system]. Just a s  in the transition into the noncommen- 
surate phase, the quantum corrections cause t, to de- 
crease slightly. 

The situation i s  different if T,< o, (particular interest 
attaches in this connection to the case m = 2, when w, - o,). In the low temperature region, T < w,, the term 
proportional to 1 - cosmcp in the free energy can no 
longer be neglected when integrating with respect to cp,, 
and to obtain the correlation function we must consider 
the quantum statistics of the nonlinear system. 

The argument of the exponential in (19) is  the effec- 
tive action of the phase connected with the fluctuations, 
and the quantity F,, in (6) is  none other than the effec- 
tive Lagrangian, which depends on the imaginary time 
7. By making the substitutions 

we can reduce the Lagrangian (6) to the standard form 

with a coupling constant g2= (a/~:)(nM/t) and with an 
effective mass C( = Wdt. 

The quantum statistics of a system with a Lagrangian 
(27) was constructed in the papers of Maki and Takay- 
ama. Using the results of these papers, we easily 
obtain the correlation function 

where n, is  the density of the domain walls (solitons) 
that disturb the long-range order in the one-dimension- 
a1 system, and i s  a MacDonald function. The pinning 
radius r,= t s / w ,  (-a) i s  quite small. 

For the soliton density we haveQ 

8,- (E.(" ~ l % n ) ' " e x p ( - E : )  I T ) ,  T a p ,  
nr=p(E./ZnT)'" e x p ( - E . / T ) ,  T B p ,  

where the soliton energy i s  

accurate to o(gZ). Returning to the initial notation, we 
have 

At T <  o,s w,, the quantum effects lead to an effec- 
tive increase of the soliton energy and consequently to 
a decreasa of their density compared with the classical 
value a t  the same temperature. As seen from (28), the 
correlation radius i s  simply a quantity inversely pro- 
portional to the soliton density: re = a(4n,)-'. Substitut- 
ing this expression in (17) we obtain for t, the estimate 
(to< a,) 

x at. 

whence we obtain a t  5 - 1 and W,- 1, with logarithmic ac- 
curacy, 

The transition temperature i s  somewhat higher than 
would be obtained by using the classical value for n,, 
since, as already noted, we land in the quantum region 
if Ayct ln(l/c) < 1. If, for example, we assume A: 
-0.1, then to lies in the quantum region a t  c < lo6. 

EFFECT OF IMPURITIES 

The considered structural transition leads to the onset 
of an additional peak in the structure factor of a crystal 
with line defects a t  a wave-vector value q =q*. How- 
ever, the impurities inevitably present in the crystal 
(in particular, those located on the defect lines them- 
selves), scatter the local phonons and, by breaking 
down the correlation of the phases, destroy the long- 
range order. In the presence of impurities, the sharp 
peaks in the structure factor become smeared out and 
the conditions for observing the phase transition be- 
come worse. 

The effect of impurities on the structure transition 
in a one-dimensional system was considered in a num- 
ber of papers. ''-I3 We assume that all the impurities 
the constitute local (single-site) perturbations of the 
force constants a r e  located on defect lines. The per- 
turbation of the mass can be disregarded, since it en- 
t e r s  in the equations of motion only together with the 
frequency, and we a r e  considering a situation w =O. 
The interaction of the phonons with the impurities leads 
to the appearance in the free energy of an additional 
term 

-VM$,2s%m (2q1xf (P ( 2 )  1, 

where V i s  a dimensionless quantity that characterizes 
the change of the force constants by the impurities: 
V=A+/+. We introduce also the dimensionless im- 
purity density n, = a l l ,  where I i s  the average distance 
between the impurities on the defect line, and analyze 
separately the transitions into commensurate and in- 
commensurate structures. 

1. Transition into an incommensurate phase. The 
free energy of a system of defects can be approximately 
written in the form 

r = ( x ,  r,), where the last term in the braces is  the ener- 
gy of the impurities and d i s  the average distance be- 
tween defects. 

The characteristic phase-change distances L= and L, 
can be obtained by minimizing the free energy. If L, 
>> d ,  we a re  dealing with the three-dimensional situa- 
tion considered in Ref. 11. At L,c  d, each defect must 
be considered independently (from the point of view of 
the influence of the impurities), a s  was done in Ref. 12. 
It is easy to show that in the three-dimensional region 

in accord with the results of Efetov and Larkin. " 
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In the one-dimensional region it i s  necessary to con- 
sider separately the cases of weak (V<< n,) and strong 
(V>> n,) pinning. In the case of weak pinning each im- 
purity changes the phase little, and12 

In the case of strong pinning, the characteristic dis- 
tance is simply the average distance between the im- 
purities 

L.-drh. (35) 

The foregoing situation a r e  lucidly represented in the 
form of the phase diagram of our system on a plane 
with coordinates (n,, V) and (n, ,cl/') (Fig. 1). The 
boundary between the three-dimensional (3D) region 
and the one-dimensional region with weak pinning (1SW) 
is  the curve n, = n o r  C ' / ~ V - ~  . The regions 1DW and the 
one-dimensional region with strong pinning border on 
the line n, = V, and finally the boundary between the re- 
gions IDS and 3D is the line c'l2 = V. 

