
Skin effect and Doppler-shifted cyclotron resonance in 
metals with open orbits 

I. F. Voloshin, V. G. Skobov, L. M. Fisher, and A.S. Chernov 

Y: I. Lenin All-Unign Electmtechnical Institute 
(Submitted 2 December 1980) 
Zh. Eksp. Twr. Fu. 80,2392-2402 (June 1981) 

A theory is developed of the skin eff& in a compensated metal in a perpendicular magnetic field in the 
presence of open orbits. The case of purely spccular reflection of the carriers from the surface is considered. 
The surface-impedance tensor and the distributions of the radiofrcquency-field components are calculated. It 
is shown that one of the diagonal elements of the impedance tensor is independent of the magnetic field H and 
has singularities typical of the anomalous skin effect. The second diagonal ekmmt is proportional to the 
square of the magnetic field and has a logarithmic dependence on the carrier mean free path. These 
singularities are due to the presence of open orbits and to the mixing of the linear polarizations by carriers 
with closed orbits. Excitation of dopplerons and of Gantmakher-her "waves" is also investigated. It is 
shown that carriers with open orbits ;use collisionless damping of the doppleron; this damping d&r- like 
H with increasing field. The amplitudes of plate-impedance oscillations due to either dopplerons or 
Gantmakher-Kaner waves are the same for both linear polarizatiofis. 

PACS numbers: 72.10.Fk, 72.15.Lh, 73.25. + i, 76.40. + b 

A theory was recently developed for the Doppler- 
shifted cyclotron resonance (DsC?R) in metals in a per- 
pendicular magnetic field. The rigorous treatment ap- 
plied solely to metals having only closed ca r r i e r  orbits. 
Most metals have open Fermi surfaces. The applica- 
tion of the theory to such metals i s  therefore limited, 
for a t  certain magnetic field-directions open carr ier  
orbits constitute a sizeable fraction. It is therefore of 
interest to construct a DSCR theory and to study the 
properties of dopplerons and Gantmakher-Kaner oscil- 
lations (GKO) for metals with open orbits. This in- 
vestigation i s  made necessary, in particular, by the 
fact that there a r e  many experiments on metals with 
open orbits14 that have no clear interpretation. In ad- 
dition to the investigation of the s ing~lar i t ies~of  DSCR, 
it is  also of interest to study the influence of open or- 
bits on the character of the skin effect and the spatial 
distribution of the long-wave component of the field. 

The present paper i s  devoted to the singularities of 
the anomalous skin effect and to DSCR in a situation 
when the orbits of some of the ca r r i e r s  a r e  open. Open 
orbits produce a strong conductivity anisotropy, as a 
result of which the field distribution in the metal i s  de- 
termined by a system of coupled integro-differentia1 
equations. The problem i s  therefore substantially more 
complicated than in the case of closed orbits, when the 
system of equations breaks up into two independent equa- 
tions for the plus and minus polarizations. To avoid 
further complications that appear when the carr iers  a r e  
diffusely scattered from the surface, we confine our- 
selves to purely specular reflection. 

1. THEORY OF NONLOCAL CONDUCTIVITY AND 
THE DISPERSION EQUATION 

We use for the metal a model in which the electron 
part of the Fermi surface i s  a corrugated cylinder 
parallel to the p, axis, and the hole part consists of two 
right cylinders parallel to the axes pt and p,. The elec- 
tron dispersion law i s  described by the expression5 

and the hole dispersion law by the expressions 

where m ,,,,,, p,,, and v,,, a r e  constants with dimensions 
of mass,  momentum, and velocity, respectively, and 
Ep2 i s  the Fermi energy of the second group of carriers.  
The electromagnetic-wave propagation vector k and the 
constant magnetic field H a r e  assumed to be directed 
along the z axis. 

Obviously, in this model the orbits of the first and 
third carr ier  groups a r e  closed inp-space, while the 
orbits of the second group a r e  open (straight line paral- 
lel to the p, axis). 