The possibility of observing a structural transition in 
, the presence of impurities is  determined by the relation 

between the temperature correlation radius rc(T) near 
T = T, and the impurity character istic length. In the 
absence of impurities, at  T =  Tc, the system becomes 
three-dimensional and, with decreasing temperature, 
r,(T) increases abruptly to infinity-a phase transition 
takes place. On going into the incommensurate phase, 
r , (T,)-~/c ' /~ .  If we a r e  in the 3D region in this case, 
then 

re (TJ /L=L-n,/no< I 

and r,(T) increases rapidly at  T < Tc to a value rc 
= L,, and then remains constant with further lowering 
of the temperature. In this case, a phase transition 
can be observed: rather sharp peaks a r e  present in the 
structure factor at  q =q*. 

The situation is  similar also in the 1% region when 
the condition n, << cl" [i.e ., r,(T,) << L,] i s  satisfied. In 
the 1DW region, on the other hand, we have 

There will be no abrupt increase of rc, i. e . ,  the transi- 
tion becomes washed out by the impurities and is not 
observed. The phase-diagram (Fig. 1) region in which 
a structural transition is observable is shown shaded. 
We note that since the characteristic values of the poten- 
tial V a r e  V S 1, and c<< 1, it appears that under real 
conditions only part of the diagram can be realized, the 
one located to the left of the vertical line c " ~ = c ' / ~  max 

(Fig. lb). 

FIG. 2. 

2. Transition to the commensuratephase. In this 
case there is  added to the free energy (32) a term 
a-'Ag"(l- cosmrp) in the braces under the integral sign. 
It i s  easy to obtain the conditions under which the in- 
fluence of the impurities can be regarded a s  a small 
perturbation against the background of the commensur- 
ability energy: 

The condition (36) in the IDS region denotes merely that 
the impurity energy i s  small compared with soliton-for- 
mation energy. If G?#- 1, this condition is  satisfied for 
the small perturbations caused by the impurities V<< 1, 
and then the impurities do not destroy the long-range 
order in the IDS region. At small V we have rnV'2Ar" 
> 1 and a small corner, cut off from this region by the 
line n, = (mA~'2/V2)c'/2 appears in the 1DW region; a 
phase transition can be observed in this corner, too 
(Fig. 2). On the other hand, in the region 3D the con- 
dition (36) is  practically always satisfied. Thus, on 
going into the commensurate phase and at  V<< the 
region of existence of a well pronounced transition 
takes the form shown (shaded) in Fig. 2. When the 
conditions (36) a r e  not satisfied in the 1D regions, the 
perturbation is the pinning energy, and the possibility 
of observing the transition is  described by the dia- 
grams of Fig. l. 

CONCLUSION 

The line-defect model investigated by us can be used 
to describe, for example, long chains of foreign atoms 
that have penetrated into a crystal. A suitable object 
for the realization of the considered effect can appar- 
ently be also a system of straight dislocations. There 
a r e  grounds for assuming that in the immediate vicinity 
of the dislocation core the elastic moduli of the crystal 
become greatly softened. Within the framework of the 
Lattice model used by us,  this softening can be de- 
scribed a s  a decrease in the values of the force con- 
stants directly on the dislocation line. 

The phonon-spectrum distortions that ar ise  in such a 
model should lead to definite singularities in the be- 
havior of the critical characteristics of crystals with 
dislocations. The earlier calculation of the contribu- 
tion of the local phonons to the dislocations electric re- 
sistivity of metals and to the relaxation of the disloca- 
tion spin system'*'4 lead to results that make it possible 
to explain qualitatively the available experimental data 
(the agreement with experiment improves if it is as- 
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sumed that the local phonon spectrum has a dip a t  q 
=q* #O). This circumstance can be regarded a s  an 
additional argument favoring the use of our model to 
describe a system of dislocations. 

If a deformed material i s  investigated by x-ray struc- 
ture analysis method, then the postulated effect should 
manifest itself in the form of an additional maximum of 
the structure factor. With decreasing temperature, the 
line intensity should increase, and the width decrease. 
As the transition point To i s  approached, this intensity 
increases sharply. If the dislocations a r e  parallel to 
one another, then the proposed structure produces on the 
Laue pattern a maximum in a plane perpendicular to the 
dislocations. On the other hand, if the dislocations a r e  
randomly oriented, then with respect to the resultant 
superstructure the sample is a polycrystal. One should 
search for new reflections on the corresponding Debye- 
Scherer diagram. As shown above, impurities on dis- 
locations affect adversely the observation conditions. 
One should therefore avoid annealing of the samples, 
which leads to an increased impurity density at the 
dislocations. 

The supercriticality A, i s  determined by the value of 
the parameter A, which characterizes the change of the 
elastic interactions in the region of the line defect.' 
Having only qualitative grounds for the possibility of 
realizing a value of A that leads to instability, we can- 
not, of course, estimate reliably A, and hence To for 
the dislocations. We can nonetheless estimate the 
temperature interval in which the structural transition 
should be sought. 

At weak supercriticality (At<< c1 12) o r  on going into 
an incommensurate (at A:>> c1 12) phase, we can in- 
dicate only the upper bound of To. Namely, recognizing 
that the supercriticality should be less  than the Debye 
temperature we obtain (at c - 10") T , <  10-'0. A tran- 

sition into a commensurate phase is-possible only a t  
A:>> c1f2, from which it follows that 

which yields 0.10"< T,< 8 a t  c - 10". 

The authors thank V. T. Dolgopolov for constant kind- 
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