The contributions of the carr iers  of the different 
groups to the transverse conductivity tensor a r e  given 
by 

(1) n e' o, ( k ) =  * iL[ ( ~ ~ , ~ i v r ) 2 - ( k v , ) z ] - ' ~ ,  
mi (4) 

nze2 
a,, ( k )  = -[vZ2 + (IZV~)']- '~,  

m, 
(5) 

where n, i s  the density of the carr iers  of the i-th group, 
w,, = eH/m,c i s  their cyclotron frequency, and v ,  i s  the 
frequency of the collisions with the lattice. The depen- 
dence of o on the frequency w i s  not taken into account, 
since we a r e  considering radio waves for which w<< v, .  

Expression (4), which describes the electron part of 
the conductivity, has a t  k - (we, * i,,)/v, a square-root 
singularity that corresponds to the DSCR of the elec- 
trons. The carr iers  of the second group make no con- 
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tributions to the conductivity-tensor elements U, and 
om, since the velocity component along the x axis i s  
zero on a right cylinder parallel to the p, axis. Ex- 
pression (5) is independent of H, i. e. ,  carr iers  with 
open orbits make the same contribution to the con- 
ductivity a s  in the absence of a magnetic field. Finally, 
the contribution of the carr iers  of the third group, de- 
fined by ( 6 ) ,  i s  local because they have no velocity 
component v,. The model considered corresponds thus 
to a situation with electron DSCR and nonlocal conduc- 
tion due to holes with open orbits, whereas the DSCR 
of the holes with closed orbits is  not taken into ac- 
count. The latter is permissible if the displacements 
of the holes during the cyclotron period a r e  much smal- 
ler than the maximum electron displacement. In ad- 
dition, we assume hereafter that the electron and hole 
densities a r e  equal, so that 

where a i s  the fraction of holes with open orbits. 

To simplify the formulas we use the dimensionless 
coordinate 

and the dimensionless wave vector 

Assume that a monochromatic radiowave of frequency 
w is incident on a metal occupying the half-space > 0. 
The reflection of all carr iers  from the surface 5 = 0  is 
assumed specular. The electric field in the metal can 
then be represented by a Fourier integral 

in which the Fourier transforms E , (q)  of the field com- 
ponents a r e  defined by the system of equations 

qzEa(q) -ibsa,(q)En(q) =-%,'(O), a=x, P, (12)  

obtained from Maxwell's equations by taking into ac- 
count the connection between the current density and 
the field. Here ffa(0) is the electric field on the sur- 
face, the prime denotes differentiation with respect to 
f ,  summation over repeated indices @ is implied, 

Solving the system (12)  and substituting E,  in (111, 
we write the expression for $ , ( f )  in the form 

8.K) --iTa4(t)8PI(O), (16)  

The explicit form of the elements of the tensor sas 
can be obtained from (4 ) - (7)  and (13)-(15):  

b = m 1 v , / m 2 ~ , ;  (24)  
we assume hereafter that b i s  of the order of unity. 

We calculate the electric field in the metal by defor- 
ming the integrating contour in (17)  in the upper com- 
plex q plane. The integral (17)  i s  then the sum of the 
residues of the poles of the integrand and of the inte- 
grals along the edges of the cuts drawn from the branch 
points. The poles correspond to the roots of the dis- 
persion equation 

D ( q )  =o, (25)  
which determine the eigenmodes of the electromagnetic 
field in an unbounded metal. 

Even though in our model the local conductivity has 
the simplest possible form, the integral (17)  is the gen- 
eral  case complicated and cannot be calculated analy- 
tically. We restrict ourselves therefore to a field region 
in which the parameter 5 i s  small and the carr ier  cyclo- 
tron frequencies a r e  much higher than the collision fre- 
quenc ies: 

In this field region, the different poles of the integrand 
a re  far from one another in the q plane. The same holds 
also for the different branch points. All the poles and 
branch points a r e  divided here into two groups. The 
first includes the singular points located in the region 
of small q :  

1 q I a L  (27)  
and the second the points located near * I ,  for which 

It i s  these regions of q  which make the main contribu- 
tion to the integral (17) .  Since the sizes of the re- 
gions a r e  small compared with the distances between 
them, their contributions can be separated. In other 
words, in the magnetic-field range defined by (26)  the 
tensor Ta8 can be represented in the form 

T ~ B ( S )  =Uas(S)+V=o(C)V (29)  

where Urns i s  obtained from (17-(19)  by putting q  = 0  in 
(20) and (21), and Vm8 i s  obtained by putting q2 = 1 in the 
second term of (22)  and integrating only in the vicinities 
of the points * I .  

The tensor U , , ( f )  describes the long-wave part of the 
field, which is  connected with the skin effect and which 
we shall call the skin component. The short-wave part 
Va6 ( 5 )  on the other hand, is connected with the DSCR of 
the first group of carr iers  and describes the doppleron 
and the Gantmakher-Kaner "wave." 

2. SKIN COMPONENT OF THE FIELD 

We consider in this section the long-wave field com- 
ponent and disregard effects connected with DSCR . 
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Neglecting the spatial dispersion of the conductivity 
(,(I) , we write down the tensor U,,(1;) in the form 

71 l-a 
Eo=a&, yo = - + --. 

a a 7s. 

In the considered approximation, the spatial dispersion 
of the conductivity i s  connected with the ca r r i e r s  of the 
second group, which have open orbits. In noble metals, 
zinc, cadmium, and in a number of others the number 
of carr iers  with open orbits i s  relatively small, and we 
assume therefore that 

aai. (34) 

In addition, we shall be interested hereafter only in the 
field region 

bz$KSor (35) 

where the presence of open orbits a l ters  most substan- 
tially the R F  properties of the  metal. 

We investigate now the singular points of the integrand 
in (30). The function Do has two branch points: q = iy 
and q = -iy. We draw the cut from the first  to the left 
and from the second to the right, as shown in Fig. 1 
On the first sheet of the complex variable q we have then 
six roots of the dispersion equation 

In the upper half plane a r e  located the roots 

ql= (bEO) ql= (bEO) (37) 
qll=iEO/b, (38) 

and in the lower the roots -91, -q2, and -9,. 

The roots (37) and (38) differ significantly. The wave 
vectors k, and k,, which correspond to q, and q,, a r e  
independent of the magnetic field and characterize the 
distribution of the electromagnetic field under conditions 
of the normal skin effect a t  H =  0.  This field compon- 
ent is  determined entirely by the ca r r i e r s  of the second 
group. 

FIG. 1 .  Arrangement of the branch points and of the zeros 
of the function Do(q) and of the cuts in the complex q plane. 

The root q, i s  much less  than q, o r  q,, and the com- 
ponent corresponding to it i s  attenuated over a distance 
proportional to @. An important role in the formation 
of this component i s  played not only by the carr iers  with 
open orbits, but also with closed ones. We shall show 
below that the root q, i s  connected mainly with the x 
component of the electric field, and the roots q, and 
q, with the y component. 

We calculate now the elements of the tensor U,,(t;), 
which determine the distribution of the fiela in the skin 
layer. We begin with the element Ux,(l;). The pre-ex- 
ponential factor in the corresponding integrand i s  

The function (39) increases rapidly with increasing q, 
and the main contribution to the integral i s  made by the 
range of values q S q,. We need retain in the square 
brackets of the right-hand side pzrt of (39) only the 
second term,  so that the expression for U,, takes the 
form 

At large distances b>> y-I the value of Ux, i s  deter- 
mined by a small vicinity of the branch point of the 
second term in (40), and i s  given by the last  expression 
of (42). To calculate U,, a t  5<< y" we deform in the 
fir s t  integral the integration contour towards the upper 
cut on the figure, and in the second towards a cut drawn 
from the point iy vertically upwards. This modification 
of the cut in the second term i s  necessary to prevent the 
cut from passing near the pole q, = -byo in the second 
sheet. Taking the residue of the integrand in the pole 
q, and neglecting small terms of order y, we reduce the 
equation for Urr to the form 

This function has a complicated dependence on the 
coordinate. Its behavior in different regions of values 
of S is  described approximately by the first  three ex- 
pressions in (42): 

It i s  seen that the function U, is  constant near the 
surface, and then falls off logarithmically to a constant 
of the order of 
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where I,=v,/v, is the path length of the carr iers  on the 
open orbitals. At distances larger than I ,  but smaller 
than I,, U,, decreases like 1/z2, and at z>> I, it decreas- 
es  exponentially. 

The element Uyy(5) is  determined by the formula 

At large and small distances from the surface, the 
main contribution to this integral is made by different 
regions of q. At 5<< (bf ,)"I3 the significant region i s  
q -  (b50)'/3. In this case the term 5; in the denominator 
of (44) can be neglected, and the expression for UJN be- 
comes 

Shifting the integration contour towards the cut in the 
upper halfplane, taking the residues of the integrand in 
the poles q, and q,, and neglecting terms of order y ,  we 
obtain 

Substituting the values of q, and q, and retaining the 
higher-order terms, we obtain 

At values 5>> (b50)-1/3 the main contribution to the in- . 
tegral is  made by the region q<< (bf,)1'3, and the ex- 
pression forUY)(5) can be written in the form 

It i s  understood here that the integration contour will be 
deformed in the calculation in the upper half-plane, and 
the exponential ensures convergence of the integral. 
The calculation of (48) is  similar to the calculation of 
the integral in (40). Incidentally, to find the function 
Uw(S) in the region 5>> b/[, it i s  more convenient to use 
the relations 

which follow from the equations for the field 8%). In 
different regions of 5, the function Urn is described by 
the expressions 

' 2 1 1 
= -  (-CS~-). 

nbEo5 byo T 

The function U,,(g) is calculated similarly. Its be- 

havior in different regions of 5 is  described approxi- 
mately by the formulas 

We discuss now the obtained expressions. According 
to (16), the tensor Tpd(c) determines the distribution of 
the electric field and the impedance a t  different polar- 
izations of the exciting magnetic field. The short-wave 
part of this tensor, VaB , does not influence the value 
of the impedance (see Sec. 3). Therefore, for example, 
the component UYy(S) determines the impedance Zyy and 
describes the distribution of the long-wave part of the 
field $(5) in the case when the exciting magnetic field 
is  directed along the x axis. (According to Maxwell's 
equation, = -iwHJc. ) It follows from (46) that in 
this case, a t  short distances from the surface, the 
field I, i s  determined by the roots q, and q,, i. e.  , it 
i s  formed by holes on open orbits, and the presence of 
other carr iers  plays no role. Accordingly, the im- 
pedance ZYY = 41rq~U,,,(O)/c, where go= wv,/w,,c, does not 
depend on the magnetic field and has the singularities 
that characterize the skin effect a t  H= 0.' 

The behavior of the field gY at distances exceeding 
the thickness of the anomalous skin layer is  described 
by expressions (49). It is seen from them that in the 
region  here Iq, I-'<< 5 << Iq, I-' the field gy i s  deter- 
mined a s  before by the carr iers  on the open orbits, and 
its value decreases in inverse proportion to the square 
of the distance from the surface. On the other hand, 
at  distances 5 larger than Ig, I", an important role in 
the formation of the field $ i s  assumed by carr iers  
with closed orbits, so that i t s  value becomes a function 
of H and has a more complicated dependence on 5. 
The carrier motion over closed orbits, which causes 
Hall conduction, leads to a mixing of the linear polar- 
izations of the R F  and to so unusual a character of the 
variation of $ at large distances from the surface. 
This mixing manifests itself even more strongly when 
the field fF" i s  excited by an alternating magnetic field 
directed along the y axis, and leads to an even more 
unexpected g,(f) dependence [see (42)]. If the open 
orbits that do not contribute to the current j, were not 
to influence this field, then its value would vary with the 
coordinate in accord with the simple exponential law 
that i s  typical of the normal skin effect in a magnetic 
field. On the other hand, owing to the presence of open 
orbits, the field ePI varies logarithmically up to distan- 
ces of the order of I,. The role of the skin-layer thick- 
ness is  then assumed by the quantity u/2aq3, which we 
shall call the thickness of the "skin layer in the pre- 
sence of open orbits. " 

The function UXY(c) characterizes the distribution of 
the field g, when it i s  excited by an alternating mag- 
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netic field polarized along the x axis. 

To conclude this section, we discuss the properties 
of various elements of the impedance tensor. Accord- 
ing to (421, (471, and (50) 

where q, = wv,/o,,c. It follows from (51) that the ele- 
ment Zm does not depend on the magnetic field, the 
element Zrr varies with the field like H21nH, and the 
elements Zn, and ZVx like H"1nH. Furthermore, Zxx 
depends logarithmically on the carr ier  mean free path, 
while the remaining elements do not depend on it and 
consequently also on the temperature. 

3. DOPPLERON AND GANTMAKHER KANER WAVE 

The expression for the short-wave component V,,(6) 
i s  determined by the contribution of the region (28). 
Therefore the variable q in the argument of the function 
so in (17)-(19) should be replaced by unity. Accurate 
to terms of order t2, it i s  then possible to represent the 
function D(q) by the product 

Using (7), we express the function VX,(6) in the form 

where the integration is over the region (28). 

Representing the expression in the square brackets 
in (53) in the form of two terms and using (52), we get 

In the upper half-plane, the first  Cerm of (54) has a 
branch point 1 + iy,, and the second a branch point -1 
+ iy, and a doppleron pole q,. The position of q, i s  
determined approximately by the expression 

The last term in (55) is  due to collisionless absorption 
of the field by holes on open orbits. The corresponding 
part of the doppleron damping i s  proportional to the 
density of the second carr ier  group, i ts  value i s  inde- 
pendent of temperature and decreases with increasing 
field like H-'. Thus, in strong-field regions the dop- 
pleron propagates also in the presence of open orbits. 

An analysis of (54) shows that a t  5 = 0 the element Vxx 
is the of order of 5 .  It therefore does not influence the 
surface impedance. At f7> 1 the integral (54) can be 
represented in the form of a sum of contributions of the 
residue at the pole q, and of the integrals along the 
edges of the cuts: 

where the asterisk denotes the complex conjugate, and 
eGK(l) is of the form 

The first  term in (56) describes the doppleron field, 
while the second and third describe the Gantmakher- 
Kaner wave. 

The elements V,,(I;) and VYY(f) a r e  calculated similar- 
ly. Their contribution to the impedance of a semi-in- 
finite metal i s  also negligibly small. Accurate to terms 
of higher order in 5 ,  the element Vyl i s  equal to Vxr. 
At f << 1 the element Vn, i s  given by 

Excitation of a doppleron and of a Gantmakher-Kaner 
component in a plate does not lead to oscillations of the 
sample impedance a s  functions of the constant magnetic 
field. When the transmitted signal i s  reflected from 
the opposite side of the plate, the amplitude of the R F  
field is  simply doubled5 (we a r e  considering the case of 
specular reflection of the carriers).  To calculate the 
oscillating part of the plate impedance (under antisym- 
metrical excitation) it i s  therefore necessary to intro- 
duce an appropriate multiplier in (56) and (58) and set in 
these equations 5 = L , where L = odd/v ,  and d i s  the 
plate thickness, 

It i s  seen that the amplitudes of both the doppleron 
oscillations and of the GKO a r e  the same in both linear 
polarizations, although the spin components differ ra- 
dically. 

Doppler-shifted cyclotron resonance in a compen- 
sated metal with open orbits was investigated, for 
example in cadmium. 24 The authors have noted there 
that the oscillations a r e  different for linear polariza- 
tion of the current along the hexagonal and binary axes 
of the crystal, in patent contradiction to the constructed 
theory. The reason, apparently, i s  the predominantly 
diffuse character of the reflection of the carr iers  in the 
investigated cadmium samples. 

The theory developed in the present paper can pos- 
sibly be used for other compensated metals with open 
orbits, or  for the same cadmium if specular carr ier  
reflection becomes realizable in it. 
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